Topologies in the set of rapidly decreasing distributions

Jan Kisyński E-mail: jan.kisynski@gmail.com

To the memory of Professor Janusz Mika

Abstract

Two topologies are studied in the set of rapidly decreasing distributions on \mathbb{R}^n .

Introduction

We study the topologies \tilde{b} and op in the set of rapidly decreasing distributions on \mathbb{R}^n . The topology \tilde{b} is remarkable because a net of rapidly decreasing distributions is \tilde{b} -convergent if and only if it is convergent in the sense of the convergence space $\mathcal{O}'_{C}(\mathbb{R}^n)$ of L. Schwartz. The advantage of the topology op is that the Fourier transformation yields an isomorphism of the space of rapidly decreasing distributions onto $\mathcal{O}_M(\mathbb{R}^n)$.

1 The Fréchet spaces $S^1_{\mu}(\mathbb{R}^n)$, $\mu \in \mathbb{R}$, and the J. Horváth space $\mathcal{O}_C(\mathbb{R}^n) = \liminf_{\mu \to \infty} S^1_{\mu}$

Let $\mu \in \mathbb{R}$. Then $S^1_{\mu}(\mathbb{R}^n)$ is the space of infinitely differentiable complex functions ϕ on \mathbb{R}^n such that

$$\pi^1_{\mu,\alpha}(\phi) < \infty$$
 for every multiindex $\alpha \in \mathbb{N}_0^n$

where

$$\pi^1_{\mu,\alpha}(\phi) = \int_{\mathbb{R}^n} (1+|x|^2)^{-\mu/2} |(\partial^{\alpha}\varphi)(x)| dx.$$

Every $S^1_{\mu}(\mathbb{R}^n)$ is a Fréchet space whose topology is determined by the countable system of seminorms $\{\pi^1_{\mu,\alpha}:\alpha\in\mathbb{N}^n_0\}$. If $\mu,\nu\in\mathbb{R}$ and $\mu<\nu$, then $S^1_{\mu}(\mathbb{R}^n)\hookrightarrow S^1_{\nu}(\mathbb{R}^n)$.

Let $\mathcal{O}_C(\mathbb{R}^n) = \liminf_{\mu \to \infty} S^1_{\mu}(\mathbb{R}^n)$. (The notion of inductive limit is explained in [B2, Sect. II.2.4], [R-R, Sect.V.2] and [Y, Sect. I, Definition 6].) The idea of using \liminf goes back to J. Horváth [H2, Sect. 2.12, Example 9]. Originally Horváth defined $\mathcal{O}_C(\mathbb{R}^n)$ as $\liminf_{\mu \to \infty} S_{\mu}(\mathbb{R}^n)$, where the spaces $S_{\mu}(\mathbb{R}^n)$ are distinct from but similar to $S^1_{\mu}(\mathbb{R}^n)$. The fact that replacing $S_{\mu}(\mathbb{R}^n)$ by $S^1_{\mu}(\mathbb{R}^n)$ does not affect $\mathcal{O}_C(\mathbb{R}^n)$ is a consequence of [K3, Sects. I–III].

In what follows it will be important that $\mathcal{S}(\mathbb{R}^n)$ is sequentially dense in each $S^1_{\mu}(\mathbb{R}^n)$ and in $\mathcal{O}_C(\mathbb{R}^n)$. For $S^1_{\mu}(\mathbb{R}^n)$ this can be proved by routine analytic tools, while the denseness of $\mathcal{S}(\mathbb{R}^n)$ in $\mathcal{O}_C(\mathbb{R}^n)$ can be proved as follows. If $p \in \mathcal{O}_C(\mathbb{R}^n)$, then $p \in S^1_{\mu_0}(\mathbb{R}^n)$ for some μ_0 . By sequential denseness of $\mathcal{S}(\mathbb{R}^n)$ in $S^1_{\mu_0}(\mathbb{R}^n)$, there is a sequence $(p_k)_{k\in\mathbb{N}} \subset C^\infty_C(\mathbb{R}^n)$ converging to pin the topology of $S^1_{\mu_0}(\mathbb{R}^n)$. A fortiori $(p_k)_{k\in\mathbb{N}}$ converges to p in the topology of $\mathcal{O}_C(\mathbb{R}^n)$.

2 The isomorphisms of Horváth

Theorem 2.1 (variant for $S^1_{\mu}(\mathbb{R}^n)$ of a result stated in [H2, Sect. 2.5, Example 8]). Let $\mu, \lambda \in \mathbb{R}$, $\phi \in S^1_{\mu}(\mathbb{R}^n)$ and $\Psi \in C^{\infty}(\mathbb{R}^n)$ be a function with complex values. Then $\Psi \in S^1_{\lambda}(\mathbb{R}^n)$ if and only if

(2.1)
$$\Psi(x) = (1 + |x|^2)^{-(\lambda - \mu)/2} \phi(x) \quad \text{for every } x \in \mathbb{R}^n.$$

Moreover the equality (2.1) yields an isomorphism $I_{\mu,\lambda}: S^1_{\mu}(\mathbb{R}^n) \to S^1_{\lambda}(\mathbb{R}^n)$ of locally convex spaces.

If $I'_{\lambda,\mu}$ is the mapping adjoint to $I_{\lambda,\mu}$, then [B2, Sect. IV.4.2, Proposition 6] implies

Corollary 2.2. $I'_{\lambda,\mu}: (S^1_{\lambda}(\mathbb{R}^n))'_b \to (S^1_{\mu}(\mathbb{R}^n))'_b$ is an isomorphism of the strong dual spaces $(S^1_{\lambda}(\mathbb{R}^n))'_b$ and $(S^1_{\mu}(\mathbb{R}^n))'_b$.

An analogous assertion for weak dual spaces is a trivial consequence of Theorem 2.1.

3 Schwartz's convergence space of rapidly decreasing distributions on \mathbb{R}^n

It will sometimes be useful to distinguish clearly between a topological space or a convergence space and the set of elements of this space, without any topology. So, we shall denote by [E] the set of all elements of a topological space E or a convergence space E. We say that a distribution $T \in \mathcal{D}'(\mathbb{R}^n)$ is bounded if the set of all translations of T is bounded in the strong dual topology of $\mathcal{D}'(\mathbb{R}^n)$. Every distribution belonging to the space $(\mathcal{D}_{L^1})'_b$, the strong dual of \mathcal{D}_{L^1} in the sense of the theory of linear topological spaces, is a bounded distribution. Since $\mathcal{D}_{L^1} = S_0^1(\mathbb{R}^n)$, it follows that the space $(S_0^1(\mathbb{R}^n))'_b$ is equal to the set of all bounded distributions. Schwartz's definition of the convergence space $\mathcal{O}'_C(\mathbb{R}^n)$ says that two conditions have to be satisfied:

(a)
$$[\mathcal{O}'_C(\mathbb{R}^n)] = \bigcap_{\mu \in \mathbb{R}} (1 + |\cdot|^2)^{-\mu/2} [(S_0^1(\mathbb{R}^n))'_b]$$

where $(S_0^1(\mathbb{R}^n))_b'$ is the strong dual of $S_0^1(\mathbb{R}^n)$ in the sense of the theory of linear topological spaces, and

(b) a net $(T)_{\iota \in J}$ of elements of $[\mathcal{O}'_{C}(\mathbb{R}^{n})]$ converges by definition to $T \in [\mathcal{O}'_{C}(\mathbb{R}^{n})]$ if and only if whenever $\nu \in [0, \infty[$, then the net $((1+|\cdot|^{2})^{\nu/2}T)_{\iota \in J}$ converges to $(1+|\cdot|^{2})^{\nu/2}T$ in the topology of $(S_{0}^{1}(\mathbb{R}^{n}))'_{b}$.

Convergence spaces have some connections with the theory of locally convex spaces. See [J, Sects. 9.9 and 10.9].

It follows from Corollary 2.2 that conditions (a) and (b) can be equivalently written in the form:

(A)
$$[\mathcal{O}'_C(\mathbb{R}^n)] = \bigcap_{\mu \in \mathbb{R}} [(S^1_\mu(\mathbb{R}^n))'_b],$$

(B) a net $(U_{\iota})_{\iota \in J}$ of elements of $[\mathcal{O}'_{C}(\mathbb{R}^{n})]$ converges by definition to zero if and only if, for every $\mu \in \mathbb{R}$, it converges to zero in the topology of the space $(S^{1}_{\mu}(\mathbb{R}^{n}))'_{b}$.

In what follows, without special mention, we shall use the language of the theory of locally convex spaces. The part of condition (B) written in italics means that the net $(U_{\iota})_{\iota \in J}$ converges to zero in the so called topology of intersection (see [B1, Sect. I.4] or [Sf, Sect. II.5]) applied to $\bigcap_{\mu \in \mathbb{R}^n} (S^1_{\mu}(\mathbb{R}^n))'_b$. This topology is defined as the weakest locally convex topology τ in $\bigcap_{\mu \in \mathbb{R}^n} [(S^1_{\mu}(\mathbb{R}^n))'_b]$ such that for every $\mu \in \mathbb{R}$ the natural projection $pr_{\mu} : (\bigcap_{\mu \in \mathbb{R}^n} [(S^1_{\mu}(\mathbb{R}^n))'_b], \tau) \to (S^1_{\mu}(\mathbb{R}^n))'_b$ is continuous. Thus the topology of $\bigcap_{\mu \in \mathbb{R}^n} (S^1_{\mu}(\mathbb{R}^n))'_b$ is a projective topology, and condition (B) can be equivalently formulated as

(B)' a net $(U_{\iota})_{\iota \in J}$ of elements $[\mathcal{O}'_{C}(\mathbb{R}^{n})]$ converges to zero in the convergence space $\mathcal{O}'_{C}(\mathbb{R}^{n})$ if and only if it converges to zero in the topology of the intersection $\bigcap_{\mu \in \mathbb{R}^{n}} (S^{1}_{\mu}(\mathbb{R}^{n}))'_{b}$.

Now let us pass to the space $(\mathcal{O}_C(\mathbb{R}^n))'_{\tau_b}$ constructed in [K3, Sect. IV]. This space is defined as $([(\mathcal{O}_C(\mathbb{R}^n))'], \tau_b)$ where $[(\mathcal{O}_C(\mathbb{R}^n))']$ is the set of all continuous linear functionals on $\mathcal{O}_C(\mathbb{R}^n)$, and τ_b is the \mathfrak{S} -topology in $[(\mathcal{O}_C(\mathbb{R}^n))']$ corresponding to the covering $\bigcup_{\mu \in \mathbb{R}} \mathcal{B}_\mu$ of $\mathcal{O}_C(\mathbb{R}^n)$ in which \mathcal{B}_μ is the family of all bounded subsets of $S^1_\mu(\mathbb{R}^n)$. From [H2, Sect. 2.12, Proposition 2] or [Sf, Sect. II.6, Theorem 6.1] it follows that $[(\mathcal{O}_C(\mathbb{R}^n))'] = \bigcap_{\mu \in \mathbb{R}} [(S^1_\mu(\mathbb{R}^n))']$. Hence, by (A), $[(\mathcal{O}'_C(\mathbb{R}^n))] = [(\mathcal{O}_C(\mathbb{R}^n))']$. Moreover, the topology τ_b in $[(\mathcal{O}_C(\mathbb{R}^n))']$ is determined by the system of seminorms $\{p_{\mu,\mathcal{B}}: \mu \in \mathbb{R}, B \in \mathcal{B}_\mu\}$ where $p_{\mu,\mathcal{B}}(f) = \sup_{\phi \in \mathcal{B}} |\langle f, \phi \rangle|$ for every $f \in [(\mathcal{O}_C(\mathbb{R}^n))']$. Furthermore, for any fixed $\mu \in \mathbb{R}^n$, the system of seminorms $\{p_{\mu,\mathcal{B}}: B \in \mathcal{B}_\mu\}$ determines the topology $(S^1_\mu(\mathbb{R}^n))'_b$. Hence τ_b is the weakest locally convex topology in $[(\mathcal{O}_C(\mathbb{R}^n))']$ such that, for every $\mu \in \mathbb{R}$, the natural projection $pr_\mu: [(\mathcal{O}_C(\mathbb{R}^n))'] \to (S^1_\mu(\mathbb{R}^n))'_b$ is continuous. This proves that $(\mathcal{O}_C(\mathbb{R}^n))'_{\tau_b}$ is equal to $\bigcap_{\mu \in \mathbb{R}^n} (S^1_\mu(\mathbb{R}^n))'_b$. Therefore, by (A) and (B)', we have $[\mathcal{O}'_C(\mathbb{R}^n)] = [(\mathcal{O}'_C(\mathbb{R}^n))']$,

2° a net $(U_{\iota})_{\iota \in J}$ of elements of $[\mathcal{O}'_{C}(\mathbb{R}^{n})]$ converges to zero in the sense of the convergence space $\mathcal{O}'_{C}(\mathbb{R}^{n})$ of Schwartz if and only if this net is τ_{b} -convergent.

The topology τ_b in $[\mathcal{O}'_C(\mathbb{R}^n)]$ having property 2° is unique because, according to [K-A, Sect. I.2.6, Proposition 3], a subset of $[(\mathcal{O}_C(\mathbb{R}^n))']$ is τ_b -closed if and only if it contains the limit of any τ_b -convergent net of elements of this subset.

4 The subset RD of $[S'(\mathbb{R}^n)]$ and the topology \tilde{b} in RD

Define

 $RD = \{T \in \mathcal{S}'(\mathbb{R}^n) : T \text{ is continuous in the topology of } \mathcal{O}_C(\mathbb{R}^n)\}.$

It follows that $RD = [\mathcal{S}'(\mathbb{R}^n)] \cap [(\mathcal{O}_C(\mathbb{R}^n))'] = [\mathcal{S}'(\mathbb{R}^n)] \cap [\mathcal{O}'_C(\mathbb{R}^n)]$. By [H2, Sect. 2.12, Proposition 2] or [Sf, Sect. II.6, Theorem 6.1] we have

$$RD = \{ T \in [\mathcal{S}'(\mathbb{R}^n)] :$$

if $\mu \in \mathbb{R}$, then T is continuous in the topology of $S^1_{\mu}(\mathbb{R}^n)$.

Since $\mathcal{S}(\mathbb{R}^n)$ is (sequentially) dense in every $S^1_{\mu}(\mathbb{R}^n)$, $\mu \in \mathbb{R}$, it follows that

 $RD = \{T \in [\mathcal{S}'(\mathbb{R}^n)] : \text{if } \mu \in \mathbb{R}, \text{ then } T \text{ extends uniquely } \}$

to a continuous functional T_{μ} on $S^1_{\mu}(\mathbb{R}^n)$.

The topology \tilde{b} in the set RD of distributions is defined as the initial topology defined by the inclusion $RD \subset ((\mathcal{O}_C(\mathbb{R}^n))', \tau_b)$.

5 The subset RD of $\mathcal{S}'(\mathbb{R}^n)$

Define

$$\mathbf{RD} := \{ T \in \mathcal{S}'(\mathbb{R}^n) : [T *]|_{\mathcal{S}(\mathbb{R}^n)} \in L(\mathcal{S}(\mathbb{R}^n), \mathcal{S}(\mathbb{R}^n)) \}$$

where $L(\cdot,\cdot)$ stands for the set of continuous linear mappings. The above definition bases on $T * \varphi$, convolution of a distribution with a test function, which is a function belonging to $C^{\infty}(\mathbb{R}^n)$ whose value at $x \in \mathbb{R}^n$ is $[T * \varphi](x) = T((\varphi^{\vee})_{-x})$. Our Proposition 7.4 shows that requiring a distribution $T \in \mathcal{S}'(\mathbb{R}^n)$ to satisfy the condition $[T *]|_{\mathcal{S}(\mathbb{R}^n)} \in L(\mathcal{S}(\mathbb{R}^n), \mathcal{S}(\mathbb{R}^n))$ is a severe restriction. Theorem 5.2 shows that a similar condition $[T *]|_{\mathcal{S}(\mathbb{R}^n)} \in L(\mathcal{S}(\mathbb{R}^n), \mathcal{O}_C(\mathbb{R}^n))$ is not a restriction at all.

Theorem 5.1. $RD \subset RD$.

Proof. Recall that

$$\rho_{\mu,\alpha}(\varphi) := \sup_{x \in \mathbb{R}^n} (1 + |x|)^{\mu} |\partial^{\alpha} \varphi(x)|$$

for every $\mu \in [0, \infty[$, $\alpha \in \mathbb{N}_0^n$ and $\varphi \in \mathcal{S}(\mathbb{R}^n)$. The system of seminorms $\{\rho_{\mu,\alpha} : \mu \in [0, \infty[$, $\alpha \in \mathbb{N}_0^n\}$ determines the locally convex topology in $\mathcal{S}(\mathbb{R}^n)$ (as also does any subsystem $\{\rho_{\mu,\alpha} : \mu \in M, \alpha \in \mathbb{N}_0^n\}$ where M is an unbounded subset of $[0, \infty[$).

Let $T \in RD$. To prove that $T \in \mathbf{RD}$, fix some $\lambda \in]\mu + n, \infty[$. Since T_{λ} is a continuous linear functional on $S^1_{\lambda}(\mathbb{R}^n)$, it follows that $S^1_{\lambda}(\mathbb{R}^n) \ni \phi \mapsto |T_{\lambda}(\phi)| \in \mathbb{C}$ is a continuous seminorm on $S^1_{\lambda}(\mathbb{R}^n)$, so that there are constants $C_{\lambda} \in]0, \infty[$ and $b_{\lambda} \in \mathbb{N}$ such that

$$|T_{\lambda}(\phi)| \le C_{\lambda} \max_{|\beta| \le b_{\lambda}} \pi^{1}_{\lambda,\beta}(\phi)$$
 for every $\phi \in S^{1}_{\lambda}(\mathbb{R}^{n})$.

Since $[S(\mathbb{R}^n)] \subset [S^1_{\lambda}(\mathbb{R}^n)]$, it follows that

$$|T(\psi)| = |T_{\lambda}(\psi)| \le C_{\lambda} \max_{|\beta| \le b_{\lambda}} \pi_{\lambda,\beta}^{1}(\psi)$$
 for every $\psi \in \mathcal{S}(\mathbb{R}^{n})$.

Consequently, for every $x \in \mathbb{R}^n$, $\alpha \in \mathbb{N}_0^n$ and $\varphi \in \mathcal{S}(\mathbb{R}^n)$

$$\begin{aligned} |\partial^{\alpha}([T*\varphi](x))| &= |[T*\partial^{\alpha}](x)| = |T_{(y)}((\partial^{\alpha}\varphi)(x-y))| \\ &\leq C_{\lambda} \max_{|\beta| \leq b_{\lambda}} [\pi^{1}_{\lambda,\beta}]_{(y)}((\partial^{\alpha}\varphi)(x-y)) \\ &= C_{\lambda} \max_{|\beta| \leq b_{\lambda}} \int_{\mathbb{R}^{n}} (1+|y|)^{-\lambda} |(\partial^{\alpha+\beta}\varphi)(x-y)| \, dy. \end{aligned}$$

Since $\rho_{\mu,\alpha+\beta}(\varphi) = \sup_{x \in \mathbb{R}} (1+|x|)^{\mu} |(\partial^{\alpha+\beta}\varphi)(x)|$, it follows that

$$|(\partial^{\alpha+\beta}\varphi)(x-y)| \le \rho_{\mu,\alpha+\beta}(\varphi) \cdot (1+|x-y|)^{-\mu},$$

SO

$$\begin{aligned} |\partial^{\alpha}(T * \varphi)(x) &\leq C_{\lambda} \max_{|\beta| \leq b_{\lambda}} \rho_{\mu,\alpha+\beta}(\varphi) \int_{\mathbb{R}^{n}} (1 + |y|)^{-\lambda} (1 + |x - y|)^{-\mu} \, dy \\ &= C_{\lambda} \max_{|\beta| \leq b_{\lambda}} \rho_{\mu,\alpha+\beta}(\varphi) \int_{\mathbb{R}^{n}} (1 + |y|)^{-(\lambda - \mu)} (1 + |x - y|)^{-\mu} (1 + |y|)^{-\mu} \, dy. \end{aligned}$$

. Since $(1+|x-y|)(1+|y|) \ge 1+|x-y|+|y| \ge 1+|x|$,

$$|\partial^{\alpha}(T * \varphi)(x)| \leq C_{\lambda} \max_{|\beta| \leq b_{\lambda}} \rho_{\mu,\alpha+\beta}(\varphi) \cdot \left(\int_{\mathbb{R}^{n}} (1 + |y|)^{-(\lambda-\mu)} \, dy \right) \cdot (1 + |x|)^{-\mu}$$

where the integral is finite because $\lambda \in]\mu+n,\infty[$. The last inequality implies that

$$\rho_{\mu,\alpha}(T * \varphi) \le C_{\lambda} \max_{|\beta| \le b_{\lambda}} \rho_{\mu,\alpha+\beta}(\varphi) \int_{\mathbb{R}^n} (1 + |y|)^{-(\lambda - \mu)} \, dy.$$

It follows that $T * \varphi \in \mathcal{S}(\mathbb{R}^n)$ whenever $\varphi \in \mathcal{S}(\mathbb{R}^n)$, and the mapping $\mathcal{S}(\mathbb{R}^n) \ni \varphi \mapsto T * \varphi \in \mathcal{S}(\mathbb{R}^n)$ is continuous.

Remark. In [K3] it is proved that $RD = \mathbf{RD}$. Moreover, if $T \in \mathcal{S}'(\mathbb{R}^n)$, then the equivalent conditions (a) $T \in RD$ and (b) $T \in \mathbf{RD}$ are equivalent to

(c) for every $\mu \in [0, \infty[$, $\phi \in S^1_{\mu}(\mathbb{R}^n)$ and $\varphi \in \mathcal{D}(\mathbb{R}^n)$ the function $\mathbb{R}^n \ni z \mapsto T(\phi \cdot \varphi_z) \in \mathbb{C}$ belongs to $\mathcal{S}(\mathbb{R}^n)$.

It follows at once that if $T \in \mathcal{D}'(\mathbb{R}^n)$ is compactly supported then $T \in RD$.

Theorem 5.2. If
$$T \in \mathcal{S}'(\mathbb{R}^n)$$
, then $[T*]|_{\mathcal{S}(\mathbb{R}^n)} \in L(\mathcal{S}(\mathbb{R}^n), \mathcal{O}_C(\mathbb{R}^n))$.

The above result goes back to Horváth [H2, Sect. 4.11, Proposition 7] who defined $\mathcal{O}_C(\mathbb{R}^n)$ as $\lim \inf_{\mu \to \infty} S_{\mu}(\mathbb{R}^n)$, where the spaces $S_{\mu}(\mathbb{R}^n)$ are distinct from $S^1_{\mu}(\mathbb{R}^n)$, but similar. It follows from [K2, Sects. I–III] that the same $\mathcal{O}_C(\mathbb{R}^n)$ can be represented as $\lim \inf_{\mu \to \infty} S^1_{\mu}(\mathbb{R}^n)$. The proof of Theorem 5.2 then becomes much shorter. See [K2, Theorem 4.1(ii)].

Corollary 5.3. If $T \in \mathcal{S}'(\mathbb{R}^n)$ and $T * \varphi \in \mathcal{S}(\mathbb{R}^n)$ for every $\varphi \in \mathcal{S}(\mathbb{R}^n)$, then the linear mapping $\mathcal{S}(\mathbb{R}^n) \ni \varphi \mapsto T * \varphi \in \mathcal{S}(\mathbb{R}^n)$ has closed graph.

Proof. Suppose that $\mathcal{S}(\mathbb{R}^n)$ - $\lim_{k\to\infty} \varphi_k = \varphi_0$ and $\mathcal{S}(\mathbb{R}^n)$ - $\lim_{k\to\infty} (T * \varphi_k)$ = ψ_0 . Since $\mathcal{S}(\mathbb{R}^n) \hookrightarrow \mathcal{O}_C(\mathbb{R}^n)$, we have $\mathcal{O}_C(\mathbb{R}^n)$ - $\lim_{k\to\infty} \varphi_k = \varphi_0$ and, by Theorem 5.2, $\mathcal{O}_C(\mathbb{R}^n)$ - $\lim_{k\to\infty} (T*\varphi_k) = T*\psi_0$. Hence $\varphi_0 = \psi_0$, which means that the graph of the mapping $\mathcal{S}(\mathbb{R}^n) \ni \varphi \mapsto T * \varphi \in \mathcal{S}(\mathbb{R}^n)$ is closed. \square **Theorem 5.4** (part of [G-L, Theorem 7.2.2]). If $T \in \mathcal{S}'(\mathbb{R}^n)$ and $T * \varphi \in \mathcal{S}(\mathbb{R}^n)$ for every $\varphi \in \mathcal{S}(\mathbb{R}^n)$, then the mapping $\mathcal{S}(\mathbb{R}^n) \ni \varphi \mapsto T * \varphi \in \mathcal{S}(\mathbb{R}^n)$ is continuous.

Proof. This is a consequence of Corollary 5.3 and the Closed Graph Theorem. The latter can be applied since the space $\mathcal{S}(\mathbb{R}^n)$ is metrizable and complete.

6 The operator topology in RD

Let \mathcal{A} be the family of all bounded closed (that is, compact) subsets of the Fréchet space $\mathcal{S}(\mathbb{R}^n)$, which is a Montel space. According to [Y, Sect. IV.7] the locally convex topology of bounded convergence in the set $L(\mathcal{S}(\mathbb{R}^n), \mathcal{S}(\mathbb{R}^n))$ is determined by the system of seminorms $\{p_{\mu,\alpha,A}: \mu \in [0,\infty[,\alpha \in \mathbb{N}_0^n, A \in \mathcal{A}\} \text{ where } p_{\mu,\alpha,A}(\mathcal{L}) = \sup_{\varphi \in A} \rho_{\mu,\alpha}(\mathcal{L}(\varphi)) \text{ for every } \mathcal{L} \in L(\mathcal{S}(\mathbb{R}^n), \mathcal{S}(\mathbb{R}^n))$. The set $L(\mathcal{S}(\mathbb{R}^n), \mathcal{S}(\mathbb{R}^n))$ equipped with the topology of bounded convergence constitutes a locally convex space which is denoted by $L(\mathcal{S}(\mathbb{R}^n), \mathcal{S}(\mathbb{R}^n))_b$.

We introduce in the set **RD** the locally convex topology *op* (operator topology) as the initial topology defined by the mapping **RD** $\in T \mapsto [T*]|_{\mathcal{S}(\mathbb{R}^n)} \in L(\mathcal{S}(\mathbb{R}^n), \mathcal{S}(\mathbb{R}^n))_b$. This means that the topology *op* in **RD** is determined by the system of seminorms $\{r_{\mu,\alpha,A} : \mu \in [0, \infty[, \alpha \in \mathbb{N}_0^n, A \in \mathcal{A}\}\}$ where $r_{\mu,\alpha,A}(T) = \sup_{\varphi \in A} \rho_{\mu,\alpha}(T*\varphi)$.

7 Locally convex space (RD, op) and Fourier transformation

The Fourier transformation in $\mathcal{S}'(\mathbb{R}^n)$

The Fourier transformation $\mathcal{F}: \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ is a linear topological automorphism of the space $\mathcal{S}(\mathbb{R}^n)$ (see [G, Theorem 5.2.5], [S2, Sect. VII.6, Theorem XII] or [Y, Sect. VI.1]). Its transpose \mathcal{F}' is a linear topological automorphism of $\mathcal{S}'(\mathbb{R}^n)$ equipped with the *-weak topology. \mathcal{F}' is also a linear topological automorphism of $(\mathcal{S}(\mathbb{R}^n))'_b$ (see [B2, Sect. IV.4.2, Proposition 6]). Moreover, since $\mathcal{S}(\mathbb{R}^n)$ is (sequentially) dense in $\mathcal{S}'(\mathbb{R}^n)$, from the Parseval equality for $\mathcal{F}: \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ it follows that \mathcal{F}' is equal to the extension of $\mathcal{F}: \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ onto by $\mathcal{S}'(\mathbb{R}^n)_b$ continuity. For this reason in what follows we shall write \mathcal{F} instead \mathcal{F}' . Let us stress that we

define \mathcal{F} by the equalities $[\mathcal{F}(\varphi)](\xi) = \int_{\mathbb{R}^n} e^{-i\langle x,\xi\rangle} \varphi(x) dx$ for $\varphi \in \mathcal{S}(\mathbb{R}^n)$ and $\langle \mathcal{F}(U), \varphi \rangle = \langle U, \mathcal{F}(\varphi) \rangle$ for $U \in \mathcal{S}'(\mathbb{R}^n)$ and $\varphi \in \mathcal{S}(\mathbb{R}^n)$.

$\mathcal{O}_M(\mathbb{R}^n)$ as the algebra of multipliers of $\mathcal{S}(\mathbb{R}^n)$

 $\mathcal{O}_M(\mathbb{R}^n)$ is a locally convex space with the topology determined by Schwartz's system of seminorms $\{s_\alpha:\alpha\in\mathbb{N}_0^n,A\in\mathcal{A}\}$ where $s_{\alpha,A}(\phi)=\sup_{\varphi\in A,\,x\in\mathbb{R}^n}|\varphi(x)\partial^\alpha\phi(x)|$ for every $\phi\in\mathcal{O}_M(\mathbb{R}^n)$. See [S2, Sect. VII.5]. An equivalent system of seminorms is $\{s_{\mu,\alpha,A}:\mu\in[0,\infty[,\alpha\in\mathbb{N}_0^n,A\in\mathcal{A}\}\}$ where $s_{\mu,\alpha,A}(\phi)=\sup_{\varphi\in A}\rho_{\mu,\alpha}(\phi\cdot\varphi)$ for every $\phi\in\mathcal{O}_M(\mathbb{R}^n)$. The proof of equivalence is presented in [K1, Sects. 2.1 and 2.2]. The second system of seminorms corresponds to the initial topology defined by the mapping $[\mathcal{O}_M(\mathbb{R}^n)] \ni \phi \mapsto \phi \cdot \in L(\mathcal{S}(\mathbb{R}^n),\mathcal{S}(\mathbb{R}^n))_b$ where $\phi \cdot$ denotes the operator of multiplication by ϕ . It is almost evident that if $\phi\in\mathcal{O}_M(\mathbb{R}^n)$, then $\phi \cdot \in L(\mathcal{S}(\mathbb{R}^n),\mathcal{S}(\mathbb{R}^n))$. Not obvious is the opposite implication: if $\phi\in C^\infty(\mathbb{R}^n)$ and $\phi \cdot \in L(\mathcal{S}(\mathbb{R}^n),\mathcal{S}(\mathbb{R}^n))$, then $\phi\in\mathcal{O}_M(\mathbb{R}^n)$; an ingenious short proof can be found in [Kh, Vol. 2, Chap. CA.III].

Theorem 7.1 ([Y, Sect. VI.3, equality (14) of Theorem 6]). If $T \in \mathcal{S}'(\mathbb{R}^n)$ and $\varphi \in \mathcal{S}(\mathbb{R}^n)$, then

$$\mathcal{F}(T * \varphi) = \mathcal{F}(\varphi) \cdot \mathcal{F}(T).$$

The proof presented by K. Yosida is short and elementary but refined.

Theorem 7.2. If $T \in \mathbf{RD}$, then $\mathcal{F}(T) = (2\pi)^{n/2} e^{\frac{1}{2}|\cdot|} \mathcal{F}(T * e^{-\frac{1}{2}|\cdot|}) \in C^{\infty}(\mathbb{R}^n)$ and $\mathcal{F}|_{\mathbf{RD}}$ is a linear one-to-one mapping of \mathbf{RD} onto $[\mathcal{O}_M(\mathbb{R}^n)]$.

Proof. Since $\mathcal{F}(e^{-\frac{1}{2}|\cdot|^2}) = (2\pi)^{-n/2}e^{-\frac{1}{2}|\cdot|^2}$ (see [R, Sect. 2.2, Example 1] or [S-W, Sect. I.1, Theorem 1.13]), we infer from Theorem 7.1 that

$$\mathcal{F}(T*e^{-\frac{1}{2}|\cdot|^2}) = \mathcal{F}(T) \cdot \mathcal{F}(e^{-\frac{1}{2}|\cdot|^2}) = \mathcal{F}(T)(2\pi)^{-n/2}e^{-\frac{1}{2}|\cdot|^2},$$

so that

$$\mathcal{F}(T) = \phi_T$$

where

$$\phi_T = (2\pi)^{n/2} e^{\frac{1}{2}|\cdot|^2} \mathcal{F}(T * e^{\frac{1}{2}|\cdot|^2}) \in C^{\infty}(\mathbb{R}^n).$$

In order to prove that if $T \in \mathbf{RD}$ then $\phi_T \in \mathcal{O}_M(\mathbb{R}^n)$, we shall use the implication: if $\phi \in C^{\infty}(\mathbb{R}^n)$ and $\phi \cdot \mathcal{S}(\mathbb{R}^n) \subset \mathcal{S}(\mathbb{R}^n)$, then $\phi \in \mathcal{O}_M(\mathbb{R}^n)$, that is, all the partial derivatives of ϕ grow slowly at infinity. This implication constitutes a hard part of the characterization of $\mathcal{O}_M(\mathbb{R}^n)$ as the function

algebra of multipliers of $\mathcal{S}(\mathbb{R}^n)$. (Let us recall here the proof of V.-K. Khoan, mentioned earlier.) So, in order to prove that $\phi_T \in \mathcal{O}_M(\mathbb{R}^n)$ for every $T \in \mathbf{RD}$ we have only to check that $\phi_T \cdot \mathcal{S}(\mathbb{R}^n) \subset \mathcal{S}(\mathbb{R}^n)$, that is, if $T \in \mathbf{RD}$ and $\varphi \in \mathcal{S}(\mathbb{R}^n)$ then $\phi_T \cdot \varphi \in \mathcal{S}(\mathbb{R}^n)$. But $\phi_T \cdot \varphi = \mathcal{F}(T) \cdot \varphi = \mathcal{F}(T) \cdot \mathcal{F}(\mathcal{F}^{-1}\varphi)$ and, by Theorem 7.1, $\mathcal{F}(T) \cdot \mathcal{F}(\mathcal{F}^{-1}\varphi) = \mathcal{F}(T * \mathcal{F}^{-1}\varphi) \in \mathcal{F}(\mathcal{S}(\mathbb{R}^n)) \subset \mathcal{S}(\mathbb{R}^n)$.

The above shows that \mathcal{F} is a one-to-one mapping of \mathbf{RD} into $\mathcal{O}_M(\mathbb{R}^n)$. It remains to prove that \mathcal{F} maps \mathbf{RD} onto $\mathcal{O}_M(\mathbb{R}^n)$, that is, $\mathcal{F}^{-1}(\phi) \in \mathbf{RD}$ for every $\phi \in \mathcal{O}_M(\mathbb{R}^n)$. But if $\phi \in \mathcal{O}_M(\mathbb{R}^n)$ and $\varphi \in \mathcal{D}(\mathbb{R}^n)$, then, by Theorem 7.1, $\mathcal{F}(\mathcal{F}^{-1}(\phi) * \varphi) = \phi \cdot \mathcal{F}(\varphi) \in \mathcal{S}(\mathbb{R}^n)$, whence $\mathcal{F}^{-1}(\phi) * \varphi \in \mathcal{S}(\mathbb{R}^n)$, so that $\mathcal{F}^{-1}(\phi) \in \mathbf{RD}$, by Theorem 5.4.

Theorem 7.3. The linear one-to-one surjection $\mathcal{F}|_{\mathbf{RD}} : \mathbf{RD} \to [\mathcal{O}_M(\mathbb{R}^n)]$ yields an isomorphism between the locally convex spaces (\mathbf{RD}, op) and $\mathcal{O}_M(\mathbb{R}^n)$.

Proof. In this proof we let (μ, α, A) range over $[0, \infty[\times \mathbb{N}_0^n \times \mathcal{A}]$. Let $a, b \in \mathbb{Z}$. Then

$$\mathcal{F}_{a,b}: L(\mathcal{S}(\mathbb{R}^n), \mathcal{S}(\mathbb{R}^n))_b \ni \mathcal{L} \mapsto \mathcal{F}^a \circ \mathcal{L} \circ \mathcal{F}^b \in L(\mathcal{S}(\mathbb{R}^n), \mathcal{S}(\mathbb{R}^n))_b$$

is a continuous linear invertible mapping of $L(\mathcal{S}(\mathbb{R}^n), \mathcal{S}(\mathbb{R}^n))_b$ onto itself with inverse $\mathcal{F}^{-a} \circ \mathcal{L} \circ \mathcal{F}^{-b} \mapsto \mathcal{L}$. Continuity of $\mathcal{F}_{a,b}$ is clear from continuity in \mathcal{L} of the corresponding seminorms on $L(\mathcal{S}(\mathbb{R}^n), \mathcal{S}(\mathbb{R}^n))_b$ which have the form $\sup_{\varphi \in A} \rho_{\mu,A}([\mathcal{F}^a \circ \mathcal{L} \circ \mathcal{F}^b](\varphi))$. Therefore, by [H2, Sect. 2.11, Proposition 2], the initial topologies in **RD** defined by the mappings $\mathbf{RD} \ni T \mapsto \mathcal{F}^a \circ$ $(T*) \circ \mathcal{F}^b \in L(\mathcal{S}(\mathbb{R}^n), \mathcal{S}(\mathbb{R}^n))_b$ are all equivalent for $a, b \in \mathbb{Z}$.

We are interested in the case a = -1, b = 1. Then we define

$$\sigma_{\mu,\alpha,A}(\mathcal{L}) := \sup_{\varphi \in A} \rho_{\mu,\alpha}([\mathcal{F}^{-1} \circ \mathcal{L} \circ \mathcal{F}](\varphi)), \quad \mathcal{L} \in L(\mathcal{S}(\mathbb{R}^n), \mathcal{S}(\mathbb{R}^n))_b.$$

By Theorem 7.1, for $T \in \mathbf{RD}$ we have

$$r_{\mu,\alpha,A}(T) = \sup_{\varphi \in A} \rho_{\mu,\alpha}(T * \varphi) = \sup_{\varphi \in A} \rho_{\mu,\alpha}([\mathcal{F}^{-1}(\mathcal{F}(T) \cdot \mathcal{F})](\varphi)) = \sigma_{\mu,\alpha,A}(\mathcal{F}(T)).$$

From the equality $r_{\mu,\alpha,A}(T) = \sigma_{\mu,\alpha,A}(\mathcal{F}(T))$, by [B2, Sect. II.5.6, Proposition 9] or [EDM 2, Sect. 424.F], it follows that $\mathcal{F}|_{\mathbf{RD}}$ is an isomorphism of the locally convex space (\mathbf{RD}, op) onto the locally convex space $\mathcal{O}_M(\mathbb{R}^n)$.

If $T \in \mathbf{RD}$ and $U \in \mathcal{S}'(\mathbb{R}^n)$ then we define the convolution $T \diamond U$ as a distribution belonging to $\mathcal{S}'(\mathbb{R}^n)$ and equal to ${}^t([T^{\vee}*]|_{\mathcal{S}(\mathbb{R}^n)})$ where the left superscript t stands for the transpose operator. All this means that

(7.1)
$$\langle T \diamond U, \varphi \rangle = \langle U, T^{\vee} * \varphi \rangle$$
 for every $\varphi \in \mathcal{S}(\mathbb{R}^n)$.

The last equality resembles [G, Sect. 4.4, Definition 4.4.1] and [H2, Sect. 4.11, Definition 3], and constitutes a provisional definition of convolution in $\mathcal{S}'(\mathbb{R}^n)$, limited to $T \in \mathbf{RD}$ and $U \in \mathcal{S}'(\mathbb{R}^n)$. Since our provisional convolution always leads to $T \diamond U \in \mathcal{S}'(\mathbb{R}^n)$, its disprovisionalization must be an $\mathcal{S}'(\mathbb{R}^n)$ -convolution. The author knows only one $\mathcal{S}'(\mathbb{R}^n)$ -convolution, namely the $\mathcal{S}'(\mathbb{R}^n)$ -convolution of Y. Hirata and H. Ogata [H-O].

Theorem 7.4. If $T \in \mathbf{RD}$ and $U \in \mathcal{S}'(\mathbb{R}^n)$, then

$$\mathcal{F}(T \diamond U) = \mathcal{F}(T) \cdot \mathcal{F}(U).$$

Proof. Notice first that $\mathcal{F}(T \diamond U)$ makes sense, because $T \diamond U \in \mathcal{S}'(\mathbb{R}^n)$. Also $\mathcal{F}(T) \cdot \mathcal{F}(U)$ makes sense because $\mathcal{F}(T) = \phi_T \in \mathcal{O}_M(\mathbb{R}^n)$. To prove the equality of both expressions notice first that for every $T \in \mathbf{RD}$, $U \in \mathcal{S}'(\mathbb{R}^n)$ and $\varphi \in \mathcal{S}(\mathbb{R}^n)$, by Theorem 7.1, we have

$$\begin{split} \langle T \diamond U, \varphi \rangle &= \langle U, T^{\vee} * \varphi \rangle = \langle U, \mathcal{F}^{-1}(\mathcal{F}(T^{\vee}) \cdot \mathcal{F}(\varphi)) \rangle \\ &= \langle \mathcal{F}^{-1}(U), \mathcal{F}(T^{\vee}) \cdot \mathcal{F}(\varphi) \rangle \\ &= \langle \mathcal{F}^{-1}(U) \cdot \mathcal{F}(T)^{\vee}, \mathcal{F}(\varphi) \rangle, \end{split}$$

whence

$$T \diamond U = \mathcal{F}(\mathcal{F}(T)^{\vee} \cdot \mathcal{F}^{-1}(U)).$$

From the last equality, by the Fourier inversion formula, it follows that

$$T \diamond U = \mathcal{F} \big(\mathcal{F}(T)^{\vee} \cdot (2\pi)^{n} \mathcal{F}(U)^{\vee} \big) = (2\pi)^{n} \mathcal{F} \big((\mathcal{F}(T)^{\vee} \cdot \mathcal{F}(U))^{\vee} \big)$$
$$= (2\pi)^{n} \mathcal{F}^{\vee} (\mathcal{F}(T) \cdot \mathcal{F}(U)) = \mathcal{F}^{-1} (\mathcal{F}(T) \cdot \mathcal{F}(U)),$$

whence

$$\mathcal{F}(T \diamond U) = \mathcal{F}(T) \cdot \mathcal{F}(U). \ \blacksquare$$

Remark. Theorem 7.4 means that our provisional convolution \diamond has the property of Fourier exchange of convolution onto multiplication. The $\mathcal{S}'(\mathbb{R}^n)$ -convolution of Y. Hirata and H. Ogata also has this property, and this permits one to prove that \diamond is the restriction of H-O-convolution to $\mathbf{RD} \times \mathcal{S}'(\mathbb{R}^n)$. Notice that H-O-convolution assigns to any convolvable pair $(T,U) \in \mathcal{S}'(\mathbb{R}^n) \times \mathcal{S}'(\mathbb{R}^n)$ a distribution $T * U \in \mathcal{S}'(\mathbb{R}^n)$. Schwartz's convolution [S1] assigns to a convolvable pair $(T,U) \in \mathcal{D}'(\mathbb{R}^n) \times \mathcal{D}'(\mathbb{R}^n)$ a distribution $T*U \in \mathcal{D}'(\mathbb{R}^n)$. It is proved in [H3, Example 6] that if $(T,U) \in \mathbf{RD} \times \mathcal{S}'(\mathbb{R}^n)$ then the pair (T,U) is Schwartz convolvable. In [D-V] an example is given of two measures $(T,U) \in \mathcal{S}'(\mathbb{R}^n) \times \mathcal{S}'(\mathbb{R}^n)$ with Schwartz convolution T*U in $\mathcal{D}'(\mathbb{R}^n) \setminus \mathcal{S}'(\mathbb{R}^n)$. This example shows that $\mathcal{S}'(\mathbb{R}^n)$ -convolution is really needed.

References

- [B1] N. Bourbaki, Éléments de Mathématique. Livre III. Topologie Générale, Hermann, Paris, 1961; Russian transl.: Nauka, Moscow, 1968.
- [B2] N. Bourbaki, Éléments de Mathématique. Livre V. Espaces Vectoriels Topologiques, Hermann, Paris, 1953–1955; Russian transl.: Gos. Izdat. Fiz-Mat. Lit., Moscow, 1959.
- [D-V] P. Dierolf and J. Voigt, Convolution and S'-convolution of distributions, Collect. Math. 29 (1978), 185–196.
- [EDM 2] Encyclopedic Dictionary of Mathematics, 2nd ed., by the Mathematical Society of Japan. MIT Press, third printing, 1996.
- [G-L] L. Gårding and J.-L. Lions, *Functional analysis*, Nuovo Cimento (10) 14 (1959), supplemento, 9–66.
- [G] F. Golse, Distributions, Analyse de Fourier, Équations aux Dérivées Partielles, Les Éditions de l'École Polytechnique, Palaiseau, 2012.
- [H-O] Y. Hirata and H. Ogata, On the exchange formula for distributions, J. Sci. Hiroshima Univ. Ser. A 22 (1958), 147–152.
- [H1] J. Horváth, Topological Vector Spaces and Distributions, Addison-Wesley, 1966.
- [H2] J. Horváth, Topological Vector Spaces and Distributions, Dover Publ., 2012.
- [H3] J. Horváth, Sur la convolution des distributions, Bull. Sci. Math. (2) 98 (1974), 183–192.
- [J] H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart, 1981.
- [K-A] L. V. Kantorovich and G. P. Akilov, Functional Analysis, Nauka, Moscow, 1977 (in Russian).
- [Kh] V.-K. Khoan, Distributions, Analyse de Fourier, Opérateurs aux Dérivées Partielles, Vols. 1, 2, Vuibert, Paris, 1972.

- [K1] J. Kisyński, One-parameter semigroups in the algebra of slowly increasing functions, in: Semigroups of Operators—Theory and Applications (Będlewo, 2013), Springer, 2015, 53–68.
- [K2] J. Kisyński, On the exchange between convolution and multiplication via the Fourier transformation, preprint, Inst. Math., Polish Acad. Sci., 2017.
- [K3] J. Kisyński, Characterization of rapidly decreasing distributions on \mathbb{R}^n by convolution with test functions, preprint, Inst. Math., Polish Acad. Sci., 2019.
- [R] J. Rauch, Partial Differential Equations, Springer, 1991.
- [R-R] A. P. Robertson and W. Robertson, *Topological Vector Spaces*, Cambridge Univ. Press, 1964; Russian transl.: Mir, Moscow, 1967.
- [Sf] H. H. Schaefer, Topological Vector Spaces, Collier-Mac Millan, 1966.
- [S1] L. Schwartz, exposé n° 22 in: Produits tensoriels topologiques d'espaces vectoriels topologiques. Espaces vectoriels topologiques nucléaires. Applications, Séminaire Schwartz, Année 1953–54, Institut Henri Poincaré, Paris, 1954.
- [S2] L. Schwartz, *Théorie des Distributions*, nouvelle éd., Hermann, Paris, 1966.
- [S-W] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971; Russian transl.: Nauka, Moscow, 1974.
- [Y] K. Yosida, Functional Analysis, 6th ed., Springer, 1980.