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Abstract

Two topologies are studied in the set of rapidly decreasing distri-
butions on Rn.

Introduction

We study the topologies b̃ and op in the set of rapidly decreasing distribu-
tions on Rn. The topology b̃ is remarkable because a net of rapidly decreasing
distributions is b̃-convergent if and only if it is convergent in the sense of the
convergence space O′C(Rn) of L. Schwartz. The advantage of the topology
op is that the Fourier transformation yields an isomorphism of the space of
rapidly decreasing distributions onto OM(Rn).

1 The Fréchet spaces S1
µ(Rn), µ ∈ R, and the

J. Horváth space OC(Rn) = lim indµ→∞ S
1
µ

Let µ ∈ R. Then S1
µ(Rn) is the space of infinitely differentiable complex

functions φ on Rn such that

π1
µ,α(φ) <∞ for every multiindex α ∈ Nn

0

where
π1
µ,α(φ) =

∫
Rn

(1 + |x|2)−µ/2|(∂αϕ)(x)| dx.

Every S1
µ(Rn) is a Fréchet space whose topology is determined by the count-

able system of seminorms {π1
µ,α : α ∈ Nn

0}. If µ, ν ∈ R and µ < ν, then
S1
µ(Rn) ↪→ S1

ν(Rn).
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Let OC(Rn) = lim indµ→∞ S
1
µ(Rn). (The notion of inductive limit is ex-

plained in [B2, Sect. II.2.4], [R-R, Sect.V.2] and [Y, Sect. I, Definition 6].)
The idea of using lim ind goes back to J. Horváth [H2, Sect. 2.12, Example 9].
Originally Horváth defined OC(Rn) as lim indµ→∞ Sµ(Rn), where the spaces
Sµ(Rn) are distinct from but similar to S1

µ(Rn). The fact that replacing
Sµ(Rn) by S1

µ(Rn) does not affect OC(Rn) is a consequence of [K3, Sects.
I–III].

In what follows it will be important that S(Rn) is sequentially dense
in each S1

µ(Rn) and in OC(Rn). For S1
µ(Rn) this can be proved by routine

analytic tools, while the denseness of S(Rn) in OC(Rn) can be proved as fol-
lows. If p ∈ OC(Rn), then p ∈ S1

µ0
(Rn) for some µ0. By sequential denseness

of S(Rn) in S1
µ0

(Rn), there is a sequence (pk)k∈N ⊂ C∞C (Rn) converging to p
in the topology of S1

µ0
(Rn). A fortiori (pk)k∈N converges to p in the topology

of OC(Rn).

2 The isomorphisms of Horváth

Theorem 2.1 (variant for S1
µ(Rn) of a result stated in [H2, Sect. 2.5, Ex-

ample 8]). Let µ, λ ∈ R, φ ∈ S1
µ(Rn) and Ψ ∈ C∞(Rn) be a function with

complex values. Then Ψ ∈ S1
λ(Rn) if and only if

(2.1) Ψ(x) = (1 + |x|2)−(λ−µ)/2φ(x) for every x ∈ Rn.

Moreover the equality (2.1) yields an isomorphism Iµ,λ : S1
µ(Rn) → S1

λ(Rn)

of locally convex spaces.

If I ′λ,µ is the mapping adjoint to Iλ,µ, then [B2, Sect. IV.4.2, Proposition 6]
implies

Corollary 2.2. I ′λ,µ : (S1
λ(Rn))′b → (S1

µ(Rn))′b is an isomorphism of the
strong dual spaces (S1

λ(Rn))′b and (S1
µ(Rn))′b.

An analogous assertion for weak dual spaces is a trivial consequence of
Theorem 2.1.

3 Schwartz’s convergence space of rapidly de-
creasing distributions on Rn

It will sometimes be useful to distinguish clearly between a topological space
or a convergence space and the set of elements of this space, without any
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topology. So, we shall denote by [E] the set of all elements of a topological
space E or a convergence space E. We say that a distribution T ∈ D′(Rn)

is bounded if the set of all translations of T is bounded in the strong dual
topology of D′(Rn). Every distribution belonging to the space (DL1)′b, the
strong dual of DL1 in the sense of the theory of linear topological spaces,
is a bounded distribution. Since DL1 = S1

0(Rn), it follows that the space
(S1

0(Rn))′b is equal to the set of all bounded distributions. Schwartz’s defini-
tion of the convergence space O′C(Rn) says that two conditions have to be
satisfied:

(a) [O′C(Rn)] =
⋂
µ∈R(1 + | · |2)−µ/2[(S1

0(Rn))′b]

where (S1
0(Rn))′b is the strong dual of S1

0(Rn) in the sense of the theory of
linear topological spaces, and

(b) a net (
ι

T )ι∈J of elements of [O′C(Rn)] converges by definition to
0

T ∈
[O′C(Rn)] if and only if whenever ν ∈ [0,∞[, then the net ((1+|·|2)ν/2

ι

T )ι∈J

converges to (1 + | · |2)ν/2
0

T in the topology of (S1
0(Rn))′b.

Convergence spaces have some connections with the theory of locally convex
spaces. See [J, Sects. 9.9 and 10.9].

It follows from Corollary 2.2 that conditions (a) and (b) can be equiva-
lently written in the form:

(A) [O′C(Rn)] =
⋂
µ∈R[(S1

µ(Rn))′b],

(B) a net (Uι)ι∈J of elements of [O′C(Rn)] converges by definition to zero if
and only if, for every µ ∈ R, it converges to zero in the topology of the
space (S1

µ(Rn))′b.

In what follows, without special mention, we shall use the language of
the theory of locally convex spaces. The part of condition (B) written
in italics means that the net (Uι)ι∈J converges to zero in the so called
topology of intersection (see [B1, Sect. I.4] or [Sf, Sect. II.5]) applied to⋂
µ∈Rn(S1

µ(Rn))′b. This topology is defined as the weakest locally convex
topology τ in

⋂
µ∈Rn [(S1

µ(Rn))′b] such that for every µ ∈ R the natural pro-
jection prµ : (

⋂
µ∈Rn [(S1

µ(Rn))′b], τ) → (S1
µ(Rn))′b is continuous. Thus the

topology of
⋂
µ∈Rn(S1

µ(Rn))′b is a projective topology, and condition (B) can
be equivalently formulated as

(B)′ a net (Uι)ι∈J of elements [O′C(Rn)] converges to zero in the convergence
space O′C(Rn) if and only if it converges to zero in the topology of the
intersection

⋂
µ∈Rn(S1

µ(Rn))′b.
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Now let us pass to the space (OC(Rn))′τb constructed in [K3, Sect. IV].
This space is defined as ([(OC(Rn))′], τb) where [(OC(Rn))′] is the set of
all continuous linear functionals on OC(Rn), and τb is the S-topology in
[(OC(Rn))′] corresponding to the covering

⋃
µ∈R Bµ of OC(Rn) in which

Bµ is the family of all bounded subsets of S1
µ(Rn). From [H2, Sect. 2.12,

Proposition 2] or [Sf, Sect. II.6, Theorem 6.1] it follows that [(OC(Rn))′] =⋂
µ∈R[(S1

µ(Rn))′]. Hence, by (A), [(O′C(Rn))] = [(OC(Rn))′]. Moreover, the
topology τb in [(OC(Rn))′] is determined by the system of seminorms {pµ,B :

µ ∈ R, B ∈ Bµ} where pµ,B(f) = supφ∈B |〈f, φ〉| for every f ∈ [(OC(Rn))′].
Furthermore, for any fixed µ ∈ Rn, the system of seminorms {pµ,B : B ∈ Bµ}
determines the topology (S1

µ(Rn))′b. Hence τb is the weakest locally convex
topology in [(OC(Rn))′] such that, for every µ ∈ R, the natural projection
prµ : [(OC(Rn))′] → (S1

µ(Rn))′b is continuous. This proves that (OC(Rn))′τb
is equal to

⋂
µ∈Rn(S1

µ(Rn))′b. Therefore, by (A) and (B)′, we have

1◦ [O′C(Rn)] = [(OC(Rn))′],

2◦ a net (Uι)ι∈J of elements of [O′C(Rn)] converges to zero in the sense
of the convergence space O′C(Rn) of Schwartz if and only if this net is
τb-convergent.

The topology τb in [O′C(Rn)] having property 2◦ is unique because, ac-
cording to [K-A, Sect. I.2.6, Proposition 3], a subset of [(OC(Rn))′] is τb-
closed if and only if it contains the limit of any τb-convergent net of elements
of this subset.

4 The subset RD of [S ′(Rn)] and the topology
b̃ in RD

Define

RD = {T ∈ S ′(Rn) : T is continuous in the topology of OC(Rn)}.

It follows that RD = [S ′(Rn)]∩ [(OC(Rn))′] = [S ′(Rn)]∩ [O′C(Rn)]. By [H2,
Sect. 2.12, Proposition 2] or [Sf, Sect. II.6, Theorem 6.1] we have

RD = {T ∈ [S ′(Rn)] :

if µ ∈ R, then T is continuous in the topology of S1
µ(Rn)}.

Since S(Rn) is (sequentially) dense in every S1
µ(Rn), µ ∈ R, it follows that

RD = {T ∈ [S ′(Rn)] : if µ ∈ R, then T extends uniquely

to a continuous functional Tµ on S1
µ(Rn)}.
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The topology b̃ in the set RD of distributions is defined as the initial
topology defined by the inclusion RD ⊂ ((OC(Rn))′, τb).

5 The subset RD of S ′(Rn)

Define
RD := {T ∈ S ′(Rn) : [T ∗]|S(Rn) ∈ L(S(Rn),S(Rn))}

where L(·, ·) stands for the set of continuous linear mappings. The above
definition bases on T ∗ ϕ, convolution of a distribution with a test func-
tion, which is a function belonging to C∞(Rn) whose value at x ∈ Rn is
[T ∗ ϕ](x) = T ((ϕ∨)−x). Our Proposition 7.4 shows that requiring a distri-
bution T ∈ S ′(Rn) to satisfy the condition [T ∗]|S(Rn) ∈ L(S(Rn),S(Rn)) is
a severe restriction. Theorem 5.2 shows that a similar condition [T ∗]|S(Rn) ∈
L(S(Rn),OC(Rn)) is not a restriction at all.

Theorem 5.1. RD ⊂ RD.

Proof. Recall that

ρµ,α(ϕ) := sup
x∈Rn

(1 + |x|)µ|∂αϕ(x)|

for every µ ∈ [0,∞[, α ∈ Nn
0 and ϕ ∈ S(Rn). The system of seminorms

{ρµ,α : µ ∈ [0,∞[, α ∈ Nn
0} determines the locally convex topology in

S(Rn) (as also does any subsystem {ρµ,α : µ ∈ M, α ∈ Nn
0} where M is an

unbounded subset of [0,∞[).
Let T ∈ RD. To prove that T ∈ RD, fix some λ ∈ ]µ + n,∞[. Since Tλ

is a continuous linear functional on S1
λ(Rn), it follows that S1

λ(Rn) 3 φ 7→
|Tλ(φ)| ∈ C is a continuous seminorm on S1

λ(Rn), so that there are constants
Cλ ∈ ]0,∞[ and bλ ∈ N such that

|Tλ(φ)| ≤ Cλ max
|β|≤bλ

π1
λ,β(φ) for every φ ∈ S1

λ(Rn).

Since [S(Rn)] ⊂ [S1
λ(Rn)], it follows that

|T (ψ)| = |Tλ(ψ)| ≤ Cλ max
|β|≤bλ

π1
λ,β(ψ) for every ψ ∈ S(Rn).

Consequently, for every x ∈ Rn, α ∈ Nn
0 and ϕ ∈ S(Rn),

|∂α([T ∗ ϕ](x))| = |[T ∗ ∂α](x)| = |T(y)((∂αϕ)(x− y))|
≤ Cλ max

|β|≤bλ
[π1
λ,β](y)((∂

αϕ)(x− y))

= Cλ max
|β|≤bλ

∫
Rn

(1 + |y|)−λ|(∂α+βϕ)(x− y)| dy.
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Since ρµ,α+β(ϕ) = supx∈R(1 + |x|)µ|(∂α+βϕ)(x)|, it follows that

|(∂α+βϕ)(x− y)| ≤ ρµ,α+β(ϕ) · (1 + |x− y|)−µ,

so

|∂α(T ∗ ϕ)(x) ≤ Cλ max
|β|≤bλ

ρµ,α+β(ϕ)

∫
Rn

(1 + |y|)−λ(1 + |x− y|)−µ dy

= Cλ max
|β|≤bλ

ρµ,α+β(ϕ)

∫
Rn

(1 + |y|)−(λ−µ)(1 + |x− y|)−µ(1 + |y|)−µ dy.

. Since (1 + |x− y|)(1 + |y|) ≥ 1 + |x− y|+ |y| ≥ 1 + |x|,

|∂α(T ∗ ϕ)(x) ≤ Cλ max
|β|≤bλ

ρµ,α+β(ϕ) ·
(∫

Rn
(1 + |y|)−(λ−µ) dy

)
· (1 + |x|)−µ

where the integral is finite because λ ∈ ]µ+n,∞[. The last inequality implies
that

ρµ,α(T ∗ ϕ) ≤ Cλ max
|β|≤bλ

ρµ,α+β(ϕ)

∫
Rn

(1 + |y|)−(λ−µ) dy.

It follows that T ∗ ϕ ∈ S(Rn) whenever ϕ ∈ S(Rn), and the mapping
S(Rn) 3 ϕ 7→ T ∗ ϕ ∈ S(Rn) is continuous.

Remark. In [K3] it is proved that RD = RD. Moreover, if T ∈ S ′(Rn),
then the equivalent conditions (a) T ∈ RD and (b) T ∈ RD are equivalent
to

(c) for every µ ∈ [0,∞[, φ ∈ S1
µ(Rn) and ϕ ∈ D(Rn) the function Rn 3 z 7→

T (φ · ϕz) ∈ C belongs to S(Rn).

It follows at once that if T ∈ D′(Rn) is compactly supported then T ∈ RD.

Theorem 5.2. If T ∈ S ′(Rn), then [T ∗]|S(Rn) ∈ L(S(Rn),OC(Rn)).

The above result goes back to Horváth [H2, Sect. 4.11, Proposition 7]
who defined OC(Rn) as lim indµ→∞ Sµ(Rn), where the spaces Sµ(Rn) are
distinct from S1

µ(Rn), but similar. It follows from [K2, Sects. I–III] that
the same OC(Rn) can be represented as lim indµ→∞ S

1
µ(Rn). The proof of

Theorem 5.2 then becomes much shorter. See [K2, Theorem 4.1(ii)].

Corollary 5.3. If T ∈ S ′(Rn) and T ∗ ϕ ∈ S(Rn) for every ϕ ∈ S(Rn),
then the linear mapping S(Rn) 3 ϕ 7→ T ∗ ϕ ∈ S(Rn) has closed graph.

Proof. Suppose that S(Rn)-limk→∞ ϕk = ϕ0 and S(Rn)-limk→∞(T ∗ ϕk)
= ψ0. Since S(Rn) ↪→ OC(Rn), we have OC(Rn)-limk→∞ ϕk = ϕ0 and, by
Theorem 5.2,OC(Rn)-limk→∞(T ∗ϕk) = T ∗ψ0. Hence ϕ0 = ψ0, which means
that the graph of the mapping S(Rn) 3 ϕ 7→ T ∗ ϕ ∈ S(Rn) is closed.
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Theorem 5.4 (part of [G-L, Theorem 7·2.2]). If T ∈ S ′(Rn) and T ∗ ϕ ∈
S(Rn) for every ϕ ∈ S(Rn), then the mapping S(Rn) 3 ϕ 7→ T ∗ϕ ∈ S(Rn)

is continuous.

Proof. This is a consequence of Corollary 5.3 and the Closed Graph The-
orem. The latter can be applied since the space S(Rn) is metrizable and
complete.

6 The operator topology in RD

Let A be the family of all bounded closed (that is, compact) subsets of the
Fréchet space S(Rn), which is a Montel space. According to [Y, Sect. IV.7]
the locally convex topology of bounded convergence in the set L(S(Rn),

S(Rn)) is determined by the system of seminorms {pµ,α,A : µ ∈ [0,∞[,
α ∈ Nn

0 , A ∈ A} where pµ,α,A(L) = supϕ∈A ρµ,α(L(ϕ)) for every L ∈
L(S(Rn),S(Rn)). The set L(S(Rn),S(Rn)) equipped with the topology of
bounded convergence constitutes a locally convex space which is denoted
by L(S(Rn),S(Rn))b.

We introduce in the set RD the locally convex topology op (opera-
tor topology) as the initial topology defined by the mapping RD ∈ T 7→
[T ∗]|S(Rn) ∈ L(S(Rn),S(Rn))b. This means that the topology op in RD is
determined by the system of seminorms {rµ,α,A : µ ∈ [0,∞[, α ∈ Nn

0 , A ∈ A}
where rµ,α,A(T ) = supϕ∈A ρµ,α(T ∗ ϕ).

7 Locally convex space (RD, op) and Fourier
transformation

The Fourier transformation in S ′(Rn)

The Fourier transformation F : S(Rn) → S(Rn) is a linear topological au-
tomorphism of the space S(Rn) (see [G, Theorem 5.2.5], [S2, Sect. VII.6,
Theorem XII] or [Y, Sect. VI.1]). Its transpose F ′ is a linear topological
automorphism of S ′(Rn) equipped with the ∗-weak topology. F ′ is also a
linear topological automorphism of (S(Rn))′b (see [B2, Sect. IV.4.2, Propo-
sition 6]). Moreover, since S(Rn) is (sequentially) dense in S ′(Rn), from the
Parseval equality for F : S(Rn) → S(Rn) it follows that F ′ is equal to
the extension of F : S(Rn) → S(Rn) onto by S ′(Rn)b continuity. For this
reason in what follows we shall write F instead F ′. Let us stress that we
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define F by the equalities [F(ϕ)](ξ) =
∫
Rn e

−i〈x,ξ〉ϕ(x) dx for ϕ ∈ S(Rn) and
〈F(U), ϕ〉 = 〈U,F(ϕ)〉 for U ∈ S ′(Rn) and ϕ ∈ S(Rn).

OM(Rn) as the algebra of multipliers of S(Rn)

OM(Rn) is a locally convex space with the topology determined by
Schwartz’s system of seminorms {sα : α ∈ Nn

0 , A ∈ A} where sα,A(φ) =

supϕ∈A, x∈Rn |ϕ(x)∂αφ(x)| for every φ ∈ OM(Rn). See [S2, Sect. VII.5]. An
equivalent system of seminorms is {sµ,α,A : µ ∈ [0,∞[, α ∈ Nn

0 , A ∈ A}
where sµ,α,A(φ) = supϕ∈A ρµ,α(φ · ϕ) for every φ ∈ OM(Rn). The proof of
equivalence is presented in [K1, Sects. 2.1 and 2.2]. The second system
of seminorms corresponds to the initial topology defined by the mapping
[OM(Rn)] 3 φ 7→ φ · ∈ L(S(Rn),S(Rn))b where φ · denotes the opera-
tor of multiplication by φ. It is almost evident that if φ ∈ OM(Rn),
then φ · ∈ L(S(Rn),S(Rn)). Not obvious is the opposite implication: if
φ ∈ C∞(Rn) and φ · ∈ L(S(Rn),S(Rn)), then φ ∈ OM(Rn); an ingenious
short proof can be found in [Kh, Vol. 2, Chap. CA.III].

Theorem 7.1 ([Y, Sect. VI.3, equality (14) of Theorem 6]). If T ∈ S ′(Rn)

and ϕ ∈ S(Rn), then

F(T ∗ ϕ) = F(ϕ) · F(T ).

The proof presented by K. Yosida is short and elementary but refined.

Theorem 7.2. If T ∈ RD, then F(T ) = (2π)n/2e
1
2
|·|F(T ∗ e− 1

2
|·|) ∈

C∞(Rn) and F|RD is a linear one-to-one mapping of RD onto [OM(Rn)].

Proof. Since F(e−
1
2
|·|2) = (2π)−n/2e−

1
2
|·|2 (see [R, Sect. 2.2, Example 1] or

[S-W, Sect. I.1, Theorem 1.13]), we infer from Theorem 7.1 that

F(T ∗ e−
1
2
|·|2) = F(T ) · F(e−

1
2
|·|2) = F(T )(2π)−n/2e−

1
2
|·|2 ,

so that
F(T ) = φT

where
φT = (2π)n/2e

1
2
|·|2F(T ∗ e

1
2
|·|2) ∈ C∞(Rn).

In order to prove that if T ∈ RD then φT ∈ OM(Rn), we shall use the
implication: if φ ∈ C∞(Rn) and φ · S(Rn) ⊂ S(Rn), then φ ∈ OM(Rn), that
is, all the partial derivatives of φ grow slowly at infinity. This implication
constitutes a hard part of the characterization of OM(Rn) as the function
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algebra of multipliers of S(Rn). (Let us recall here the proof of V.-K. Khoan,
mentioned earlier.) So, in order to prove that φT ∈ OM(Rn) for every T ∈
RD we have only to check that φT · S(Rn) ⊂ S(Rn), that is, if T ∈ RD and
ϕ ∈ S(Rn) then φT ·ϕ ∈ S(Rn). But φT ·ϕ = F(T )·ϕ = F(T )·F(F−1ϕ) and,
by Theorem 7.1, F(T ) · F(F−1ϕ) = F(T ∗ F−1ϕ) ∈ F(S(Rn)) ⊂ S(Rn).

The above shows that F is a one-to-one mapping of RD into OM(Rn).
It remains to prove that F maps RD onto OM(Rn), that is, F−1(φ) ∈ RD

for every φ ∈ OM(Rn). But if φ ∈ OM(Rn) and ϕ ∈ D(Rn), then, by
Theorem 7.1, F(F−1(φ) ∗ ϕ) = φ · F(ϕ) ∈ S(Rn), whence F−1(φ) ∗ ϕ ∈
S(Rn), so that F−1(φ) ∈ RD, by Theorem 5.4.

Theorem 7.3. The linear one-to-one surjection F|RD : RD→ [OM(Rn)]

yields an isomorphism between the locally convex spaces (RD, op) and
OM(Rn).

Proof. In this proof we let (µ, α,A) range over [0,∞[×Nn
0×A. Let a, b ∈ Z.

Then

Fa,b : L(S(Rn),S(Rn))b 3 L 7→ Fa ◦ L ◦ F b ∈ L(S(Rn),S(Rn))b

is a continuous linear invertible mapping of L(S(Rn),S(Rn))b onto itself
with inverse F−a◦L◦F−b 7→ L. Continuity of Fa,b is clear from continuity in
L of the corresponding seminorms on L(S(Rn),S(Rn))b which have the form
supϕ∈A ρµ,A([Fa ◦ L ◦F b](ϕ)). Therefore, by [H2, Sect. 2.11, Proposition 2],
the initial topologies in RD defined by the mappings RD 3 T 7→ Fa ◦
(T ∗) ◦ F b ∈ L(S(Rn),S(Rn))b are all equivalent for a, b ∈ Z.

We are interested in the case a = −1, b = 1. Then we define

σµ,α,A(L) := sup
ϕ∈A

ρµ,α([F−1 ◦ L ◦ F ](ϕ)), L ∈ L(S(Rn),S(Rn))b.

By Theorem 7.1, for T ∈ RD we have

rµ,α,A(T ) = sup
ϕ∈A

ρµ,α(T ∗ ϕ) = sup
ϕ∈A

ρµ,α([F−1(F(T ) · F)](ϕ)) = σµ,α,A(F(T )).

From the equality rµ,α,A(T ) = σµ,α,A(F(T )), by [B2, Sect. II.5.6, Proposi-
tion 9] or [EDM 2, Sect. 424.F], it follows that F|RD is an isomorphism of the
locally convex space (RD, op) onto the locally convex space OM(Rn).

If T ∈ RD and U ∈ S ′(Rn) then we define the convolution T � U as a
distribution belonging to S ′(Rn) and equal to t([T∨ ∗]|S(Rn)) where the left
superscript t stands for the transpose operator. All this means that

(7.1) 〈T � U,ϕ〉 = 〈U, T∨ ∗ ϕ〉 for every ϕ ∈ S(Rn).



Topologies in the set of rapidly decreasing distributions 10

The last equality resembles [G, Sect. 4.4, Definition 4.4.1] and [H2, Sect. 4.11,
Definition 3], and constitutes a provisional definition of convolution inS ′(Rn),
limited to T ∈ RD and U ∈ S ′(Rn). Since our provisional convolution
always leads to T �U ∈ S ′(Rn), its disprovisionalization must be an S ′(Rn)-
convolution. The author knows only one S ′(Rn)-convolution, namely the
S ′(Rn)-convolution of Y. Hirata and H. Ogata [H-O].

Theorem 7.4. If T ∈ RD and U ∈ S ′(Rn), then

F(T � U) = F(T ) · F(U).

Proof. Notice first that F(T � U) makes sense, because T � U ∈ S ′(Rn).
Also F(T ) ·F(U) makes sense because F(T ) = φT ∈ OM(Rn). To prove the
equality of both expressions notice first that for every T ∈ RD, U ∈ S ′(Rn)

and ϕ ∈ S(Rn), by Theorem 7.1, we have

〈T � U,ϕ〉 = 〈U, T∨ ∗ ϕ〉 = 〈U,F−1(F(T∨) · F(ϕ))〉
= 〈F−1(U),F(T∨) · F(ϕ)〉
= 〈F−1(U) · F(T )∨,F(ϕ)〉,

whence
T � U = F(F(T )∨ · F−1(U)).

From the last equality, by the Fourier inversion formula, it follows that

T � U = F
(
F(T )∨ · (2π)nF(U)∨

)
= (2π)nF

(
(F(T )∨ · F(U))∨

)
= (2π)nF∨(F(T ) · F(U)) = F−1(F(T ) · F(U)),

whence
F(T � U) = F(T ) · F(U).

Remark. Theorem 7.4 means that our provisional convolution � has the
property of Fourier exchange of convolution onto multiplication. The S ′(Rn)

-convolution of Y. Hirata and H. Ogata also has this property, and this
permits one to prove that � is the restriction of H-O-convolution to RD×
S ′(Rn). Notice that H-O-convolution assigns to any convolvable pair (T, U)

∈ S ′(Rn) × S ′(Rn) a distribution T ∗ U ∈ S ′(Rn). Schwartz’s convolution
[S1] assigns to a convolvable pair (T, U) ∈ D′(Rn) × D′(Rn) a distribution
T ∗U ∈ D′(Rn). It is proved in [H3, Example 6] that if (T, U) ∈ RD×S ′(Rn)

then the pair (T, U) is Schwartz convolvable. In [D-V] an example is given
of two measures (T, U) ∈ S ′(Rn)×S ′(Rn) with Schwartz convolution T ∗U
in D′(Rn) \ S ′(Rn). This example shows that S ′(Rn)-convolution is really
needed.
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