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Abstract.

The paper concerns conditioning aspects of finite dimensional problems
arisen when the Tikhonov regularization is applied to discrete ill-posed
problems. A relation between a regularization parameter and sensitivity
of regularized solution is investigated. Moreover, it is shown that choice of
regularization parameter optimal with respect to the condition number
of finite dimensional operator approximating a compact operator gives
regularized discrete solutions convergent to the exact generalized solution
when dimension of discrete equation and data error are related in a proper
way and the data error tends to 0. As an example the method of truncated
singular value decomposition with regularization is considered.

1 Introduction

Let A € L(X) be a compact operator in a Hilbert space X and let
us consider the operator equation

(1.1) Au = f.

By a generalized solution u* we mean the minimal norm solution of
the normal equation

(1.2) A*Au = A* f

and the corresponding general inverse operator is denoted by A™.
Assume, that for f the generalized solution u™ = A™ f exists. If the
dimension of the range of A is not finite, the inverse of A as well
as the generalized inverse A' are not bounded. Thus the problem
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(1.1) is ill-posed in the space X also in the least squares sense. So,
for slightly perturbed right hand side fs, ||f — fs5]| < J, the solution
AT f5 does not necessarily exist, or, if it exists, the distance between
these two solutions may be arbitrary large.

In practice we deal with a finite dimensional approximation of the
equation (1.1)

where A, is a linear operator acting between finite dimensional
spaces. For simplicity of notation we will mainly consider the case
A, € L(X,). Let us assume that the sequence of unitary n-dimensional
spaces X, is a convergent and stable approximation of the space X
with uniformly bounded restriction and prolongation operators de-
noted by r, : X — X,,, and p, : X,, — X, respectively. Moreover,
let us assume that

(1.4) |A*A — p, Ay Apry|| — 0, as n — oo,

and f, := r,f. The generalized solution w,, for (1.3) exists and p,u,
converges to ut as n — oo for the exact data. But this approxima-
tion is unstable; a small perturbation of f disturbed convergence.

Let {45}52, and {07(A,)}7_, be non increasing sequences of eigen-
values of the operators A*A and A} A,, respectively, repeated ac-
cording to their multiplicities. Thus, non-negative u; and o;(4,)
are singular values of A and A,,, respectively. Since, except for the
eigenvalues 0, A¥A,, and p, A’ A,r, have the same eigenvalues, due
to the spectral approximation results (cf. [3], th.6) 0,(A,) converges
to puj as n — 0. Let 0,,,(A,) denote square root of the smallest
nonzero eigenvalue of A*A,. From ill-posedness of (1.1) it follows
pj — 0 as j — oo and consequently oy,n(A,) — 0 when n — oo.
Thus the condition number k(A,,) of approximating operator A,, (cf.
[1], [6]), given by

 Omax(An)

(1.5) k(A,) = o (A
is large and tends to infinity with n. Thus, we have to deal with
very ill conditioned problems (1.3) for large n. The problem (1.3)
is well posed in the least squares sense with respect to right hand
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side perturbations, but its generalized solution is not stable approx-
imation of the exact solution. Discretization of ill-posed problem is
sometimes called 'discrete ill-posed problem’ (cf. [5]).

Let fns = 7.fs and ud be the solution of (1.3) with the right hand
side f, 5. For some kind of discretization it is possible to define a
discretization level n = n(d) as a function of data error bound o
in such a way that |[u® — p,ul| — 0 as  — 0. In this case the
discretization is simultaneously a convergent regularization method
for the ill-posed problem (1.1) (cf.[4], [11], [12]). Generally, it is rec-
ommended to apply some regularization method for solving discrete
ill-posed problems (cf.[10]). An additional regularization of (1.3) al-
lows to stabilize the numerical algorithm by decreasing the condition
number of corresponding operator, and, as a consequence, allows for
use the larger subspace in discretization (n,e, >> n(d)) for given
data error 4.

In this paper we concentrate on the Tikhonov regularization method
(cf. [14], [1], [4]), which consists in replacing the least squares prob-
lem by the following functional minimization problem:

(1.6) min{[|Ayu = fusllx, + allullk,}

The solution of (1.6) denoted by Ui,a is called a regularized solution
and it satisfies the equation

(1.7) (AL A, + ad)u) = Al fos.

The parameter « is a regularization parameter and the crucial
point of the method is its proper choice. In Section 3 it will be
shown how condition number of the problem (1.7) depends on the
parameter «, and which choice of « is optimal with respect to min-
imizing this condition number. The main conclusion is that by the
Tikhonow method (1.7) the condition number (1.5) can be only de-
creased to its square root. In Section 4 a convergence of regularized
solution corresponding to the optimal (in the above sense) choice
of a to the exact generalized solution u*t is analyzed. It must be
emphasized, however, that parameter choice rules not depending on
0 cannot provide a convergent regularization method in the usual
sense, i.e. cannot provide convergence of ufl’a to ut as 0 — 0 and
n — oo (cf [4], [8], [9]). In this paper dependence a on ¢ is replaced
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by a dependence n on d. There are established conditions on the
approximation of the space and operator and the relation between n
and 0 which guarantee convergence of regularized discrete solution
u® . to ut. As an example the method of truncated singular value
decomposition with regularization is considered in Subsection 4.1.

2 The Tikhonov regularization method in a finite dimen-
sional space

Let n be a fixed discretization level. Let (0;, ;,1;) be a singular
system for the finite dimensional operator A,, where o1 > 09 > -+ >
o > 0 are nonzero singular values of A,, {©;}7_; and {¢;}7_, are
complete orthonormal systems of eigenvectors of Ar A, and AnA;,
respectively, corresponding to the eigenvalues o7, 7 = 1,---,n. In
Sections 2 and 3, to shorten notation we omit the parameter n in the
singular system of A,. Moreover, we will write the scalar product
in X, (-,-) instead (-,-), when no confusion can arise. The singular
value decomposition of A,, has the form

k
(2.1) Az = oj(z, o), x € X,
=1
Similarly,
k
(2.2) Aty =) of(x
=1

According to the above notation the generalized solution of (1.3)
has the form

k
2.9 -3 Unt)

=1 0j

where {(f,,v;)} are the expansion coefficients of f, € X, in the
basis {¢; }:
(2.4) fo =D (fas 03)0;

j=1
Let u® be the generalized solution of (1.3) for a perturbed right hand
side f,, 5 := 7, fs. Since for A, the condition number k(A,) = Z—;, we
have

(2.5) fun =l _ o1 [l = Fasll

lunll = on I fall
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It is reasonable to require that the regularization parameter a in
(1.7) is such that the regularized solution u, , is far less sensitive to

perturbation on f,, than wu,.

3 Sensitivity of regularized solutions

Let n be still fixed. According to our notation oy, is the smallest

nonzero singular value of A,.
LEMMA 3.1. If u,. and una
hand side f,, and f, s, respectively, then

e — el _ -
(3.1) W < Hn,aw,
where e 2
oi+ajok if a € (0,0%),
(3.2) e = zzza {f a € (o3, ala,;],
s o€l o],
% if a € (02,00).

are solutions of (1.7) for the right

PRrOOF. Under the above notations the solutions of (1.7) for the

right hand side f,, and f, s are given by the formulas

n

(33) Up,o = szl O’ T a(fn7¢]>¢j7
(3.4 = Xt Unas )

Thus u, o and ufw are solutions of the equation B, 4vy,
B.o € L(X,),

(x, )0 x € Xy,

(3.5) - Z

and g, = f, and g, = f,, s, respectively. Let us define

2
_l’_
ga(0) = d - % foroe (oK, 01).

= ¢,, Where
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The condition number for the operator B, , is given by
maxi<j<n ¢a(0;)
mini<j<n ¢a(0;)
Thus, the relative error inequality (3.1) is satisfied with k,, >
K(Bpa)-
The function ¢, (o) attains its minimum at o = y/«, thus

(3.6) K(Bno) =

Ga(o) if a € (0,07),
(3.7) min ¢,(0;) > min qu(0) =% 2/a  if a € [0}, 07,
1<5<n o€lok,01]
Ga(o1) if a € (6, 00).

On the other hand the maximum of g, (o) on [0y, 01] is attained at
Ok O O71:

Gol(oq) if a < opoy,
(3.8) 1@;2%q a(7) = {qa(ak) if « > 04,0

The lemma follows now from (3.6), (3.7) (3.8). O

Let us consider k,, as a function of a: k,(«). It is easy to see
that r,(«) is a decreasing function on the interval (0,0401) and
increasing one on the interval (o071, 00). So, its minimum is attained
at a = o0 and is equal to

o ()

Since for a = ¢} or a = o}

1 /04 O'k>
3.10 na==1—+—1),
( ) om, 2 (Uk + 01
we get the following conclusion:

THEOREM 3.2. The optimal choice of reqularization parameter o
with respect to sensivity of discrete problem in X, is

(311> ap = Umin(An>Umax(An)
and gives
1 1 1
opt __ — 5 -3
(3.12) R =5 (F(An)? + 5(A,)72)
Moreover, for any o € (07, 0%)
1
(3.13) Kna € {/’izpt, 3 (K(An) + “(An)_l)} J

and Kpo — K(A,) as o — 0 or a — 0.
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4 Convergence

Now, instead the discrete equation (1.3) for fixed n, we consider
the family {A,} of finite dimensional operators and corresponding
equations. For any n, let U’fz,an denote the regularized solution cor-
responding to @, = pmin(An)Omas(A,). We are going to consider a
convergence of Ui,an to ut when 0 — 0 and n depends on .

For our purposes it is now convenient to denote the singular system
for A,, by (0 j, ¥nj, ¥n ) indicating dependence on n. Moreover, let
(1, Py, @EJ) be the singular system for A.

Let us define in the space X two auxiliary sequences {vgn}, and
{v9 .} as follows:

o0

1 T\~
(4.1) 0, = (f5, 0@,
. ]2211@4‘0% J)¥
4.2 vfm = J fs,0i)p;.
(4.2) o ;M?Jran( )P

It is easy to see that v?, is a regularized solution of (1.1) with per-
turbed right hand side fs5 obtained via the Tikhonov method with the
regularization parameter equals a,,. Due to the known convergence
results for the Tikhonov method (cf. [4], [14]) we have

REMARK 4.1. If n =n(d) is such that

(4.3) limn(d) = oo and lim S 0
=0 =0 Omin (An(é) )
then
lim v =uT.
6—0 "

4.1  Method of truncated SVD with regularization

Let us consider the case when

(4.4) A, = QnA|x, and f, == Qnf,

where @), is the orthogonal projector of X onto Y, := span{%,- .
Un}, and X, := span{ @y, - -, pn} = A*Y,,. Then o, ; = p;, on,; =
Djs Ynj = V.
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The least squares solution of A,u, = f,5 with f,5 = Q.f5 is
denoted by u’. The resulting method is the truncated singular value
expansion. This method itself has regularization properties. Namely,
if ut € R(A*) then, according to Propositions 3.28, 3.29 in [4],

)
(45) = =0 (s + ).
fin
Now, let us apply to the above truncated SVD method, the Tikhonow
regularization with «,, chosen as (3.11), i.e. «, = pip,. Then

TA— v,‘ian given by (4.2). We are going to establish convergence

n,0n
of up || to u™ as 6 — 0 and n depends on proper way on 4.
For the case § = 0 Remark 4.1 gives

(4.6) lu™ — vq, ]| as n — oco.

Moreover, according to (4.1) and (4.2) for the exact f, we have

0 2 ~
Ve, — tna > = S < G ) (fa¢j)2.

2 2

j=n+1 \Hj T O H;
Since ) ,

ILL.

max 5 J S :un—i-l S ,Un-i-l7
n+1<j<o0 0 + o, Oy, U1
we get
Hnt1 4
(47) ||UOC7L - unaan — ||u ||
M1

Finally, taking into account Lemma 3.1 and Theorem 3.2

| tn,all J
(4'8) Hun,an - qu anH < 5"{21)1: —— < C .
’ | £ Vi,

From (4.6), (4.7), (4.23) if follows desired result:
LEMMA 4.1. If n =n(0) is such that

(4.9) limn(d) = oo and § = o(y/ 1 (0))

6—0

then
(4.10) lim [ud o — '] =0.
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REMARK 4.2. If {1;}52, is the non increasing sequence of sin-
gular values of A repeated according to their multiplicities, then the
following function

(4.11) n(d) :=max{n: p, >4d}
is an example of n(d) satisfying the assumption (4.9).

Indeed, if § — 0 then 7(d) — oco. Moreover,

6~ S\/5—>0 as 0 — 0.

N/

4.2 Convergence conditions

Let us take into account the discrete equation (1.3) with the fol-
lowing additional assumptions on space approximation:

(412) T'nPnUn = Un, and (pnvm Z)X = (UnvrnZ)Xn

Vv, € X, and Vz € X. From this assumption it follows that p,r, is
orthogonal projection and p} = r,, 1} = py.

Now, we want to establish conditions on A,, under which the rela-
tions similar to (4.9) guarantee convergence of regularized discrete
solutions.

In order to prove convergence of ufmn to u™, we will consider norm
behavior of each element appearing in the right hand side of the

equality below:
(4.13) ut — phuivan = (u" = va,) + (Va, — Phlln.an)+

+Ph(Una, — ui,an)'

LEMMA 4.2. Let the assumption (4.12) be satisfied. If
(4.14) [A*A = pp AL Anrn || = 0(Omin(An)),

then
(4.15) |1Vay, — Prtina, | — 0 as n — oo.
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PROOF. Let us denote B,, := p,A,r,. From the assumption (4.12)
it follows that the prolongation of regularized solution u,, ., satisfying
the equation (1.7) for the exact data and an arbitrary positive o has
the form

Prlina, = (BiB, +al) ' B f,.

Since A*A commutes with (A*A+ al)~! as well as B} B,, commutes
with (B} B, + al)™!, we can verify that for 2 € X

(4.16) (B:By +al)"'B:By(A*A — B:B,)(A*A + al)™\z =

(BB, +al) 'B:B,z — B:B,(A*A+al) 'z

If z := p,u, where u, is the generalized solution of (1.3) for the
exact data, then B,z = p,r,.f and pyuyo = (BB, + ol) ' Bip,r,f
and from (4.16)

(4.17) Prtine = BiB(A*A+al) 2+
+(B:B, +al) 'B:B,(A*A — BB,)(A*A+ al) 2.

On the other hand
(4.18) Vo — BiB(A*A+al) 'z =
= (A"A - B:B,)(A"A+al) 'z + (A*A+ ol ) A" A(u™ — pauy,).
It is known (cf. [4],[7]) that

(B By + )" BByl < 1,

[(A*A +al) tA*A <1
(44 +al) ) < -

Thus
(4'19> ”pnun,a - Uoz” <

1 * *
< NATA = BiBylllpnunl + [1(u™ = prun)|l

Let o = av,. Taking into account the assumption (4.14) and conver-
gence of p,u, tou™ asn — oo for the exact data and, in consequence,
uniformly boundedness of p,u, we get the desired conclusion. 0O
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THEOREM 4.3. Let the assumptions of Lemma 4.2 be satisfied. If
A = Omin(An) Omaz (An)
and n = n(6) is such that
(4.20) (lsi_r)% n(0) = oo and § = o(\/Tmin(An))
and Ui,an is reqularized discrete solution satisfying (1.7) then

(4.21) Jut = paud ., || — 0 as d — 0.

ProorF. From Remark 4.1 for § = 0 we have
(4.22) |ut — v, || — 0 as n — oo.

Moreover, due to Lemma 3.1

(423) ||un,an — ufz an” S 5,{?Lpt Hun,aH )
’ | full
From (3.9)
An)
opt | Tmaz(An)
/in’ Umzn(An)

Finally observe that
(424) ||un7an

Indeed, by (3.3) we get

N

< Junll.

s on it
_ - (fnﬂﬁmj) Un,j(fmwn,j) 0-721,]‘ <
- Z 2 2 > HunHHun,aHa
=L\ Ong Opj T @ Onj T

0'2 .
since <02”ia> < 1 for a > 0, which proves (4.24). By our approxi-

n,J
mation assumptions, |lu,|| and ﬁ are uniformly bounded.
n

Now, the theorem follows from (4.13) and Lemma 4.2. O
REMARK 4.3. The function

(4.25) n(d) == max{n: omin(An) >0}

is an example of n(0) satisfying the assumption (4.20) (cf. Remark
1.2).
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5 Conclusion

A number of a-priori and a-posteriori parameter choice rules is
known (cf. [4]) which all depend on the given data error bound §.
In real world examples such noise bound information is not always
available or reliable. Often it is necessary to consider alternative
heuristic parameter choice rules basing on the actual performance of
the regularization method under consideration and not depending on
0 explicitly. It must be emphasized, however, that parameter choice
rules not depending on § cannot provide a convergent regularization
method in the usual sense, i.e. cannot provide convergence of ufw
to ut as 0 — 0 and n — oo independently (cf [4], [8], [9], [15]).

In this paper we have shown that the method of Tikhonow regu-
larization applied to some finite dimensional approximation of (1.1)
with regularization parameter depending on A, but not depending
on § can give a sequence of regularized discrete solutions {uf , }
convergent to u™ under the assumption that n depends in a proper
way on ¢ and § — 0.
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