POISSON ALGEBRAS AND SINGULAR SYMPLECTIC FORMS
ASSOCIATED TO A; TYPE SINGULARITIES

T. FUKUDA AND S. JANECZKO

ABSTRACT. We show that there exists a natural Poisson algebra associated to a
singular symplectic structure w. We construct Poisson algebras for the Martinet and
Roussaire types of singularities. In the special case if the singular symplectic structure
is given by the pullback from the Darboux form, w = F*wq this Poisson algebra is a
basic symplectic invariant of the singularity of the smooth mapping F' into symplectic
space (R%",wp). The case of A}, singularities of pullbacks were considered and Poisson
algebras for Y20, %5 5 o, 21217270 stable singularities of 2-forms were calculated.

1. INTRODUCTION

Let w be the germ of a closed 2-form at 0 € R?". For a function-germ h at 0 € R*?

and nondegenerate w, the Hamiltonian vector field of h with respect to w is the vector
field X, such that (see [11, 21]),

(1.1) w(Xop, §) = —¢(h)

for any vector field £ on R?".
If w is singular, then the smooth vector field X, 5, defined by the formula (1.1) may
not exist (cf. [14, 19, 5]). Thus we define the space of Hamiltonians H,,

(1.2) Heo = {h € E,|Xyn is smooth}.

If h,k € H, we show that {h,k}, = w(X,pn, Xox) belongs to H,. And under the
certain generic condition we prove that H,, equipped with the bracket {., .}, is a Poisson
algebra.

Let (R?",wy) be a symplectic space with wy in Darboux form. Let 6 be the Liouville
1-form on the cotangent bundle T*R?". Then df is a standard symplectic structure on
T*R?*". Let 3 : TR?* — T*R?" be the canonical bundle map defined by wy, 8 : TR?" >
v — wy(v,-) € T*R?*". Then we can define the canonical symplectic structure w on
TR*", w = *df = d(B*6). Throughout the paper unless otherwise stated all objects
are germs at 0 of smooth functions, mappings, forms etc. or their representatives on
an open neighborhood of 0 in R?".

Let F': (R?*",0) — TR?" be a smooth map-germ. We say that F' is isotropic if
F*& = 0. If we assume that F : (R?" 0) — TR?" is an isotropic map-germ, then the
germ of a differential of a 1-form (S o F')*@ vanishes, d(3 o F)*0 = F*3*df = F*w = 0.
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Thus (8o F)*0 is a germ of a closed 1-form. And there exists a smooth function-germ
g: (R*™ 0) — R such that

(1.3) (Bo F)0 = —dg.

For each smooth isotropic map-germ £ the function-germ ¢ is uniquely defined up to
an additive constant.

Let F : R™ — (R?" w;) be a smooth map. 7 : TR* — R?" and F = o F. In
general, F' can be regarded as a vector field along F, i.e. a section of an induced fiber
bundle F*TR?*". By & (Epen-respectively) we denote the R- algebra of smooth function
germs at 0 on U (and on ”the target space” R?" respectively). To each isotropic map-
germ F along F there exists a unique ¢ belonging to the maximal ideal my of &,
g € my which is a generating function-germ for F'.

To F' we associate a symplectically invariant algebra Ry of all generating function-
germs, generating all isotropic map-germs F along F.

Let F: R*™ — (R?",wy) be as above, then F induces a possibly degenerate two-form
F*wy. For a smooth function h defined on U C R?*" we formally define the Hamiltonian
vector field X}, (which may not be smooth) on U by the equality (1.1) replacing w by
F*wy. To F we associate the Poisson algebra (1.2),

(1.4) Hr = {h € &,| X}, is smooth}.
Hr C Rp is a Poisson algebra endowed with the Poisson brackets
(15) {kah}F*wo = F*WO<Xk,Xh).

If : (R?>",0) — TR?" is a smooth isotropic map-germ along a smooth map-germ
F : (R* 0) — R?" such that the regular point set of F' is dense, and h : (R**,0) — R
is a generating function-germ of F. Then F is smoothly solvable (cf. [8, 9]) as an
implicit differential system if and only if h belongs to the Poisson algebra Hg. Thus
elements of Hr are considered Hamiltonians, which fulfill the equation

(BodF(Xp))"0 = —dh

In this paper we introduce the symplectic K-equivalence to classify the smooth map-
germs F' into symplectic space. Then we use the classified normal forms to investigate
the structure of the singular pullback F*wy. In Section 3 we find conditions for a smooth
map-germ F'| such that F*wy is a stable 2-form. Calculations are done for Martinet and
Roussaire normal forms, but in Section 4 for the special case of A, type singularities
of mappings. Poisson-Lie algebra of singular symplectic form is introduced in Section
5 (cf. [8,9, 10]). And the Poisson algebras for S5, 35, o, 35 5 stable singularities of
2-forms were calculated in Sections 6 and 7.

2. NORMAL FORMS OF MAPPINGS INTO SYMPLECTIC SPACE

Let F: (R*",0) — (R*",0) and G : (R**,0) — (R*",0) be two C*° map-germs, where
the target space R*" is endowed with the standard symplectic structure wy = > | dy; A
dx;. We say that F' and G are symplectomorphic if there exist a diffeomorphism-germ
¢ : (R*™ 0) — (R?",0) of the source space and a symplectomorphism @ : (R?",0) —
(R?",0) of the target space such that

(2.1) G=doFo¢
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In this paper, we use new (modified) pre-normal forms of Aj singularities of map
germs (cf. [1, 2, 4, 12, 13]). Before that, we give an introductory pre-normal form of
not necessarily stable corank 1 map-germs F : (R** 0) — (R?*",0).

Proposition 2.1. (Introductory pre-normal form) Let G : (R®*",0) — (R®",0) be
corank 1 C* map-germ. Then G is symplectomorphic to a map-germ of the form:

Fo= (fi, fon)
filu) = wu; (1 <2n—1),
(2.2) fon(w) :  a C* function.

Proof. Suppose that G : (R*",0) — (R*",0) is a corank 1 C*° map-germ. Then
there exist a O diffeomorphism £ : (R*",0) — (R?",0) of the source space and a C*
diffeomorphism ¢ = (1, -+ , @9, : (R*",0) — (R?",0) of the target space such that

(piOGOh(ul,"' ,UQn) = Uy, (Z<2TL)
¢2nOGOh<u17"' 7u2n> - f(ula"' 7u2n>7
where f is a C* function with 0f/0us,(0) = 0.

Then, there is a symplectic diffeomorphism on the target space

Y= (1, ) (R*™,0) — (R*,0) such that o, = po,.

Next, let
v = PYioGoh(uy, -+ ug) (1 < 2n)
Vg = Usp-
Then, (vy,- -+ ,vy,) are coordinates on the source space and we have
YioGoh = v (1 < 2n)
Pop0Goh is a C* function of (vy, -+ ,va,).
Q.E.D.

Now for A map-germs, we have

Proposition 2.2. Let G : (R*",0) — (R*",0) be an Ay, type singularity.
1) If G is a fold map-germ, i.e. Ay, then G is symplectomorphic to a map-germ of
the form:

F o= (fi, o, fon)
(2.3) filu) = wu; (1 <2n—1),
(2.4) fon(u) = ugn'

2) If G is an Ay type map-germ with k > 2, then G is symplectomorphic to a map-
germ of the form:

filu) = w; (1 <2n—1),

k—1
(2.5) fon(u) = Ug;rl + Z ai(uy, - >U2n—1)uén +b(ur, s uzp-1),
i=1
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where ay(uy, -+ ,Ugp—1), 5 Qp_1(U1, -+, Usp—1),b(u, -+, Usy_1) are smooth functions
and day,das, - -+ ,dag_1 are linearly independent at the origin.

3)(Cusp forn = 1) If G : (R*0) — (R?0) is an Ay map-germ with k > 2, then

k =2 and it is symplectomorphic to the normal form of cusp;,
(2.6) F=(fi,fo), filu)=ur, fa(u)= ug + uius.

Proof of 1)  The proof is almost the same as the proof of Proposition 2.1. Suppose
that G is a fold map-germ, i.e. A; map-germ. Then there exist a C* diffeomorphism 5 :
(R?",0) — (R?",0) of the source space and a C* diffeomorphism ¢ = (p1, -+, P2,) :
(R?",0) — (R?*",0) of the target space such that
wioGoh(uy, -+ ,usy) = u (1 < 2n)
SOZROGOh(ula"' 7u2n) = Ugn
Then, there is a symplectic diffeomorphism on the target space

Y= (1, ,P2) : (R*™,0) — (R*™,0) such that g, = pon.

Let
vi = YioGoh(uy, -+ ug) (i < 2n)
Uop = Usop.
Then, (vy,--- ,v9,) are coordinates on the source space and we have
YioGoh = (i < 2n)
Yo 0Goh = ul, =3,
Q.E.D.

Proof of 2) The first half of the proof is the same as the proof of 1) of Proposition
2.2. Suppose that G is a Ay map-germ. Then, by Morin’s theorem (cf. [17]), there
exist a C* diffeomorphism % : (R*",0) — (RQ” 0) of the source space and a C*
diffeomorphism ¢ = (@1, , @a,) : (R?0) — (R?",0) of the target space such that

wioGoh(uy, -+, uy) = u (1 < 2n)
Pon oGo h<u17 U 7u2n> = Ug;l + Zuluén

Then, there is a symplectic diffeomorphism on the target space

(2.7) V= (1, o) s (R*™,0) — (R*™,0) such that g, = pa,.
Let
v; = Y;oGoh(uy,- -, ua) (1 < 2n)
Vop = Usp.
Then, (vy,- -+ ,vy,) are coordinates on the source space and we have
ioGoh(vy, - ,v9,) = v; (i<2n)

k
Yoo Goh(vy, -+ ,v2) = —1’2;{1 Zu, U%
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Note that the coefficients u;(v) are functions of the variables vy, vy, - - - , Vo1, Vo, How-
ever the coefficients u;(v) are desirable to be functions of the variables vy, vg, - -+ , Vop_1.
Since w;(v)’s are functions of the variables vy, - -+ , vy, they can be express in the

forms
2n—1

Ui (V1,0 Vo) = Z 00 (U1, -+, Vo) + Bi(Van).

Since G is an Ay type map-germ, the order of 3;(vq,) must be greater than k — i
ord Si(van) > k — i,

for if ord f;(ve,) < k — i then G must be an A, singularity for some ¢ < k.
Then with the coordinates

w; =v; (i <2n), Wy, = " ubtt + Zﬁl Vo )US,
in the source space, ¥, o G o h(wy, -+ ,ws,) becomes an unfolding of wh™* with pa-
rameters wy, - - - , Wa,—1 in the sense of Unfolding Theory (see e.g. [20]);

k+1
¢2nOGOh(0,"' 707w2n) = wQI .
Then again under new coordinates of the form
w; = w; =v; (1 < 2n), Wap = Wan (V1, "+, Van)

2, © G o h becomes of the form
(28) Yoo Goh=wh + ) @(wy, - Wan1)W5, + b(W1, -+, Wap_1).

Note that after (2.7) we have not changed coordinates in the target space. So the
map-germ G and the map-germ ¢y o Go h

;o Goh(w) = w (i < 2n)
a0 Goh(w) = w’§,j1+2ai(u’)1,---  Wan—1) Wy, + b(W1, -+, Wap—1).

are symplectomorphic. This completes the proof of 2). Q.E.D.

Remark 2.3. In [7] we proved that if F': (R?*",0) — (R?",0) is an Ay, type singularity,
then F' = (f1, -+ fon) is symplectomorphic to a map-germ of the form:

filu) =u; (i <2n—1), fon(u) = ub™ + Zal u)ub,

where a;(u), ag(u), - - - ,ap_1(u) are smooth functions such that day, das, - - - , day_; and
dusg, are linearly independent at the origin. Let us note that the coefficients a;(u) in
that version of the result are functions of the variables (uq,us, -, u2,_1,us,). How-
ever in the new pre-normal form the coefficients a;(u) are functions of the variables

(ula Ug, - - 7u2n—l)-
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Now we want to investigate the induced closed 2-forms F™*wy. In order to avoid
unnecessarily complicated calculations, we choose the following new coordinates in the
target space (R?",wp = Y i, dy; A dx;):

21 = =1, 22=Y1," ", Z2n—1 = —Tn, 22n = Yn-
Then
Wy = le N dZQ + -+ dZQn,1 A dZQn.
Following the above change, we also use the corresponding new coordinates in the
source space:
U1 = —U1, V2 = Unt1, "5 Uan-1 = —Up, V2n = U2n,

In this section, we formulate our results on the induced closed 2-forms F*wq. This
is stated for the pre-normal forms of the induced mapping F'.

Let (21, -, 22,) be the standard coordinates in the target space R?" and let wy =
dzi Adzy + -+ - + dzan_1 A dza, be the symplectic form on the target space R?".

Let G : (R*",0) — (R*",0) be a corank 1 map-germ. Then, from Proposition 2.1, G
is symplectomorphic to one of the following introductory pre-normal forms:

F o= (flu"' 7f2n) : (R2n70)_>(R2n70)7
(2.9) fon(v) = a C* function.
Proposition 2.4. Let F' be the above pre-normal form. Then
n—1

F*WO = Z d?)gi_l VAN dUQi + Advgn_l N dvgn

=1

, Ui
i#2n—1,2n

(2.10) - Y aaf 22 v; A dvan—1
where A = 0 fo, /Ovay, is the jacobian of F.
Proof. Expressing F*wy as
F*wg = Z a; j(u)dv; A dvj,

1<i<j<2n

we are going to determine the coefficients o j(v). Let
D,F : T,R™ — T, R*

denote the differential of F' at a point p. Then

) AN 0 0
a;;(p) = F wo(p) (a_vz’ aT’J) - (DpF <8_Uz) e (a_va)> .

The jacobian matrix of F'is

1 0 0
0 1 0 0
0 1 0
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Therefore

(k < 2n)

D,F

7 N\

0 0 N Ofon O
ov; ) Oz Ov; Oz

0 0
D,F = A .
b ( ann ) aZZn

So, for i < j < 2n —1,

) o 9 0 0
a; = F wo(p) <3_Uz7 a_vg) — (DpF (8_%) e (8_1)])>

821' 8’Ui 822,17 aZj 8v]~ 822n

= (le AN dZQ + -+ dZQn_l A d22n) <

0 for 7 even

o { 51‘,]‘—1 for 7 odd

For ¢ < 2n — 1,

. o 9 9 0
G-t = Fwo(p) (3_%’ 3@2n—1) - (DPF (8_111) Dt (87)%—1))

= (duy Ndzg+ -+ + dzon—1 N dzap) ( a7 + 90 972 Dom + Dogr azzn)
N ann

a’UZ'

Fori<2n—1

. o 9\ 0 0
Qiop = F wo(p) (8_11173—11]> = Wo <DpF (a_vz) 7DpF <av2n>>

az,-

81)@» 322n ’ 322n

= (le A dZQ + -+ dZanl VAN d22n> (
= 0.

) o 9\ 0 0
Qo120 = Fwo(p) <m’ (%2”) = o (DpF (8v2n_1> Dk <3U2n))

Y
0%on—1 OVan—1 0zap, Oz,

= (le VAN dZQ + 4 dZQn_l VAN dZQn) (
= A.

Thus we have
n—1

F*wo = Z dUzifl N dvgi -+ Advgn,l A dvzn

=1

k—1
— dv; N\ dvg,,_
Z <€:1 aviv%’b—’_ 8U7,> v V2n-1

i#2n—1,2n

This completes the proof of Proposition 2.4. Q.E.D.
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From now on, we assume that

(2.11) dA(0) # 0.

Let

(2.12) A(v) = the jacobian of F' at v, A(v) = gfn( ),
(2.13) Yo(F*wg) = {veR™|A(v) =0}, "
(2.14) Apeg,(v) = {w € T,R*™ | i(w)F*wy(v) = 0}

. the kernel of F*wy(v),

where i(w) F*wy(v) denotes the inner product of vector w and the 2-form F*wy(v).
Since dA(0) # 0, Xo(F*wp) is a 2n — 1 dimensional submanifold of R?",

Proposition 2.5.  Suppose that dA(0) # 0. If v € Xo(F*wy), then dim Aps,,(v) = 2
and it is spanned by the following two vectors:

(2.15) e, — Zafzn 0 Z Ofon O )

Ovgi gy Ovgi—1 Ovy; 8U2n—1’
8
2.16 = .
( ) €2 vy
Proof. Let v € ¥3(F™wp). Since dim Ap+,) = 2 and e; and ey are linearly

independent, it is enough to show that e, ex € Ap«y ).
From Proposition 2.4. we have

n—1

F*WO = Z dUQZ'_l VAN dUQZ' + Advgn_l N dvgn - Z

i=1 i#£2n—1,2n

where A = 0fy,/0vy, is the jacobian of F.
Since v € ¥a(F*wyp), A(v) = 0. Thus

ann

——dv; N\ dv ,
81}1 7 2n—1

= Z dvgi_l N dUQZ‘ - Z 8f2n dUZ N dUgn 1 on EQ(F*WO).

ov;
i#2n—1,2n ¢

Let

=Sl
Then
: . . 0 :
e € Apry(v) if and only if  F*wy(v) (e, 8_) =0 (j=1,---,2n).
Y

We solve the following equation for the coefficients wy, - - - , way,:

P (Sul 2) 2o ot 20
0 p— Z@vi’ an — Y% J=1 ) .
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2n a a
0 = F~ AP .
Wo <;w o0 3v2j1> (j <n)
n—1
ann a a
= (Z d’l}gifl A dvzi — Z ) d VAN dvgn 1) (Z Wi 81}2 8U2j 1)

=1

i#£2n—1,2n i
ann
= —Way; + Wop_1-
2j N 2n—1
af?n .
0 = Fw W; — = Woj_1 + =——Waop_ <n).
0 (Z ov;’ 8112]> 20-1 O0vy; -l Y )
Thus we have
8f2n af?n
2.17 = ———Wap_1, = ————Wap_1.
( ) Waoj—1 31}2]- Wan—1 Way 8v2j_1w2 1
Note that
2n
o 0
F*w w—,—— | =0 for arbitrary wq, -+, Way_1,
0 (; v, ann) y w1 2n—1
since F*wy does not contain the term 0/0vy,.
We see also that if we let
w1 = O v =
2i—1 avm 2n—1, 27 aU%_l 2n—1,
then we have automatically
2n
0 0
F*w w,—,—— | = 0.
0 (; ov; 8U2n—1>
Thus we have no relations between wq, - - - , wq, other than 2.17. Therefore, as a basis
of Apsy,(v), we can choose
~Ofon O Ofan O )
Y et ,
Qvgi Ovgi_1 Ovgi—1 Ovy; avznq
lettmg Wop_1 = 1, we, =0,
0
ey = , letting wa,,—1 = 0, ws, = 1.
a’l}gn
This completes the proof of Proposition (2.5). Q.E.D.

3. CLASSIFICATION OF MAPPINGS BY INDUCED CLOSED 2-FORMS

In this Section we prove the classification of singularities of corank 1 maps induced
by classification of "stable” singularities of closed differential 2-forms (cf. [15, 18, 16]).
Let
W = Z Oéijjd'l}i N de

1<i<j<2n
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be the germ of a closed 2-form on R?" at 0. As a volume form on R?”, we choose
Q=dvy ANdvoy A -+ A dvg,.
Let

w" = fQ.

If £(0) # 0, then by Darboux’s Theorem, w is isomorphic to the Darboux form
dvi A dvg + dus A dvg + -+ - + dvgy—1 A dvg,.
Now assume that f(0) = 0 while df(0) # 0. Let
Sa(w) = {v € R | f(v) = 0}.

By the condition df(0) # 0, Xa(w) is a dimension 2n — 1 submanifold of R*" and at a
point v € ¥5(w), the kernel

Au() = {w € T,R* | i(w)w(v) = 0}

of w(v) is a 2-dimensional vector subspace of T, R?*", where i(w)w(v) denotes the inner
product of a tangent vector w and a two form w.

Definition 3.1. (J. Martinet)  Suppose that f(0) = 0 while df (0) # 0. If A,(0) is
transversal to ToXa(w), we say that w has a Yo singularity at 0.

Theorem 3.2. (J. Martinet) If a closed 2-form w has a ¥o singularity at 0, then
w 1s isomorphic to the following closed 2-form

vidvy A dvg + dvg A dvg + -+ - + dvgy—1 A dvg,.
Let us consider the set
Yoo(w) ={v € Eg(w) | Au(v) C T, X0(w)}-
It is known that Y 9(w) is a dimension 2n — 3 submanifold of R?".

Definition 3.3. (J. Martinet)  Suppose that 0 € Loa(w) . If A,(0) is transversal to
ToXoa(w) in ToXa(w), then we say that w has a a2 singularity at 0.

Since Y9 singularities of closed 2-forms are classified only for n = 2, from now on
we only consider closed 2-forms on R*.

Theorem 3.4. (R. Roussaire) If a closed 2-form w on R* has a Y920 singularity at
0, then w 1is isomorphic to one of the following two closed 2-forms

3
dU1 N dU2 + ’UgdUg N dUg +d <1)1U3 + Vo4 — %) AN dv4,

3
dU1 VAN dUQ -+ Ugdvg VAN dU3 -+ d (U1U3 — VU4 — %) VAN d’U4,

Definition 3.5.  [fw is isomorphic to the first one, we say that w has a 35, , (elliptic
Y920) singularity at 0, and if w is isomorphic to the second one, we say that w has a
3500 (hyperbolic Xa50) singularity at 0.
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These two cases are distinguished as follows: Suppose that a closed 2-form w on R*
has a X9 singularity at 0. Let 2 be a positive volume form of R* with coordinates
V1, -+, vy, say, 0 = dv; A dvg A dvg A dvy. Then w? has the form

w? = fQ

for a function f such that f(0) =0, and df(0) # 0.
Let {25, be a volume form on ¥,(w) such that

QZQ(w) Adf and € define the same orientation on R*.

Let ¥5(w) be oriented in such a way that (s, is a positive volume form on s(w).
It is known (see [18], p. 147) that there exists a smooth vector filed X on 33(w) such
that B

) (Wi ) = 1(X) (Qs,0) .
where i(X)(€2s,(.)) is the inner product of the vector filed X with the 3-form Qy, ).

Let wq,wq, w3 be coordinates at 0 on Yy(w) which define a positive orientation on
Y9(w). Then the vector field X has the form

> 0

=1

By definition of ¥ 5(w), w vanishes on ¥s5(w). So, the jacobian matrix of X at 0

(&0)

has rank 2 and it has two non-zero eigen values A, 1, A, 2 which are known either both
real or both imaginary ([18] p.147).

Theorem 3.6. (R. Roussaire) Letw has a Y950 singularity at 0.
1) If the two eigen values A, 1, A\, 2 are real, then w has a 231270 singularity at 0.
2) If the two eigen values A\,1, A, 2 are imaginary, then w has a X5, singularity
at 0.

Theorem 3.7. Let F be an Ay type map-germ of the form (2.9). Then F*wy is
wsomorphic to the following Martinet’s normal form of Yo singularities of closed 2-
forms

n—1
(3.1) Z dvgi—1 N dvy; + Vop—1dvan_1 N dvgy, (X2,0)
i=1
if and only if
(32) (e1(A)(0), e2(A)(0)) # (0,0).
Proof. By (2.9)
n—1 af
F*WO = Z dvgi_l A dv% + Ad’l)gn_l A dvgn — Z ﬂdﬂz VAN d’UQn_l
i=1 i#2m—12n =

we have
(F*wp)"™ = nAdvy A dvg N - - - dvgy,.
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Since, by the assumption that da,(0) # 0, we have dA(0) = da,(0) # 0. So, by
definition of ¥sp, it is enough to seek the condition for A,(0) to be transversal to
T()EQ((.U) at 0.
Since
Yo(w) = {v € R*™ | A(v) = 0}

and A, (0) is spanned by e; and ez, we know that A, (0) is transversal to TpXs(w) at
0 if and only if (e1(A)(0), e2(A)(0)) # (0,0). Thus, from Martinet’s theorem, F*wy is
isomorphic to Martinet’s normal form of ¥, ¢ if and only if (e; (A)(0), e2(A)(0)) # (0,0).
Q.E.D.

Theorem 3.8.  Suppose that F*wqy is not isomorphic to Martinet’s normal form of
Yo type singularities, i.e. suppose that

(€1(A)(0), e2(A)(0)) = (0,0).

Then F*wy is isomorphic to Roussaire’s X999 normal forms if and only if

e1(e1(A))(0) er(ea(A))(0) \ _
rank ( e2(e1(A))(0)  eaea(A))(0) ) -7

Proof. Since
Yoo(F*we) = {v € R* | A(v) =0, e1(A)(v) =0, ex(A)(v) =0}

and A, (0) is spanned by e; and e, we know that A, (0) is transversal to Tp3s2(w) in
ToXs(w) at 0 if and only if

e1(A)(0) ex(ex(A))(0) exles(A))(0) \
rank ( ex(A)(0) ex(ex(A))(0) exlen(2N))(0) ) =2

Therefore, by definition of ¥94 ¢, F*wy is isomorphic to Roussaire’s ¥ 9 if and only if

. (e1<A><o> ex(ex(A))(0) el<e2<A>><o>):2
e2(8)(0) ea(er(A))(0) ealea(A))(0) )

which holds if and only if
er(er(A))(0) er(ea(A))(0) )
rank ( es(e1(A))(0) ealea(A))(0) ) =2

forL(el(A)(O), e2(A)(0)) = (0,0) by assumption. Q.E.D.
et

Fo= (fu o fa) (RE,0) = (R,0),
filv) = v (i<3),

fa(v) : a C* function germ.

be the pre-normal form of corank 1 map-germs given in Proposition 2.1 such that
dA(0) # 0, (e2(A)(0), e2(A)(0)) = (0,0),

e1(A)(0) ex(ex(A)(0) exles(A))(0) )
rank ( ex(A)(0) ex(ex(A))(0) exlen(A))(0) ) =2
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where
Afa
A = ==
81)47
0fi9 0fr 0 0
@ = 81}2 8111 + 8'111 81}2 + 81}3’
e — i
2 81}4‘

Then by Theorem 3.8, F*wy is of type ¥22.
Recall that

F*WO = dUl VAN d?)g + Advg VAN dU4 - Z %dvz A dUg

i=1,2 0v;
(F*wp)? = fQ=2AQ
where Q = dvy A dvg A Advs A duy.
Since dA(0) # 0,
Yo(F*w) = {v = (v1, - ,v4) ER*| A =0}
is a 3-dimensional submanifold of R* and
(0A/0v;)(0) #0 for some i =1,--- 4.
Since (e1(A)(0), e2(A)(0)) = (0,0), we have
2
Ouy
(oo o+ ) 20 = 0

If 0A/0v1(0) = 0 and OA/Jv,(0) = 0, then by the above formula we have 0A /Jv3(0) =
0, which contradicts the fact that dA(0) # 0. Thus we have

0) = 0.

Lemma 3.9.

0A 0A

8_1)1(0) #0 or (9_1)2(0) # 0.
and
Lemma 3.10. We may assume that
0A
aTl(O) # 0,
if necessary, after the following changes of coordinates
Z) = —29, Zo =21, Z3 = —2Z3, 24 = 24, 0 the target space,
U1 = —Vq, Ug = W1, U3 = —U3, Uy = V4, 1IN the source space.

So, we assume that

(9A/00)(0) # 0.
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Then, by the implicit function theorem, there is a function ¢(vs, v, v4) such that
Yo(F*wy) = {veR*|A(v) =0}
= {(Uh T 7U4) € R* | U = @(U27U37U4)}

and we may choose
Vg, vs, V4

as coordinates on Xo(F*wyp). Let us denote

W - 00
67118’047
_ 9y
a3z = 8_114’
_ Op  Ofs0p Ofs
oy = — — ——— — —

and consider the jacobian matrix of as, ag, ay;

ooy
o)
<(%j 2<i,j<4

rank (8a,~ (O)> = 2.
v, 2<i,j<4

Theorem 3.12.  Let the situation be as above. Then
1) F*wy is isomorphic to Roussaire’s normal form 237270 if and only if

8041-

the two nonzero eigen values of (8 (O)) are real.
Uj 2<i,j<4

Lemma 3.11.

2)  F*wy is isomorphic to Roussaire’s normal form ¥, if and only if

80@

the two nonzero eigen values of (8 ( )) are 1maginary.
J 2<4,j<4

Proof. Let ¢ = (11, ,14) : Bo(F*wp) — RY;
(Do, U3, Ug) = (¢(Va, U3, U4), 02, U3, Vs)
be the inclusion map. Then we can easily check that
dvg A\ dog A\ dvog = " (dvg A dvs A duy).
Set )
Qs (Frwg) = —dUa A dUg A dvy = —1"(dva A dvg A dvy).
Then,
Q=dvy ANdvy ANdvg Advy  and Qs (pewg) A df = 205, (prwg) A dA
define the same orientation on R*, where recall that the function f was defined by the

equality
(F*UJO)2 = fQ
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and recall also

F*WO = d’Ul VAN d’Ug + Advg A dU4 — Z 8f2n dUZ‘ N d’Ug

(F*LUO)2 = 2AQ.
Now we seek the vector field X on o(F*wy) such that

F*w0|22(F*WO) = Z'()()<922(F*W0))'

The jacobian matrix of the inclusion map ¢(vy, U3, 04) = (p(ve, Vs, V4), V2, Vs, Uy) i8

e v bp

0vs? 0v3 0v3
1 0 0
0 1 0
0 0 1

Therefore, letting D¢ denote the differential of ¢, we have

PYEANE R

(91_)2 81}2 81)1 81}27
o\ 9o 0 0

De <8_1_)3> N 81}3 31}1 + 81}3
) dp 0 D

b (a—) = u0n " ou

Now, we have

o N .. [0p O
FWo 357 wp) (82}2 81)3) L Fwo (8_1)2’8_03)

- dp 0 0 890 0 0
= Fwo ((%Q ovy * B0, ovy’ 8113 82}1 + (%3)

dvy A dvy + Advs A doy — Z a0, dvZ A d’Ug)
1=1,2
dp 0 0 Op 0 0
dp 8 9 900 O
(91)2 81}1 61)2 81)3 81}1 81)3

= (dvl A dvy — zzu af: dv; N\ dvg) (since A =0 on Xo(F*wy))
0
dp 0 L9 9 dp 0 N 9
81}2 81}1 6’02 81)3 8111 81}3
dp  Ofs0p  0f,

81_)3 81)1 8172 8’02 ’
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o 0
F WO|22 Fre (87]2 81)4)

B 0f4 dp 0 0 8g0 0 0
N (dvl A dvy 12132 ov; 9o, v dv ) (81)2 ovy * 0, ovy’ (%4 81}1 + 0y
e
8U4

. o 0
Forsirn (55 55)

_ _ Ofa , dp 0 0 dp 0 0
n (dvl A va 1;2 (%i dvl A dU3) (81]3 8’01 T 31}3 87]4 6@1 + 8U4
af4 3%0
c%l 6v4 .

Thus we have

- 0 0N _ 9% 0hds Oh
0Z2(Fw0) \ 55" 5 Ovs  Ov 00,  Ovy’
o 9\ Oy
F* Wo|s, (F*wo) (aUZ 81)4) - _6174’

o 9 Ofs O
e WQ|22 F*w, 6'1}3 (%4 .

And also

*
F wo|s55 (7+we)

[ 9 Of10p  Ofi\ . _ _890 Ofs Op
= ( (9173 avl 8172 8’02 dUQ VAN dU3 (9 d’UQ VAN d’U4 + = avl 81}4 dU3 VAN dU4.

Letting

we solve the equation
Frwo(s,(Frwg) = H(X) (s (Frwn))-
Recall that

Qs (Frwg) = —dUa A dvz A doy.
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Then we have

_9 _0h0p Of _ p 9 9
8173 81}1 81_]2 (9212 n 0152 (Frwo) 81_}2’ 8’1_13

= i(X)(Qsa(rrun) <av2 8v3)

~ 9 %)
= —d'U2 A d'Ug A d'U4 <Z a; 811 % %>
i 2 3

= —Qy.
_9%% _ 9 90
do, oo \ 55, ba,
4
g 0 0
= —dvy ANdus A duy (Z%@v ' 5520 5p )
[ 2 4
= 053
5f4 390

- o 0
801 6’04 N WO‘EQ(F*WO) 8173’ 0274

4
g 0 0
= —dvg A dus A duy (Z %817 ' 5520 B3 )
7 3 4

= —Q9.

Now we consider the jacobian matrix

80./7;
<8v‘ (0))
j 2<i,j<4
at 0 of the coefficients

(a2 _ 0fs 0y dp dp  0fs 0p 8f4)

81}1 8_174’ as = _8_274’ = 81)3 82)1 8212 6’02

of the vector field X. According to Roussaire’s Theorem, we see that

rank (80@ (O)> =2,
v, 2<i,j<4

which implies Lemma 3.11, and we see that

1) F*wy is isomorphic to Roussaire’s normal form X4, ; if and only if

8041-
the two nonzero eigen values of < — (0)) are real.
dv; 2<i,j<4

2) Fwy is isomorphic to Roussaire’s normal form ¥, ; if and only if

8041-

the two nonzero eigen values of < (0)) are imaginary.
2<4,5<4

Uj

This completes the proof of the Theorem 3.12. Q.E.D.

17
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4. CONDITIONS FOR Aj;, TYPE SINGULARITIES

In this section we apply the results of the previous sections to various examples
containing Aj; map-germs.
First we recall that for an introductory pre-normal form of corank 1 C'*° map-germs

(41) F = (f17"'f2n) : (R2n,0> — (R2n,0)
filu) = w; (i <2n-—1),
fon(u) : a C*™ function

such that dA(0) # 0, we have

n—1
0 fan
F*wo = Z dUQZ'_l A\ dUQZ' + Advgn_l A dUQn — Z af2 d A dUQn 1,

X ) %
i=1 1#2n—1,2n

where A = 0 fs,,/0vy, is the jacobian of F| and that dim Apg«,,,(v) = 2 and it is spanned
by the following two vectors:

-1
o f2n a ann a 8
‘= Z O0vq; Ovgi_q Zz: OVgi—1 Ovy; 8U2n—1’

.:1

€y =
0v2n

Let F' be a map-germ of the form (4.1) such that dA(0) # 0. Then F*wy is isomorphic
to the following Martinet’s normal form of ¥, singularities of closed 2-forms

n—1

(4.2) Z dvyi—1 N dvg; + Vop—1dva,—1 N dvay,, (X2,0)

=1

if and only if

(4.3) (e1(A)(0), e2(A)(0)) # (0,0).
Let F' be a fold map-germ;

F = (flu"' 7f2'fl) : (RQnuo)_) <R2n70)7
fQH(U) = Ugn'
Then
n—1
F*WO = Z dUQi_l A dUQi + 2U2ndv2n—1 A CZ’Ugn.
i=1
The above form is obviously isomorphic to Martinet’s normal form X, given in
Theorem 3.7:
n—1
(4.4) Z dvgi—1 N dvy; + Vop—1dvan—1 N dvgy, (X2,0)
i=1
Since

A = 209, e1(A) =0, ex(A) =2,
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and

(e1(A)(0), e2(A)(0)) = (0,2) # (0,0),
F*wy satisfies the condition given in Theorem 3.7 to be isomorphic to Martinet’s normal
form ¥ .

Proposition 4.1. (A, map-germs, k > 2) Let F = (fi,-, fon) : (R*™,0) —
(R?" 0) be an Ay map-germ of the form

filv) = v (i<2n—1)
fon(v) = v5H +Zal UL Ugn 1)Uy, + b(Ur, e van), (B> 2),

in particular, whenn =1, let F = (f1, f2) : (R%,0) — (R?%,0) be a cusp map-germ;

fl(v) = Ui, fQ(U) :Ug—i—?}ll}g.

Then
1)  F*wy is isomorphic to the above Martinet’s normal form if and only if
(4.5) e1(A)(0) # 0,
equivalently if and only if
da, — Oay () 0b da; , . Ob
0 0 0) # 0.
Ovan—1 +Z 81}22 aUzz 1 Ovgi 1 (%21'( )#

2) In particular, if b = 0, F*wq is isomorphic to Martinet’s normal form if and

only if
8a1

Ovgp_1

(0) 0.

3) Ifn =1, then, for the cusp map -germ

F=(fi.f), filv)=v folv) =05 +vi0s

F*wy is isomorphic to Martinet’s normal form.

Proof. 1) Since k> 2, e3(A)(0) = 0. So,

(e1(A)(0),e2(A)(0)) # (0,0) if and only if  e1(A)(0) # 0.
Thus F*wy is isomorphic to the above Martinet’s normal form if and only if
e1(A)(0) # 0,

equivalently if and only if

da, L day b da, b
aUQn—l 0) * Z.Zl_avm 0 31}2i—1 - av%—l 0 (%21'

2) and 3) easily follow from 1). Q.E.D.
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Example 4.2. Consider the following two map-germs:
Fl - (fla"' >f2n) : (Rznao)_) (RQTL,O)’
filv) = vy (i<2n-1),
on(v) = Ugn + V2n—1V2n,
F2 = (fb'" ,f2n)ZGi<R2n,O)—>(R2n,O)7
fl(U) = U; (Z S 2n — 1),
fon(V) = U3 4 vvap, (1<2n—-1.)

1)  Fjwy is isomorphic to Martinet’s normal form, since

(0) =1#0,

2)  Fijwp is not isomorphic to Martinet’s normal form, since
8@1 0) — (%Z-

Ovop_1 Ovgp_1

da, Ovap—1

OVap—1 Oy —1

(0) = 0.

Example 4.3. We revise F; in Example 1 adding the term b as follows:
F3 = (fl;"' 7f2n) : (RQTL,O) SN (R2n70>7
filv) = v (i <2n-1),
fon(v) = vS'n + Ugi_1U2n + Vg (0T vSn + VgiV2p, + V2i-1), (i <n.)

Then Fjwy is isomorphic to Martinet’s normal form, since

(9(11 ol aal ob aal 9
A)0) = -
61( )(O) av2n_1 (O> + ; 81)21' (0) avm_l (O) + av%_l (0) a,U% (O)
— aal ob aal ob B
= 30, V50— O+ 5——(0)5(0) = £1 £0,

Example 4.4. Let
F4 = (fla T ann) : (RZn’O) — <R2n70)a
filv) = v (i<2n—1),
Jon(V) = Vn1vam, (i <n).

Then, although F} is very degenerate as a map-germ, Fjwy is stable as a closed 2-form
and isomorphic to Martinet’s normal form, since

A = vgpq
and
. 8v2n_1 = avgn_l 8b 8v2n_1 81)
er(A)(0) = Tom (0>+;— Doy (0) avm-_l(OH Toms (0) (%%(0)
= Oy % gy 4,

Ovgp_1 Ovy;
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Since the classification of ¥4 singularities of closed 2-forms is completed only for
n = 2, we consider only the case where n = 2. In this case, we consider the introductory
pre-normal form

Fo= (fi, fa) : (RY0) = (R 0),
filo) = v (i<9),

fa(v) :  a C* function
such that o7
dA & .
(0) = 52(0) £0
Then,
Lo 00 oho o
b 81}2 8111 8111 81}2 8’03’
e - 9
S 81)4'

Let us suppose that F*wy is not isomorphic to Martinet’s normal form of Xy, type
singularities, i.e. suppose that

da da ob da ob
e1(8)(0) = 5(0) = Z(0)52(0) + Zo(0) 5-(0) = 0.

Then F*wy is isomorphic to Roussaire’s ¥s 5o normal form (see Theorem 3.8) if and

only if
e (U0 2N aleia0))
e2(A)(0) ea(e1(A))(0) e2(e2(A))(0) '
Theorem 4.5. Let F = (f1,---, f1) : (RY,0) — (R*,0) be an A, map-germ with
b =0 of the form

fitv) = v (i<3),

k-1

f4(U) - k+1 + Za’b U17U27U3)U4a (2 S k S 4)
=1

such that F*wy is not isomorphic to Martinet’s normal form of ¥a type singularities.
Then F*wy is isomorphic to Roussaire’s Y999 normal forms

3
dvy N dvg + v3dvg A dvs + d <U1U3 + vy — %) A duy (237270)

or

3
dvy A dvg +v3dvg N d3 +d (UWS — VaUyq — %) A dvy (23,2,0>

if and only if

8%ay Oaz
e i?))) 250 ) 29 (=9
Ovs
8%ay daz
rank 2‘9%((%)) 25,0 ) _ 2 (k=34
Ovs
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Proof.

In this case,

k—1
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A = (k+1Dof+ Ziai(vl,vg,v;»,)vi_l

o — 90

L 81]281]1
0

€2 = 8_7_)4’

e1(A)(0)
e1(e1(A))(0)

e2(e1(A))(0)

e2(A)(0)

e1(e2(A))(0)

e2(€2(A))(0)

i=1

Of1 0
81]1 8112

i ()

by the assumption,
82(11

day
81)3

1

)0 -

(S

k—1
04 -1
+j221]8v3v4 ) (0)

(9a1 (9@1 8a1 aal 8(12 8a2
_8_1)2( a0, 0) + a0, (0)(%2 <O)+28_v3(0) B, ——(0)
CLQ(O) == 0

0 _9 aa2
o ( (k + 1) kv~ +Z] j —1)av] ) (0) _28—%(0)

((k + 1)k(k — 1w

{

6
0

(
(

k
k

2
3

)

4)

k—1

D G =10 - 2]

7j=3

> (0)

0
3113
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Thus

_ e1(B)(0) exex(A))(0) ex(ea(A))(0) ) _ (0 F(0) 25
fork=2 <e2<A><> es(e2(A))(0) e2<e2<A>><o>)—<o 292 (0)

_ er(A)(0) ex(es(A))(0) ex(ea(A))(0) \ _ (0 F4(0)
rork=ad (e2<A><> 2(e1(A))(0) e2<ez<A>><o>) (o 20

d%a Jda
£(0) 2—2(0)

rank | 9% ( O =2 k=2
2a0) ¢ =2
5 (0) 252(0)

rank [ 94’ dvs =2 k=34
21 0) e

This completes the proof of Theorem 4.5. Q.E.D.

Example 4.6. Consider the following two cusp map-germs:

Fsr = (fi,-- f1) : (R%,0) = (R,0),
filv) = v (i<3),
faw) = vi+ (v £v3)vs,

Fs = (fi,---, f1): (R*0) — (R*0),
filtv) = v (1 <3),
fi(v) = v+ v,

23

Using the Theorem 3.7 or its corollary, it can be easily checked that both of FZ, wy
and Fgwy are not isomorphic to Martient’s 3. We see that F7, wy is isomorphic to

Roussaire’s g2 but Fgwy is not so, as follows.
First we consider FZ, wy. In this case

82(11 Jaz
rank ( 9us? 2(0) 25.(0) ) = rank (j:2 0 ) =42,

3
2992(0) 6

Therefore, by Theorem 4.5, FZ, wy is isomorphic to Roussalre S 2220
Now we consider Fgwy. In this case, since fy = v4 + v1vy

9%ay Oaz
53(0) 252(0) | 00
rank ( 2632 (0) g = rank 0 6 # 2.

Therefore, by Theorem 4.5, Fwy is not isomorphic to Roussaire’s ¥ 5 o-form.

Proposition 4.7. We consider two map-germs F5. as in Example 4.6:

Fs4 (fi,-++ 5 fa) : (RY,0) — (R, 0),
filv) = wv; (i <3),
fi(v) = v§+ (vi £v3)vy.

Then Fi wo is of type 35,4, and  F7 wy is of type 2372,0.

We apply Theorem 4.5 for k = 2.
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Proof. In the following argument, we abbreviate F5y as Fy. Then
A = v+ 03,
22(};1("')0) = {U:(Ula"' 7U4)€R4’A:0}7
= {v=(v1, -+ ,v4) ER* | vy = —(3v] £ 03)}

In general

n—1

F*a}() = Z dUQi_l AN d'UQi + AdUQn_l VAN d?]gn

i=1

- Z 8f2n d'Uz' N dUgn,I
(%i

i#2n—1,2n

So, in this case,

Fle = dUl VAN dUQ + Advg A d1)4 - Z af4 d’UZ‘ A dUg,

i=1,2 Qv

= dv; A dvy + Advs N dvy — vadvy A dus,
(Fj:cuo)2 = 2Advi A -+ Advg = 2A0),
f = 2A ( fasin (F*wg)? = fQ),
df = 2dA = 2dvy + 4vsdvs + 12v4dvy.

Let (0, ©3, 74) be coordinates on 3o(F*wy) defined by
Uy = Vg, U3 = U3, Uy = Uy,
and let ¢ = (11, ,t4) @ So(F*wp) — RY;
L(Vg, U3, V1) = (—(v; £ 30}), 09, 3, Us)
be the inclusion map. Then we can easily check that
dvy A dvg A\ dvg = *(dvg A dvs A duy).
Set
sy (Frwg) = —dUa A dvg A dvg = —1"(dva A dvg A dvy).
Then,
Q=dvy ANdvy ANdvg Advy  and Qs (pewg) A df = 205, (prwg) A dA

define the same orientation on R*.
Now we seek the vector field

4
S 0 "
X:t = 067;('1_12, 1_)3, ’1_14) T, on EQ(Fin)
i=2 ¢

such that

Fin‘EZ(F;wo) = Z.(Xi)(QEQ(Fj’QwO))-
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The jacobian matrix of the inclusion map ¢(vy, 3, 94) = (— (03 £ 303), Uy, Uz, Uy4) iS

Therefore, letting D¢ denote the differential of ¢, we have

0 0 0 0 0 g\ 0 0
Dy <a—1_)2> = 8_1)27 D (a—%) = 8_1]3 — 2'038—@1, D <8_1_)4> = 8_1)4 + 61}48—1]1.

Now, we have

o 0 0
= (dv1 VAN dvg + Ad’l}g AN d’U4 - U4d?]1 A\ dUg) (8_1)27 8_2}3 — 21738—UI> = 2’(_}3.

Similarly, we have

. o 0 i
FL015, () (a_@?’a_m> = oo,

. o 0 ~ _ X
FinIEQ(F;wo) (8_1737 8_174> = :F6U4 + A= :F6U4, ( for A =0 on EQ(Fin).)
Thus
(4.6) FiWoys,, ey = 203002 A dz £ 604y A dvg + 602dvs A diy.
Letting
- )
X:I: = Zai(@27 1737 174) a@z

i=2
we solve the equation
FLwois, (prwg) = (X 1) (Qsy(Frw))-
Recall that

QEQ(FQUO) = —d@g A d@g N d174.
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Then we have

) , o 0
20 = Filoimyppuy) (a—@va—%)

0

= (X)) (Qy(rren) (8_172’ %

4

= —duvy A dvg A duy (Z —

0o 0

+60, = FiW0|22(FjEwo) (3_1)2’6_1;4)

4

= —dvy N\ dus A duy <Z o—

_ * a a
F6v, = Fiw0|22(F;wo) (3_1,3’6_@4)

4

= —dUQ N dUg VAN dU4 <Z o=

Thus
= :f:6@4, 3 = :i:6174,

and the jacobian matrix of (aq, as, ay) at 0 is

0

8041-
(o), .=l
Y 2<i,j<4 0

and its non-zero eigen values are

)

o 0 a)
= —0O4.
o 0 a)

0‘ ’802 81)4

8’(_}1’ 8?)2 81)3

o 0 o\___
(9171’(%3 8U4 z

gy = —2@3

+v-12, for F',
+4/12, for F_.

Thus Fjwg is of type 5, and F*wy is of type ¥5,,.  Q.E.D.

5. POISSON ALGEBRA OF HAMILTONIANS ASSOCIATED TO SINGULAR SYMPLECTIC

FORMS

In this section, we give proofs of two basic properties of the Lie-Poisson algebras of

singular Hamiltonians determined by singular closed 2-forms.

Two germs w and w’ of closed 2-forms on R?" respectively at p and ¢ are said to
be isomorphic if there exists a diffeomorphism-germ ¢ : (R*", q)

W= prw.

Let w be the germ at 0 € R?" of a closed 2-form on R?" at 0. For a function germ h
at 0 € R?", the Hamiltonian vector field of h with respect to w is the vector field X, ,

formally defined by the equation (cf. [11, 21]),

(5.1) w(Xon,Y)=-Y(h) for any vector field Y on R?".

We often abbreviate X, , as Xj.

— (R?*",p) such that
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The reason why we say ”formally defined” in the above definition is that if w is a
degenerate closed 2-form, there are functions h for which the Hamiltonian vector fields
X, » are not defined on the singular point set of w. (See the example at the end of this

section).
For the germ w of a closed 2-form on R?" at 0 € R?", we set
(5.2) H, = {h € &,| X}, is smooth}.

Now, for two elements h, k € H,, we define formally degenerate Poisson bracket
{h, k} , with respect to the degenerate 2-form w by

(5.3) {h,k}, = w(Xn, Xy) = Xy(h) = = Xp(k).

In the case where w is a degenerate 2-form, it is not trivial that {h,k} € H..
However we can show {h,k} € H, under a generic condition on w that it has a
representative closed 2-form defined on an open neighborhood U of 0, which we denote
also by the same symbol w, such that

(5.4) the set O = {p € Ulcorank w at p is equal to 0} is open and dense in U.

Theorem 5.1.  Let w be the germ of a closed 2-form satisfying the above generic
condition. Then M, is a Poisson algebra with the degenerate Poisson bracket { | }, .

Proof. Since the restriction wjp of w to O is a non-degenerate 2-form on O and for
any smooth function i on U, the restriction Xj o of Xj, to O is an ordinary Hamiltonian
system with respect to the symplectic structure wjo.

Let h,k € H,. Then h,k, X, X are all smooth on U. Now {h,k}, = X,(k) is
smooth on O and we have

(5.5) Xihkyo 0= [Xnjo, Xrio]-

Since h,k € H,, X} and X are smooth on U. Therefore the right-hand side of (5.5)
is extendable to the Lie bracket vector field [X}, Xj| of X, and X which is smooth

on U. Thus X{h,k}w‘ o 1s also extendable to a smooth vector field on U which must be

X{h k)., for O being open and dense in U. Thus Xy, is smooth and {h, k}., € H..
This completes the proof of the theorem. Q.E.D.

Theorem 5.2. Let w and W' be the germs of closed 2-forms. If they are isomorphic
and w' = p*w, then their associated Poisson algebras are isomorphic:

(56) (,0* cHey = He
Let w and w’ be the germs of closed 2-forms at 0 € R?". Suppose that w and w’ are

isomorphic: w' = p*w for the germ of a diffeomorphism ¢ : (R*" 0) — (R?*",0). To
prove that H, and H,,. are isomorphic, we prove that the ring isomorphism

0" Ep = Ean, @ (M) =hoy
induces an isomorphism
0" Hy = Hey
of Lie algebras. We prove this fact by proving the following two lemmas.
Lemma 5.3. Ifh € H,, then ¢*(h) € H,.

Lemma 5.4. Let h,k € H,,. Then ¢*({h,k},) = {¢*(h), p*(k)}w-
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Since ¢ : (R*",0) — (R?",0) is a diffeomorphism, from Lemma 5.3, we see that
©*(H,) C Hor and (o~ 1)*(H,) C H,, and hence ¢* : H,, — H. is a bijection. Since
0" &y — &y, 18 a ring isomorphism, we see that for h, k € H,,

o (h+ k) = ¢*(h) + " (k).

Then, with Lemma 5.4, we see that ¢* : H,, — H.s is an isomorphism of Lie algebras.

5.0.1. Proof of Lemma 5.3. Suppose that w' = ¢*w for a diffeomorphism-germ ¢ and
let h € H,. Then we are going to show that ¢*(h) = h o ¢ € H,,. By definition,

Heo = {h € | Xy p is smooth}
and X, is defined by the equation
w(Xun,Y)=-Y(h)

for any vector field Y on R?".

We are going to prove that if X, is smooth then X,/ 4., is also smooth. We prove
this using local coordinates. Let (uq,ug,- - ,us,) be local coordinates in a neighbor-
hood of 0 € R*™ and let ¢ = (1, , pa,) : (R*™,0) — (R?",0). Since X, and Xy poy
are vector fields, they are formally of the form

2n a
Xoh = i(u) 5— W' ho bi(u
" ;a “u; e Z 8uz
Since w’' = ¢*w, we have

2n

8Q01€ 8 8@@
(5:7) 8uZ 8u] ;; (9uz auk au[)au]
Therefore
(Ko ) = Zb 2
w’ how; auj - auz auj
_ - O N
B Zb ZZ@W Guk 6u5)8uj'
=1 k=1 /(=1
On the other hand, we have
, 0 0 .
W' (X hops (9_%> = —a—uj(h o) by definition
2n
Oh 0om,
= - Z %(@(U)) du;
m=1
_ 0 | Opn i
= ZUJ wii 8um) D, by definition of X,
B iia a d )&pm
- » 8up Ouy,” Ou;
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Thus we have

2n 2n  2n
a(pk 0 6904 / 0
R et o S X hows —
;b ;; 8uk auz)ﬁu] W {(Xar oy (9uj)
iia 8 0 )&pm
= » 8up Oy, Ouy

Expressing this equality in matrices, we have

i () (550 ) (i et ) (24w

= (@p). - anlp)) (w5 e)) (o)

ou, Ouy,
and hence
t Dy,
(5.8) (ba(w), -+ ban(u)) " { 5~ (u) ) = (ar(p(w)), - aza(p(w)).
t
Since X, = 222:1 ai(u)% is smooth, aq,- -+ , as, are smooth function and (‘%j’?) is
invertible matrix smoothly depending on u, we see that by, --- , by, are smooth func-

tions. Thus X,/ pop = > o bi(u)a%i is smooth and p*(h) =hoy € H,. Q.E.D.

=1

5.0.2. Proof of Lemma 5.4. By definition,

{h, k}o(u) = w(Xyn, Xon)(u),

{ho@ kol (u) = (X hops Xur kop) (1).

We express X, 1, Xo ks Xof hops Xof kop again using local coordinates uq, - - -, tgp;

2n )
h:;ai(u)a_uia o hop = Zaz (’3ul

2n a
Xw,k = Z bz(u)a_ulv w' hop — Z B@ aul
=1

Then from the last equality in the proof of Lemma 5.3, we have

(@, o) (G5 = (@) o)

(Br(u),- - Bonlu)) (a“"’? <u>) = (alp(w)), -, ban(ip(w)).
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Thus
{hop,koply(u) = W(Xu how Xo 'kw)(U)

2n
= o Z Zﬁz
1=1
- ZZ )
= 8u2 Ou,
(o) a2 W) (@ ) (w) ) B s Bon(w)
- a1(u), , Qop U w auzaau] u 1\u), , Pan(U) ).
Since w' = ¢*w, from the proof of Lemma 5.3 we have
0 o 89% 0, 0o
<8ul 8u3 ZZ 8ul auk 8Ug)( >8u] (u)

k=1 ¢=1

and hence
(@) = (5r0) (s 50) (52
{hop kowhu(u)
ot ) (52200) (st 00)) (55109
x H(Bi(u), -+, Ban(u)) 5

— (ar(pu), - s am(p(u))) (w(a—uk, a—u)(“))

X (01 (p(w), -+ ban(p(u))
= w(Xon Xow) (o) = {h, ktu(p(u)).
Thus we have

Thus

{o"h, "k} = @*{h, k}o.
This completes the proof of Lemma 5.4. Q.E.D.
Example 5.5. Consider the closed 2-form
w = urduy A duy on R?
and a function h = uy. Then X3 is defined by
0 oh

X, 2y =2
w( & 8uz> 8uz
Since Xy, has the form X, = al(u)a%1 + ag(u) 2

the equation becomes

Ous’
0 o 0 oh
urduq A dug (ozl(u)a—u1 + aQ(u)a—W7 a—m> = 3
0 o 0 oh
uldul A du2 (al(u>a_u1 + az(lb)a—uQ, a—uz> = —a—u2.
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Then we have

oh oh
U1G2(U) Dy ) uiay R
Since u1(0) = 0, there are no functions ay(u) such that uia; = —1. In this case, X}, is

not defined on the set {u; = 0} which is the singular point set of w.

6. POISSON ALGEBRAS FOR i3, 25 50, 2’2{2’0 STABLE SINGULARITIES

In this section we will characterize properties of the Poisson algebra for the singular
symplectic structure of Martinet and Roussaire forms.

Proposition 6.1.  Let wy denote Martinet’s normal form:

(61) Wa 0 = vldvl VAN dUQ -+ dU3 VAN dU4 + -4 dvgn_l VAN dvgn.
Then
(6.2) Mo = <U%>€u1,m,u2n + Evg wan -

Proof. In what follows, let 9; = %. Then for 1 <:<j<n

v1, fori=1,7=2

wa2,0(0;, 0;) = 1, fori=2k—-1,j=2k 2<k<n
0, otherwise.
and we have
0 v 0 0 0
—v; 0 0 0 0
0O 0 0 1 0 0
0O 0 -1 0 0
(w2,0<ai7 aj)) = .
: 0
0 0O 0 1
0 0 -1 0
0 —1/vy 0 O 0
1/vy 0 0 0 0
0 0 0 -1 0 0
. 0 0 1 0 0
(w20(0:,05)) " = : :
: 0
0 0 0 -1
0 0 1 0
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Then
heHu,
0 —1/vy O 0 0 Oh /o,
1/v 0 0 0 0 Oh /o
0 0 0 -1 0 0 2
0 0 1 0 0 _
— . . . : is smooth
0 :
0 0 0 -1 )

+—  0h/Ovy, Oh/Ovy € (v1)e, .
We express h in the form
h(v) = via(v) +viB(va, - ,van) + (v, -+, Vap).

Then Oh/0vy, Oh/Ovy € (v1)g, if and only if

B(vg, -+, vay), 0v/0va(va, -+ v2,) € (v1)e,
which holds if and only if

B(vg, -+, v9,) = 0,07/0vg(va, + -+ ,v9,) =0
which holds if and only if A has the form

h(v) = via(v) +y(vs, -+, v20).
Therefore h € H,,,, if and only if h € (v])e, + Euy,.: vy, - Thus we have
Hano = (UD)e, + Evg e o
Q.E.D. For comparison with general calculations we continue with the example.

Example 6.2. (33, -type cusps) We consider the following two cusps Fj.:

Fsy = (fi,--, fa) : (R%,0) = (R%,0),
filv) = v (i <3),
o) = b+ (o D)o

Then FZ wy is of type X5, and  F7wq is of type ¥4, ; and

Fiiwo = dvy A dvg — vgdvy A dvs + (3v] + vy £ v3)dus A duy.
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+(U1 — ’Ug)dvg VAN dU4,

+(vy — v3)dvs A dvy.

(6.3) We =
(64) W =
(CF)

d?)l N dl)g + ’U3d?)2 N dl)g + d (

d?)l VAN dUQ + U3d1)2 VAN d?)g +d (

’U3
V1U3 + VU4 — §3> A d’U4

dvi A dvg + v3dvy A dug + vadvg A dvs + vadvg A doy

123
V1V3 — VU4 — 33) VAN d’U4

dvy N dvg + v3dvy A dvy + v3dvg A dvg — vadvg A dog

In what follows, let 0; = a%' Then from (6.3) and (6.4)

0 1 0 Vs
. —1 0 U3 V4
(we(9:,05)) = 0 —us 0 vy —vi |’
—vg —vy —(v; —v3) 0
0 1 0 (%]
. -1 0 (%] —Uy
(wn(9:,0;)) = 0 —us 0 o =2 |
—vg vy —(vg —03) 0
0 1 —Uy 0
. 10 0 0
(F5iw0<ai7 aj)) = vy O 0 vy £ U% + 31}3
0 0 —(v;+v2+30vd) 0
0 —(vy —v3) vy —us
ol L (v —3) 0 —v3 0
(we (04, aj)) = " ) Vs 0 1
U3 0 1 0
0 —(v1 —v3) —vg —uvs
ot L (v =) 0 —v3 0
(wn(0;, 0;)) - vy U3 0 -1 ’
Vs 0 1 0
0 —(vy £ 02 + 3v3)
_ 1 v £+ 02 + 302 0
FY 0, 0, L 1="3 4
( (0 J)) vy + 03 + 3v? 0 0
0 V4
Remark 6.3. Note that
det (we (05, 9;)) (wi(8:,0;)) = v7,

det (F;in(ai, 8]))

(vl + 03 + 31}2)2.

Fiiwo = dvy A dvg — vgdvy A dvs + (v1 £ 03 + 3v])dus A duy.

0

Y

0
-1
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Now we provide the implicit formulas for H,, ,H.,. Let H,, , H., denote the Pois-
son algebras associated to Roussaire’s hyperbolic and elliptic normal forms w,,and wy,

respectively.
Let h € £,. Then h € H,, if and only if

0 —(vy —v3) vy —us Oh/Ov,

L[ (v —02) 0 —vz 0 Oh/ vy .

U_l —UV4 (%] 0 —1 8h/(%3 15 SIIlOOth,
V3 0 1 0 8h/8v4

h € H,, if and only if

0 —(vy —v3) —vy —us Oh/dvy

L[ (v —02) 0 —v3 0 Oh/0vy .

U_1 o o 0 _1 Oh/9vs is smooth,
V3 0 1 0 8h/(%4

(CF ): h € Hpz u, if and only if

0 —(vy £v34+30v3) 0 0 Oh /o,
1 vy £+ 02 + 30} 0 0 —uy Oh/Ov, .
PRI B 2 1 302 0 0 0 —1 Oh/9vs is smooth,
0 V4 1 0 (‘3h/6v4
from which we have
Proposition 6.4. (First implicit formula)
Ho, ={h €&, | h satisfies the following conditions}
oh oh  Oh
(65) —1)48—1}1 + ?)36—,02 — 8_1}4 - <’U1>gv,
Oh ~ Oh
(66) Uga—vl + 8_1}3 S <U1>gv.
Hao, ={h €& | h satisfies the following conditions}.
oh oh  0Oh
6.7 — — -
(6.7) v oy v Ovy  Ouy € (e,
Oh  Oh
(6.8) U36_vl + 0 € (vi)e,-
Proof. For a function h € &,, h € H,,, if and only if
0 —(vy —v3) vy —us Oh/0v,
1| (v —03) 0 —v3 0 Oh/0vy :
o ) o 0 —1 Oh/Ovs is smooth
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which holds if and only if

on
8112

oh oh
Oh oh
Va0~ o,
Ooh oh
%50 B
oh oh

—(v1 — U:zz))

(v1 — U§

Oh

which hold if and only if

oh
_038_1)4 S

oh
_U3@_U3

oh  Oh
038_1)2_8_114 €

Oh  Oh

V3=— + —
81)1 81)3

, Oh oh
v3a—v2 + 040_113
2t

vy

oh

— U4 +

81)1

(6.9)
(6.10)
(6.11)

(6.12)

However, (6.10) follows from (6.12) and (6.9) follows from (6.11) and(6.12); (6.9)
v3x(6.11) —vyx(6.12). Thus h € H,, if and only if (6.11) and (6.12) hold. But (6.1

35

S <U1>5v7
S <U1>&,7
e <U1>€’U7

S <U1>5va

(v1)e,,
(v1)e,,
(v1)e,,

(v1)e, -

12)

and (6.12) are nothing but (6.5) and (6.6) in Proposition 6.4 respectively.

Similarly for a function h € &,, h € H,,, if and only if

0 —(vy —v2) —vg —us
L (vy—03) 0 —v3 0
1)_1 (o (%} 0 —1

Vs 0 1 0

9\ Oh oh oh

(v Us)a—vz 48_113 - 1}38_1;4
o\ Oh oh

(01 — Ug)a—vl - 8_113

oh oh oh

1)48—1)1 + ’2138—1)2 - 8_1}4

oh  0Oh

S0, " Do

8h/8vl
8h/8vg
(9h/81)3
8h/8v4

is smooth

E </Ul>8v7
S <'U1>€v7
€ (u)e,,

E </U]->g'u7
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which hold if and only if
5 Oh oh oh

(6.13) B Y Pa © (v)e,
(6.14) —vgg—z — vgg—i € (v)e,,
(6.15) mg—z vgg—:z - S—Z € (v)e,,
(6.16) vgg—z + 3_11 e (v)e,.

However, (6.14) follows from (6.16) and (6.13) follows from (6.15), (6.16); (6.13)=
v3x(6.15) —v4x(6.16). Thus h € H,, if and only if (6.15) and (6.16) hold. But
(6.15) and (6.16) are nothing but (6.7) and (6.8) in Proposition 6.4 respectively. This
completes the proof of Proposition 6.4. Q.E.D.

(CF) (See[3]) Hrzwo ={h €&, | h satisfies the following conditions}.

oh
Bor € (v £0vi+ 30,
oh  0Oh
046_’02 + 8_1)3 c <U1 + Ug + 31)3)51)
Next, expressing h in the form
(6.17) h = via(v) + v1B(va, vs, v4) + (va, U3, v4)

we have
Proposition 6.5. (Second implicit formula)

He, = (VD)e, + {018+ 7 | B,7 € Evpusws  Satisfying the following equations}

0
(6.18) —vy5(v2, v3,v4) + 03—632 (vg,v3,v4) — 8_11(U2’U3’U4) = 0,
vy
(6.19) v33(va, U3, v4) + aT(Uz,U?nm) = 0.
3

Hey, = (WD) e, + {18+ 7| B,7 € Evysvn Satisfying the following equations}

0
(6.20) V4 3(v2, v3,v4) + Usa—;(vz, Us, Ug) — 8_11(U2’ vg,vg) = O,
vy
(62]‘) ’U3ﬁ(U2,U37U4) + a_<027v3av4) — 0
U3

Proof. Express h € &, in the form
(6.22) h = via(v) + v18(va, v3,v4) + (2, V3, v4).
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Then conditions (6.5), (6.6)
oh Oh  Oh

0 T 0 e € e
oh n oh € ()
v3— + — v
381]1 81}3 L&
for h € ‘H,,, given in Proposition 6.4 are equivalent to
oy Oy
6.23 — _— -
(6.23) v4f3 + v3 Dos  Don € (v1)e,s
dvy
6.24 — € .
(6.24) v3fl + 30, (vi)e,

However, since 8 and v are functions of the variables vq, v3,v4, (6.23) and (6.24) are
equivalent to

(6.25) —vgf3 + 030_222 T o 0,
oy

Thus h € H,, if and only if (6.25) and (6.26) hold. Since (6.25) and (6.26) are nothing
but (6.18) and (6.19) in Proposition 6.5, this completes the proof of Proposition 6.5
for H,, .

The proof that h € H,,, if and only if (6.20) and (6.21) hold is similar. This completes
the proof of Proposition 6.5. Q.E.D.
Expressing 7(vq, v3,v4) in the form

(6.27) V(v2, v3,v4) = V371 (2, V3, Va) + v372(v2, va) + Y3(va, va),

from (6.19) ( = (6.21)), after some calculations, we have

(6.28) vy = 0,
(6.29) v = viv(va, vz, vs) + Y3(v2, 04),
0
(630) 6 = —2’71(1}2,1)3,1)4)—Uga—zl(vg,l)g,’wl).
3

Then from Proposition 6.5 we have

Proposition 6.6. (Third implicit formula)

71 € Svg 3, vy V3 € SUQ V49

oy
Hoo = (v])e, + {—’01 (271 + U3 83 ) + U3+ s

1 (v2,v3,v4) and y3(va, vy) satisfy the following equation}

o 201 | Oy 3% 03
31 2 = =) = = 0.
<6 3 ) v ( m + v3 aU3) + v3 < (91)2 + 5’112 8U4 * ou 87)4 0
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7 S g’vz v3, U47fy3 S g’uz V4

on
Moy = <U%>5u + {—Ul (2% + v 87 ) + U3'71 + 3

Y1 (v2, v3,v4) and y3(vy, v4) satisfy the following equation}

o 20 | 073 20 | O3\ _
(632) <271 Ty, 87} ) + s ( 8’02 + 81)2) ( 8114 * ou 81)4 =0

Proof. We express 7(vq, v3,v4) in the form
(6.33) ¥(va, v3,v4) = 2{%71 (v, v3, v4) + v372(v2, Va) + Y3(V2, v4)
Then (6.24) and (6.26) vsf + 87 = 0 are equivalent to

0
(6.34) Yo (va,v4) = —3 (5 + 27 + Us—a%) .
U3

Since the left hand side of (6.34) does not contain the variable v3 and the right hand
side does, (6.34) is equivalent to

(635) Yo = 07
0
(6.36) B = —2vi(vs,v3,04) — 3 a%
3

Note that (6.35) and (6.36) are the same as (6.28) and (6.30).
Substituting (6.35) and (6.36) into

(U2a,037v4)-

oy Oy
—U46 + Uga—UQ - 8_1}4
we see that h = v?a + v, 8+ v € H,,, if and only if
om 2071 | O3 2071 O3
. 2 93\ _
(6:37) (%+03021)+ 3( 590, T o, ) " \Bam T a0, ) =

here (6.37) is equals to (6.31) in Proposition 6.6.

The proof that h € H,, if and only if (6.32) holds is similar. This completes the
proof of Proposition 6.6. Q.E.D.

7. EXAMPLES

In this section we give implicit formulas for Poisson Algebras H ., associated to the
closed 2-forms induced from the Darboux form by the maps Fi. given in the following
example.

We consider the following two map-germs Fj.:

Fse = (fi,+, fa) s (RY0) = (RY wy),
wo =dz; Ndzg +dzz Ndzy
fitv) = v (1 <3),
filv) = v+ (v1 £ 03)v,
Then Fz wy is of type Y590 and F¥ wy is of type 23,2’0.
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In what follows sometimes we abbreviate Fyy as Fy. We have

F;:twO = dUl A dUQ + Aidvg VAN dU4 - U4dUl VAN d’Ug

(7.1) = dvy A dvy + (3v] + vy £ 03)dvs A dvg — vadvy A dus,
where
(7.2) A = det JFse = 303 + vy £ 03

(CF) Recall Roussaire’s normal forms:

03
dvy N dvg + v3dvg A dvs + d <v1v3 + VaUy — 33) A duy, (237270)

3
dvi N\ dvg + vzdvy A dvg +d <U1U3 — UgUy — %3) A duy. (23,2,0)

Fwy and Roussaire’s normal forms have similar forms but they are different. However
they must be equivalent according to our theorem.
For a smooth function h(vi, ve,vs,vs), h € Hp, if and only if

0O 1 0 0 Oh/0v,
_ 41| =1 0 0 O ¢ 15 -1 | Oh/Ovs )
JFL 00 0 1 JFy Oh /Dy is smooth.
0 0 -1 0 Oh/0v,

From that property we have

Proposition 7.1. (First implicit formula)
He, ={h €& | h satisfies the following conditions}

oh

(73) 8_1}4 < <Ai>gv,
Oh oh

(74) U4a_1)2+a_v3 S <A:t>£v-

Proof. Recall

Fy = (fla"'af4):(R470)_>(R470)’
filv) = v (i <3),
faw) = vi+ (v £ v3)vs,

Thus
1 0 0 0
= 0 1 0 0
JFL = 0 0 1 0 : where Ay = v £ v3 + 3v].
Uy 0 :|:21)3’U4 A:I:
Then
0 1 0 O Oh/0v,
) _ 1] =10 0 O ¢ = 1| Oh/Ovy )
(75) heHp — JF: 00 0 1 JF. OO, is smooth.
0 0 -1 0 Oh/0v,
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We have
1 0 0 0
= —1 0 1 0 0
JEx = = 0 0 1 0 ’
—’U4/A:|: 0 :F2U3U4/Ai 1/A:|:
1 00 —U4/A:|:
trp -1 010 0
The = =1 g 0 1 F2usvy /A |
0 00 1/AL
0 1 0 O 0 1 0 0
-1 0 0 O bl -1 0 O vy /Ay
0 0 0 1 S 0 0 0 1/A :
0 0 -1 0 0 0 —1 :|:2U3U4/Ai
0O 1 0 O
— -1 -1 0 0 O -
Ho 0 0 0 1 T
0 0 -1 0
1 0 0 0 0O 1 0 0
B 0 1 0 0 —1 0 O vy /Ay
o 0 0 1 0 0 0 O 1/AL
—U4/Ai 0 :F2U3U4/A:|: ]_/A:t 0 0 -1 :|:2’U3U4/A:|:
0 1 0 0
-1 0 0 vy /Ay = 1
(7.6) =l 0 0 1AL = —(Fiwol(ei, e)))

0 —’U4/A:|: —1/Ai

Where (F}wo(e;, e;)) is the matrix representation of Ffwy and e; = 9/dv;.
Let h € €,. Then h € Hp, if and only if

0 1 0 0 Oh/0v;
-1 0 0 vy /Ay Oh /vy .
0 0 0 1/A. Ohjov, | 18 Smooth,
0 —U4/Ai —1/Ai 8h/6v4
which holds if and only if
oh
: — A
(7.7) o € (Aue,
oh  Oh
(7.8) € (Ai)e,.

(U S -
81}2 8'113

The conditions (7.7), (7.8) are nothing but (7.3), (7.4) in Proposition 7.1. This com-
pletes the proof of Proposition 7.1. Q.E.D. Now we express h in the form

(7.9) h = Aia(v) + ALB(vs, vs,v4) + ¥(va, V3, V4).
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Proposition 7.2. (Second implicit formula)

Hp, = (AL)e, + {Aiﬁ +7 | B,y € Evy sy and satisfy the following conditions}

0
6U4/8<U27 V3, U4) + a’y (027 U3, U4) = 07
V4
oy oy
—x2 — =0.
v 81)2 U36 + 8113

Proof. Since
AL = 31}3 + vy ivg,
we may regard (AL, ve, v3,v4) as local coordinates in a small neighborhood of the origin.
We express h in the form
h = A%a(v) + ALB(vs, vs,v4) + ¥(vo, V3, V4).
Then the condition (7.3)

8_1)4 € (As)e,

in the first formula is equivalent to
0AL
Ovy
Thus (7.3) is equivalent to

0 0
B+ 6_21 = 6v43(va, v3,v4) + 8—;(1}2, v3,v4) € (Ay)e, .

0
6v40(va, v3,v4) + 6—7(1}271)3,@4) =0,
V4

since A4 contains v; as a term while g and v are functions of vy, v3, vy4.
Now consider the condition (7.4) in the first formula:

oh oh
U48_1)2 -+ a_vg S <A:|:>gv.

The condition (7.4) is equivalent to

)
(Ala+ArB+7) + o (Ala+ALB+7) € (AL,

U48_U2 81)3
recalling that Ay = v + v2 + 3v3, which is equivalent to
2l 2l
T4 L e (AL)e,
1148,02 v + 903 (As)e,
which is equivalent to
0y 0y
7.10 49 R ;)
( ) v 8’02 U3ﬁ + 81)3

since [ and ~y are functions of the variables vs, v3,v4 and A4 has vy as a term.
Thus we see that h € Hp, if and only if

0
(7-11) 67145(“27@3,’04) + _(97 (’02, U3, U4) =0,
Uy
oy oy
12 — 12 — =0.
(7.12) Uy 90, v3f3 + 90,
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This completes the proof of the second formula. Q.E.D.
Expressing v in the form

(7.13) Y(v2,v3,v4) = Ui% (v2, V3, V4) 4 V42 (V2, v3) + Y3(v2, V3)
we will see that (7.10) is equivalent to
1 871
Y2 ) &} G < 71+U4av4)

and (7.11) is equivalent to
2 30M O | 20 1 0Om 873 o\
<$3”3%+U4a g TG, Tavig, | gy, T, ) =0

Thus we have

Proposition 7.3.
Hp, = (A%)e, + {Ai@ +7 | B,y € Evyvsws and satisfy the following conditions}

v being expressed in the form (7.16),

1

omn
14 — - _ )
(7.14) Y2 =0, B = ( Y1+ vy (%4)

2 om o 20 _ 1 o 8’73 073
71 3 m D5 L D) _y,
( 5@3”’“ T T 0 T i T 3%, ) T M, T

Proof. Next we express 7 in the form

(7-16) ’Y(U27 V3, 714) = Ui’h (7)27 U3, U4) + U4’72(Uz7 US) + 73(1)2, U3)-
Then (7.10) is equivalent to

15,
6v4/3(v2, V3, Vg) + 20471 (Va, V3, v4) + via—zl(vg, U3, Vg) + Y2(ve,v3) = 0,
4

which is equivalent to

0
Y2(v2,v3) = 0,  6v4B(v2, U3, V) + 20471 (Va, V3, v4) + via—zl(m v3,v4) = 0.
4

since 75(vg, v3) are function of vg, v3 while the other terms have v, as a factor. Thus
(7.3) is equivalent to

o

Y2 =0, 68 + 271 + va—
vy

=0,

and hence to

1 om
=0 = 2 )
Y2 ) B G ( 71+U4av4)

Now we consider the equality

)
vaL 4 e+ 2L
0vy

oy

=0.
dvs
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From (7.16) and (7.10), (7.12) is equivalent to

50 0 1 0 0 0
s ( on VB)ZF s (2%_1_1}4 71)+<02i+ﬂ):0’

8"02 81)2 8?)4 4 87)3 81}3
which is equivalent to
2 30M Oy 40m __ 1 o dvs O3
—_— — 4+ —1]=0.
(:F30371+U48 2+ 48 V3 48 (R :F vt 40’114 * 8U2+81)3

Thus we see that h € Hp,, if and only if (7.10) and (7.15) hold. This completes the
proof of Proposition 7.3. Q.E.D.
From this proposition we see that /3 is determined by . In this sense Proposition 7.3
is more advanced than Proposition 7.2. However the equation (7.15) is complicated.
To have More detailed representation, we express [ in the form

(7.17) B(va, v3,v4) = vaB1(va, v3,v4) + Ba(va, v3).
Recall that from (7.16) and from (7.14), v has the form

(7.18) Y (v, v, 04) = Ui’h(vm v3, V1) + Y3(V2, V3).
From (7.17) and (7.18),
vy Oy

1 — 42 .
(7.19) v482 vgﬁ—i—ag 0
is equivalent to

50 0 50 0
(O < az; + a—zz) =+ 2v3 (U451(U27 Vs, Vy) + 52(?12703)) (9_291, + a—Zi = 0.

Dividing (7.19) into those terms containing v, as a factor and those terms not containing
vy, (7.19) is equivalent to the pair of

0
(720) 873 (’UQ, ’U3) + 2U3ﬁ2 (UQ, ’Ug) 0
U3
and
50 0 0
(7.21) I L9, T 9B, = 0.

4 602 81)2 81)3

Expressing 73 in the form

(7.22) V3(v2, v3) = v3731(va, v3) + Y32(V2),
(7.20) is equivalent to

073
Y31 (va, v3) + V3 50 1(?127 v3) &£ 20305 (v2, v3) =0
U3

which is equivalent to the pair of
Y31 (v2, v3) = V3Y31(V2,v3),  Fys1 € Eg g,

0~
V3731 (v, v3) + V331 (va, v3) + V3 8731 (va,v3) £ 2030 (v2, v3) = 0.
U3

Thus we see that (7.20) is equivalent to the pair of conditions

(7.23) 73 has the form V3(v2, v3) = V3731 (va, v3) + V32(v2),
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1 05
(7.24) and  [y(ve,v3) = F (731(112, v3) + s (,;31 (Ug,Ug)) .
U3

Now we observe (7.21):

o 373 6
2— — pr—

We express [3; in the form

(7.25) B1(v2, Vs, vg) = v411(Va, V3, V) + Bia(va, v3).
Then (7.21) becomes of the form
0 0 0
Uii 3 —— (v, v3) & 203(v4f11(va, V3, V) + Bia(v2, v3)) + Va=— N =0,
01)2 8 Vo 6 V3

dividing into those terms containing v, as a factor and those not containing v, which
is equivalent to the pair of

0
(726) 873 (1)2, U3> + 21)3612(1]2, 1)3) O
U2
and
o o
— +2 — =0.
Uy D0 v3 311 (va, V3, v4) + 905
From (7.23), (7.26) is equivalent to
507 0
v3 Tl ——(v2,v3) + 32 (v2) & 2u312(va, v3) = 0
8 V2 8’02
which is equivalent to the pair of
032
=0
81}2 (UQ) )

and o
U%%(W’U:ﬂ) + 203 812(v2, v3) = 0,
Vg

which are subsequently equivalent to
v32(v9) = const,

20731
2 v vy
From the above equation, (7.23) is equivalent to

Pr2(ve, v3) = 43 ———(vg, v3).

~3 has the form Y3(v2, v3) = V3731 (2, v3) + constant.

Now we observe

My

8
(7-27) a :i: 203511(1)277)37@4) 81)3 =

TS

We express 71 (vs, v3,v4) in the form

(7.28) Y1 (v2, v3,v4) = V3711 (2, V3, V4) + v3712(Va, v4) + Y13(v2, v4).
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Then (7.27) is equivalent to

0 0 5}
V4 <v2 2L U3 nz %3) + 203811 (v2, v3, v4)

3 81}2 6’02 81}2

0
a8 =+ 712) = 07

+ (2U3’711 + U% 81)
3

which is equivalent to the pair of

v O3
4 82)2

(v2,v4) + 712(v2,v4) = 0,

vs 8?}2 + 602

0 0 0
Vg < i 712) + 2611(1)2,1}3,'114) + (2’711 + V3 aZ)ll) = 0.
3

Thus (7.27) is equivalent to the pair of

0
712(1)2, U4) = —U4£(U2, 04),

81)2

1 011 Oy 012
=5 (2 .
P11 (v, v3, v4) :FQ ( Y11 + U3Us D0 + vs3 05 + vy D0y

We list here all the equalities concerning 5 obtained so far:

. 1 o
p = 6 (271 +U4av4) :

Expressing S in the form

B(v2, U3, va) = Va1 (Va, V3, v4) + P2(v2, v3),

we have

1 05
Ba(va,v3) = F (’731(?12,113) + 503 871)21 (U27U3)> .

where
3 has the form Y3(va, v3) = V3731 (Va, U3) + Y2(2).

Expressing f; in the form
Bi(va, v3,v4) = V4B11(V2, V3, v4) + Pr2(v2, v3)

1,0y

512(02, U3) = 43503 8_1)2

(Ug,Ug).

1 o1 O 0712
=T— (2 .
Br1(v2, v3,v4) :F2 < Y11 + V3Vs 50, + vs 905 + vy EI
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Combining all together, we obtain

Blva,v3,v4) = vaf1 (v, v3,vs) + B2(va, v3)

1 0%
= 114(1)4511(1)2,2)3,@4)+612(v2,v3)) F (731(1)2703)+ 503 731 (vg, 3))

Ovs

1, Oy O 012 1,09

pr— —_— 2 p— [
IF2U4 ( Y11 + V3V4 3n + v3 Bos + vy J0n T 21}41)3 s (vg, v3)

1 0%
F (731(7)27@3) + U3 87331 (U2>U3))

1 oy
= F-u; (2711(02,713,@4) + Ugvg—

2 81}2

0

o 2012 (vz,m))
V2

0
(U27 U3, U4) + V3—— i (UQ, U3, U4)

8’03

1 0~ 1 o~
(7.29) F (731(122,123) + 21}4U§ 8731 (vg,v3) + v3 8731 (UQ,Ug))
V2 U3

Now we list equalities concerning ~y(vs, v3,v4). We expressed h(vy,va,v3,v4) in the
form
h =A% a(v) + Ay B(va, v3, v4) + ¥(va, v3, V1),
and (v, v3,v4) in the form
V(va, v3, v4) = ViY1 (U2, U3, V4) + Vs72(V2, V3) + Y3(v2, V3).

Then the condition

oh
— e (A
8114 < < :t>
is equivalent to
1 8’)/1
Y2 P 5 6 ( 71 + Uy 81)4)

73 has the form  ~3(vy, v3) = v3731(v2, v3) + Y32(v2),
7V32(v2) = const,
and
73 has the form  73(va, v3) = V3731 (v2, v3) + constant.

We expressed 71 (vq, v3,v4) in the form

4! (02, U3, U4) = U:)Q,’Vn(’UQ, U3, U4) + U3’712(U2, U4) + ’713(7)27 714)-

Then
0713

81}2

712(112, U4) = —U4 (02, 114),

from which

o (v2,v4) + 13(vVa, Vg).

71(?12,213,@4) = U§711(02>U3,U4) V3V4—(— 9
(%)

Then the second equality in (7.14)
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is equivalent to

1 0
= —= {2 <U§711(U2, U3, Vg) — V3Us 13 (v2,v4) + 13(v2, U4)>
6 61)2
T v 2011 _ O3 v 82’713 . O3
4 8’04 U 0y 6’02 3 46"028’04 8U4
_ _107 102 o X _lfy _gw (9713+v a’hs_y@ 013
3 3 37 vy 0vy 3 /13 gmsH 0vy 4 vy 3 480281)4
(7.30)
On the other hand, v12(ve, v4) = —vy4 %113 (v9,v4),
1 0 0
Blvg,v3,v4) = F=vj | 2711(v2, V3, v4) + V304 1 (v2,v3,v4) +03£(02,U3,’U4)
2 6’112 8113
o
+U4 a,y 22 (UQ, 1}4))
1 05 1 075
F | ¥31(v2,v3) + zv403 731( 2,U3) + s 31 (va,v3)
2 Ovsy Ovs
1 0 0
= $§UZ 211 (v2, v3, v4) 4 V34 81121 (v2,v3,v4) + V3 81131 (v2,v3,v4)

82713
—UZ a—vg(% vg)

1 194 1 05
F (’731(02, vs) + 2714U§ 8731 (v9,v3) + =v3 131 (0277)3)) .

2 81}3
Thus,
—lv +vv8’yll V9, U —gvv%—l—v%—vv 82%3
3 3711 3U4 713 2, 4 3 3U4 Oy 4 e 3 48712(%4
1 O 8’711 8 713
= :|:27J4 (2’)/11 + U304 B0, 3 o — 2 02
1 8731 1 Oy
F (731(@2,113) + 2v4v3 9oy T2% 0, )
Thus,

1 1 40y 1 8711 O
((—31)3 iv4> 11 (v, v3,v4) £+ 21131)4 Don j:§ SV ——— J0s + v3vy s

1 2 013 O3 1013 9?13
+ ( 5713(7)2,114) S UsUs—— D0, + Vs 90y :F 5 vy 02 5 U3U48028v4

1,07 1 0
(7.31) =F (731(02, vs) + 731 731)

2U4382+ 81)3
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