
Between the classical theorem of Young and
Convergence Theorem in Set–Valued Analysis

Agnieszka Ka lamajska ∗

We obtain a version of Young’s Theorem, where Young–like measures can
control discontinuous functions. It determines the weak limit of f(uν) in the
space of measures where f is (possibly) discontinuous scalar function, while
{uν} is a sequence of vector–valued functions, which is weakly convergent in
some Lp–space. The Representation Theorem we derive unifies the two well-
known theorems in nonlinear analysis: the classical Young’s theorem, where
continuity of f is assumed, and Convergence Theorem known in set–valued
analysis, where f may be discontinuous, but the sequence {uν} converges
strongly. Such approach is dictated by the wide range of discontinuous
problems arising in nonlinear PDE. The motivations and applications to
various convergence problems are discussed.

1 Introduction and statement of results

The theory of Young measures originated in 1937 when L.C. Young has proved the
following theorem ([68]):

Theorem 1.1 If I ⊆ R is an interval, f : Rm → R is continuous, and uν : I → Rm is
a sequence of measurable commonly bounded functions then there exists a subsequence
{uk} of {uν} such that the sequence f(uk) converges weakly ∗ in L∞(I) to the function
f given by

f(x) =
∫

Rm
f(λ)νx(dλ), (1)

where νx is a probabilistic measure on Rm defined for almost every x ∈ Ω.

The discovery that the weak limit of f(uk) can be represented as an integral given
by (1) turned out to be widely applicable in many disciplines of analysis such as calculus
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of variations, partial differential equations, optimal control theory, game theory, and
numerical analysis, see for instance [5, 7, 17, 48, 54, 53, 51, 57], and their references.

Later there were many generalizations of the theorem of Young. They go into
various directions. Let us mention a few of them.

1) The interval I in (1) is substituted by an arbitrary measurable subset of Rn,
the condition that the sequence {uν} is bounded is relaxed and one assumes that the
sequence {f(uν)} is weakly ∗ convergent in the space of measures, see e.g. [2, 6, 14,
15, 31, 39, 57, 66].

2) Instead of an arbitrary sequence {uν} one takes a sequence which satisfies some
additional constraints, for example uν ∈ M for every ν, where M is a submanifold of
Rm, or uν satisfies a given conservation law, which is expressed by the condition Puν =
0 where P is some differential operator, see e.g. [20, 21, 22, 36, 48, 47, 61, 62, 65, 63, 64].

3) f is a multifunction, see e. g. [1, 2].

4) Measures νx are defined on a completely regular topological space, see [5].

Our approach is different than each mentioned above. The following theorem is the
special case of Convergence Theorem which is well known in Set–Valued Analysis, see
e.g. [4, Chapter 7.2] (we use the notation given there recalling only that f#(y) denotes
the set of all accumulation points of f in y and coA is the convex hull of the set A).

Theorem 1.2 Let Ω ⊆ Rn be a compact subset equipped with a measure µ which
is absolutely continuous with respect to the Lebesgue measure on Ω, f : Rm → 2R

be a nontrivial set-valued map. Assume that for every x ∈ Dom(f) there exists a
neighborhood U of x such that the set f(U) is bounded in R.
Let us consider measurable functions uν : Ω → Rm and wν : Ω → R such that for
almost all x ∈ Ω we have wν(x) ∈ f(uν(x)), moreover
i) the sequence {uν} converges almost everywhere to a function u,
ii) wν ∈ L1(Ω, µ) and the sequence {wν} is convergent weakly in L1(Ω, µ) to a function
w ∈ L1(Ω, µ).

Then for almost all x ∈ Ω we have w(x) ∈ cof#(u(x)).

Our goal is to relax assumptions i) and ii) in the formulation of Convergence Theo-
rem. Also the measure µ does not need to be absolutely continuous with respect to the
Lebesque’s measure. Instead we impose some additional assumptions on the multifunc-
tion f (see Theorem 8.1 and Remark 8.2 in Section 8). In particular for single–valued
f we obtain a version of Young’s Theorem which describes limits of sequences f(uν) as
ν → ∞ when the sequence {uν} is weakly convergent in some Lp–type space and the
sequence {f(uν)} is weakly ∗ convergent in the space of measures as ν → ∞. If we
assume that f is continuous we obtain the general version of Young’s Theorem proved
by Alibert and Bouchitte in [2]. If f is discontinuous (and possibly set–valued) but
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the sequence {uν} converges strongly in L1(Ω, µ), the limit of f(uν) is described by
the Convergence Theorem. Hence our approach unifies two famous theorems: Young’s
Theorem and Convergence Theorem.

Let us briefly describe what our main results are.

To abbreviate let us introduce the following two conditions (with the notation in-
troduced in the next section).

Condition A.
i) The space Rm is compactified with the help of the finite number of disjoint Borel
subsets A1, . . . , Ak, which will be called compactification bricks. This means that Rm =
∪ki=1Ai, each Ai is compactified by some Mi with homeomorphism Φi : Ai → Mi such
that Φ(Ai) = M0

i is dense in Mi. We assume that Mi ⊆ RN for some N ∈ N and
M∗

i := Mi \M0
i is closed for every i ∈ {1, . . . , k}.

ii) For every i ∈ {1, . . . , k} the set Ai is equipped with a density function: continuous
function gi : Ai → (0,+∞) such that g(λ) ≥ α for every λ ∈ ∪i(Ai ∩ ∂Ai) and some
α ∈ (0,+∞), where g :=

∑k
i=1 χAigi.

Condition B.
Ω ⊆ Rn is compact, µ is a Radon measure on Ω and uν : Ω → Rm is a sequence of
µ–measurable functions such that
i) supν

∫
Rm g(uν)µ(dx) <∞ where g is the same as in Condition A,

ii) the sequence {uν} satisfies the tightness condition

lim
r→∞

(lim sup
ν→∞

µ({x : |uν(x)| > r})) = 0 (2)

and generates the classical Young measure {µx}x∈Ω ∈ P(Ω,Rm, µ).

Suppose that Conditions A and B are satisfied. The Banach space

F := {f : Rm → R : (f/gi) ◦ Φ−1 ∈ C(Mi) for i = 1, . . . , k} (3)

with the norm

‖f‖F =
k∑
i=1

‖(f/gi) ◦ Φ−1
i ‖∞,Mi

will be called the space of admissible functions associated to the compact decomposition
of Rm into bricks {Ai}i=1,...,k with densities {gi}i=1,...,k. In (3) we assume that the
function fi := (f/gi) ◦Φ−1

i is the restriction of some continuous function defined on Mi

to M0
i . As this function is uniquely defined we will denote it by the same expression:

fi.

Let us state our main result.

Theorem 1.3 (Representation Theorem) Suppose that Conditions A and B are
satisfied and f ∈ F . Then for every i ∈ {1, . . . , k} there exist
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i) a subsequence of {uν} (denoted by the same expression),

ii) measures mi,mi ∈ M(Ω), such that mi is absolutely continuous with respect to µ
and suppmi ⊆ suppµ,

iii) families of probability measures {νix}x∈Ω ∈ P(Ω, ∂Ai ∩ Ai, µ) and {νix}x∈Ω ∈
P(Ω,M∗

i , µ)

such that the subsequence {f(uν(x))} converges weakly ∗ in the space of measures to
the measure represented by

∫
∪ki=1intAi

f(λ)µx(dλ)µ(dx) +
k∑
i=1

∫
∂Ai∩Ai

f(λ)νix(dλ)mi(dx) +
k∑
i=1

∫
M∗i

fi(λ)νix(dλ)mi(dx).

(4)

The paper is organized as follows. After preliminary results introduced in Section 2
and some abstract results contained in Section 3 we give the proof of our Representation
Theorem (in Section 4). Then in Section 5 we investigate some properties of Young–
like measures from Theorem 1.3, namely we ask about its supports. In Section 6 we
explain when can we expect that the sequence {f(uν)} is weakly convergent in L1(Ω),
not only in the space of measures. Some illustrations and relations with some other
known results are presented in Section 7. Links between our Representation Theorem
and Convergence Theorem are discussed in Section 8. Finally, in Section 9 we indicate
on some possible applications of our Representation Theorem to various problems in
PDE’s.

The most interesting problems to apply our measures in are those which apply
directly to PDE’s with discontinuous constraints. Such equations appear naturally in
many physical models, such as the Savage–Hutter model of the granular flow (see e.g.
[24, 28, 30, 32, 33, 37], the phase flow in porus medias with discontinuous flux (flow)
function (see e.g. [35, 43, 55]), hysteresis problems (that is history dependent flow
properties), see e.g. [27, 45], traffic flow analysis, see e.g. [42]), debonding of adhesive
joints, the delimination of multilayered plates, the ultimate strength of fiber reinforced
structures or the nonstationary heat conduction equation, see e.g. [50, 46] and their
references, or dislocations of cracks in geophysics, see e.g. [49], see also [23] for some
other related results and applications.

The techniques used here are strongly based on those described in be paper by
Alibert Bouchitte [2]. Also the idea to compactify Rn comes from reading of this
paper.

I have a hope that the results presented here will be usefull in some discontinuous
problems in nonlinear PDE’s and in Optimal Control Theory.
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2 Preliminaries and notation

Let A be a subset of the Euclidean space. We use the standard notation: C(A), Cb(A),
C0(A) to denote continuous, continuous bounded, and continuous vanishing at infinity
(if A is unbounded) functions on A. Open ball with center a and radius R is denoted
by B(a,R). If a = 0 then we omit a in our notation. The closure of the set S ⊆ RK is
denoted by S.

Let S ⊆ RK be the Borel subset of the Euclidean space. By M(S) we denote
the space of Radon measures on S, while P(S) is its subset consisting of probability
measures. If µ ∈M(S) and f is µ–measurable, we denote (f, µ) :=

∫
S f(λ)µ(dλ).

If µ ∈ M(S) and K ⊆ S is the measurable subset of S, by µ 6 K we mean the
restriction of µ to K, i. e. (µ 6 K)(A) = µ(A ∩K).

If C ⊆ RM is a Borel subset, φ : S → C is a Borel–measurable mapping and
µ ∈ M(S), by φ∗(µ) we denote the pushforward of the measure µ to M(C), that is
(φ∗µ)(K) = µ(φ−1(K)) if K is the Borel subset of C.

Arrows →, ⇀,
∗
⇀ are used to denote the strong, weak, and weak ∗ convergence

respectively in the given topology.

Recall that the compact topological space M is the compactification of the topolog-
ical space A if there is the homeomorphism Φ : A → M0 ⊆ M such that Φ(A) = M0

and M0 is dense in M (see e.g. [41]).

We will consider such compactifications only that M∗ := M \M0 is closed in RN .
Then we will say that A is associated to the triple (Φ,M0,M).

By C(Â) we denote the space of those continuous functions f : A → R that
f ◦Φ−1 : M0 → R is the restriction of some F ∈ C(M) to M0. Since M0 is dense in M ,
it follows that F is uniquely determined by f . Moreover, every f ∈ C(Â) is bounded.

If S ⊆ Rk is closed, by L∞w∗(Ω,M(S), µ) we denote the set of families {µx}x∈Ω of
Radon measures on S which are weakly µ–measurable in the sense of Pettis i.e. for
every f ∈ C(S) the mapping x 7→

∫
S f(λ)µx(dλ) is µ–measurable (see e.g. Definition

1 of Section V.4 in [67]).

In general the symbol P(Ω, S, µ) stands for the set of families {µx}x∈Ω of Radon
probability measures on the closed subset S of some Euclidean space which are weakly
µ–measurable in the sense of Pettis.

The same expression will be used for the set of families of Radon probability mea-
sures defined on Borel, but not necessarily closed subsets S = Ai ∩ ∂Ai of Rm, where
Ai is one of bricks of compactification of Rm in Condition A. Then by weak measur-
ability of {νx}x∈Ω ∈ P(Ω, S, µ) we will mean that the mapping x 7→

∫
S f(λ)νx(dλ) is

µ–measurable for every f ∈ C(Âi).
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At the end of this section we recall one version of the classical theorem of Young.
Such formulation can be easily deduced from statements given in [6, 31], see also [5,
Lemma 4.11 and Corollary 5.4] and [2], and is known to the specialists. For complete-
ness of our arguments we include the proof in Section 3.

Theorem 2.1 Let uν : Ω→ Rm be a sequence of µ–measurable functions.

1) There exists a subsequence of {uν}ν∈N still denoted by the same expression and a
family of positive measures {µx}x∈Ω ∈ L∞w∗(Ω,Rm, µ) such that

i) ‖µx‖M(Rm) :=
∫
Rm µx(dλ) ≤ 1 for µ almost all x ∈ Ω,

ii) f(uν)
∗
⇀ 〈f, µx〉 as ν →∞, in L∞(Ω, µ), for every f ∈ C0(Rm).

2) The following conditions are equivalent:

i) ‖µx‖M(Rm) = 1 for µ almost all x ∈ Ω.

ii) The sequence {uν}ν∈N satisfies the tightness condition: lim supν∈N µ({x ∈ Ω :
|uν(x)| ≥ r}) r→∞→ 0.

iii) For every measurable subset Ω
′ ⊆ Ω and every continuous function f : Rm →

R such that the sequence {f(uν)} is sequentially weakly relatively compact
in L1(Ω

′
, µ), we have f(uν)

ν→∞
⇀ (f, µx) in L1(Ω

′
, µ).

Recall that the sequence {uν} generates the Young measure {µx}x∈Ω ∈ P(Ω,Rm, µ)
if for every f ∈ C0(Rm) the sequence {f(uν)} converges weakly ∗ in L∞(Ω, µ) to the
function f(x) =

∫
Rm f(λ)µx(dλ).

3 Four abstract lemmas

Let us assume that the following conditions are satisfied.

1) A ⊆ Rm is the Borel subset associated to the triple (Φ,M0,M) where M,M0 ⊆ RN ,
and M∗ = M \M0 is a closed subset of RN .

2) uν : Ω → Rm is the given sequence of µ–measurable functions, and g : A → R+ is
the continuous function such that supν

∫
{x:uν(x)∈A} g(uν(x))µ(dx) <∞.

Our goal now is to prove the following four lemmas. Three of them (Lemmas 3.1
3.2 and 3.4) will be crucial in the proof of Theorem 1.3. Lemma 3.3 will play a role
later. Their proofs are strongly based on arguments of Alibert and Bouchitte used in
[2], where a variant of Young’s theorem is obtained.
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Lemma 3.1 Define the sequence of measures {Lν}ν∈N on Ω×M by the expression

(F,Lν) :=
∫
{x:uν(x)∈A}

F (x,Φ(uν(x)))g(uν(x))µ(dx), where F ∈ C(Ω×M). (5)

Then there exists a subsequence of {Lν}, still denoted by the same expression, a measure
L ∈ M(Ω ×M), a family of probability measures {ν̃x} ∈ P(Ω,M, µ), and m̃ ∈ M(Ω)
such that

Lν
∗
⇀ L in M(Ω×M), (6)

(F,L) =
∫

Ω

∫
M
F (x, λ)ν̃x(dλ))m̃(dx), where F ∈ C(Ω×M), (7)

supp m̃ ⊆ suppµ. (8)

Lemma 3.2 Let m̃ and ν̃x be as in Lemma 3.1, and let m̃ = p(x)µ + m̃s be the
Lebesgue’s–Nikodym decomposition of m̃ with respect to µ. Then ν̃x(M

∗) = 1 for m̃s

almost all x ∈ Ω.

Lemma 3.3 Let m̃ and ν̃x be as in Lemma 3.1, and let K ⊆ M be a closed subset.
Let f ∈ C(A) be such that f ≥ 0 and (f/g) ◦Φ−1 : M0 → R extends to the continuous
function on M . The following conditions are equivalent

i) There exists a sequence {U r}r∈N of open subsets in M such that
⋂
r U

r = K, U
r+1 ⊆

U r for every r ∈ N and

Ar = lim supν→∞

∫
{x:uν(x)∈A,Φ(uν(x))∈Ur}

f(uν(x))µ(dx)
r→∞→ 0 (9)

ii)
∫
K(f/g) ◦ Φ−1(λ)ν̃x(dλ) = 0 for m̃ almost all x ∈ Ω.

Lemma 3.4 Let m̃ and ν̃x be as in Lemma 3.1, and let K ⊆ M be a closed subset.
The following conditions are equivalent

i) There exists a sequence {U r}r∈N of open subsets in M such that
⋂
r U

r = K, U
r+1 ⊆

U r for every r ∈ N and

Ar = lim supν→∞

∫
{x:uν(x)∈A,Φ(uν(x))∈Ur}

g(uν(x))µ(dx)
r→∞→ 0 (10)

ii) ν̃x(K) = 0 for m̃–almost all x ∈ Ω.
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Proofs of our lemmas will be preceded by the sequence of remarks and one corollary.

Remark 3.1 It is easy to verify that if u : Ω → Rm is µ–measurable, A is a Borel
subset of Rm, and f ∈ C(A), then the function f(u(x))χu(x)∈A is µ–measurable.

Remark 3.2 Note that the function f in Lemma 3.3 satisfies f(λ) ≤ g(λ)‖f/g‖L∞(A).
Hence condition (10) is stronger than (9).

Corollary 3.1 Let C be the closed subset of M , ε > 0, Cε = {λ ∈ RN : dist(λ,C) < ε},
and assume that

φ(ε) = lim
ν→∞

∫
{x:uν(x)∈A,Φ(uν(x)) 6∈Cε}

g(uν(x))µ(dx)
ε→0→ 0. (11)

Then supp ν̃x ⊆ C for µ almost all x ∈ Ω.

Proof. Since the function φ(ε) is nonnegative and decreasing with respect to ε ∈
[0,∞), it follows that φ(ε) ≡ 0. Take an arbitrary ε0 > 0, K = M \Cε0 and Uε = M \Cε

where ε < ε0, and let ε → ε0. Then Lemma 3.4 implies ν̃x(M \ Cε0) = 0, hence
supp ν̃x ⊆ Cε0 . Since instead of ε0 we can take an arbitrary smaller number, we have
supp ν̃x ⊆ ∩ε<ε0Cε = C. 2

Remark 3.3 Take A = Rm, g ≡ 1, let K be a closed subset of Rm, and C = Φ(K).
Then a condition (11) is equivalent to the fact that uν → K in the measure µ:
limν→∞ µ({x ∈ Ω : uν(x) 6∈ U}) = 0, where U is an arbitrary neighbourhood of K
in Rm.

Remark 3.4 In general it may happen that the set C in Corollary 3.1 lies in the
boundary of the compactification of A. Let for example A = Rm, g ≡ 1, let Φ : Rm →
Sm be the stereographic projection, C = (0, . . . , 0, 1) be the pole identified with the
point at infinity. Then condition (11) reads as: limν→∞ µ{x ∈ Ω : |uν(x)| < K} = 0,
and expresses the fact that the sequence {uν} concentrates at infinity.

Remark 3.5 Take A = Rm, g ≡ 1 and K = M∗ in Lemma 3.4. Then the condition
(10) is equivalent to the classical tightness condition:

lim sup
ν→∞

µ({x : |uν(x)| > r}) r→∞→ 0, (12)

no matter what kind of compactification of Rm we use.
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Remark 3.6 If the sequence {g(uν)χuν∈A}ν∈N is equintegrable with respect to the
measure µ, C is the same as in Corollary 3.1 and for an arbitrary ε > 0, we have

lim
ε→0

( lim
ν→∞

µ({x ∈ Ω : uν(x) ∈ A,Φ(uν(x)) 6∈ Cε})) = 0, (13)

then condition (11) is satisfied.

Proof of Lemma 3.1. The existence of the measure L satisfying (6) follows from
Banach–Alaoglu’s theorem (see e.g. [59], page 131), as the space of measures on Ω×M
is dual to the separable space C(Ω×M) and the sequence of measures Lν is bounded.

Let m̃ be the projection of L onto M(Ω), that is (Φ, m̃) =
∫

Ω Φ(x)L(dx, dλ) for
Φ ∈ C(Ω), By the slicing measure argument ([56]) there exists the family of positive
measures {ν̃x}x∈Ω ∈ L∞w∗(Ω,M(M), µ) such that the representation formula (7) holds.
We will show that ν̃x are probability measures m̃ almost everywhere. Take F (x, λ) =
h(x)f(x, λ) where h ∈ C(Ω), substitute it to (5), and set

f ν(x) = f(x,Φ(uν(x)))g(uν(x))χ{uν(x)∈A}, f(x) =
∫
M
f(x, λ)ν̃x(dλ).

Since (F,Lν) =
∫

Ω h(x)f ν(x)µ(dx), (F,L) =
∫

Ω h(x)f(x)µ(dx) and h was taken arbi-
trary, we deduce from (6) that

f ν(x)µ(dx)
∗
⇀ fm̃(dx) (14)

in M(Ω). In particular for f ≡ 1, we get

g(uν(x))χ{uν(x)∈A}µ(dx)
∗
⇀ (

∫
M

1ν̃x(dλ))m̃(dx). (15)

On the other hand, since m̃ is the projection, if h ∈ C(Ω), we have∫
Ω
h(x)m̃(dx) = lim

ν→∞

∫
Ω∩{uν∈A}

h(x)g(uν(x))µ(dx),

which by (15) is equal to
∫

Ω h(x)(
∫
M λν̃x(dλ))m̃(dx). This implies that ν̃x(M) = 1, for

m̃ almost all x ∈ Ω.

To verify that (8) holds it suffices to show that if K is an open subset of Ω and
µ(K) = 0 then m̃(K) = 0. Let πν be the projection of Lν onto M(Ω). Then

πν(K) =
∫
{uν∈A}

χKg(uν(x))µ(dx) = 0,

and πν
∗
⇀ m̃ inM(Ω). Thus 0 = lim infν→∞ π

ν(K) ≥ m̃(K) (see e. g. [18, Theorem 1,
Section 1.9]) and m̃(K) = 0. That ends the proof of the lemma. 2

Proof of the Lemma 3.2. Let F (λ) := dist(λ,M∗) ∈ C(M).
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At first we note that the sequence {hν} defined by hν(x) = F (Φ(uν(x)))g(uν(x)) if
uν(x) ∈ A and hν(x) = 0 otherwise is uniformly integrable in L1(Ω, µ).

Essentially, let A∗ε = {λ ∈ A : dist(Φ(λ),M∗) < ε}. Then for every K ∈ R+ we
have

∫
{|hν(x)|>K} |hν(x)|µ(dx) =∫
{|hν(x)|>K}∩{uν(x)∈A∗ε}

|hν(x)|µ(dx) +
∫
{|hν(x)|>K}∩{uν(x)∈A\A∗ε}

|hν(x)|µ(dx).

The first term is not larger than εsupν
∫
uν∈A g(uν(x))µ(dx). The second one is zero if

we take K > diamMsupλ∈A\A∗ε |g(λ)| (this supremum is finite, because the set A \ A∗ε
is compact in Rm).

Hence there exists h ∈ L1(Ω, µ) such that

hν(x)µ(dx)
∗
⇀ hµ(dx) in M(Ω). (16)

On the other hand, according to Lemma 3.1, we have for arbitrary φ ∈ C(Ω),∫
Ω
φ(x)hν(x)µ(dx) = (φF, Lν)→ (φF, L) =

∫
Ω
φ(x)(

∫
M
F (λ)ν̃x(dλ))m̃(dx) =

=
∫

Ω
φ(x)F (x)p(x)µ(dx) +

∫
Ω
φ(x)F (x)m̃s(dx),

where F (x) =
∫
M F (λ)ν̃x(dλ). Combining this with (16) we observe that the second

term above vanishes, so F (x) = 0 for m̃s almost all x. Since F > 0 on M0, we get
ν̃x(M

0) = 0 for m̃s almost all x, and we are done. 2

Proof of Lemma 3.3. Let hn : M → [0, 1] be such that hn(λ) ≡ 1 if λ ∈ Un+1
,

hn(λ) ≡ 0 outside Un, and 0 < hn < 1 on the remaining set. Define Hν,n(x) =
hn(Φ(uν(x))) if uν(x) ∈ A and Hν,n(x) = 0 otherwise. To abbreviate let us denote
F = f/g ◦ Φ−1. Using the diagonal procedure, after extracting a subsequence from
{uν} we can assume that there exists a subsequence of Radon measures µn ∈ M(Ω)
such that

Hn,ν(x)f(uν(x))χuν(x)∈Aµ(dx)
∗
⇀ µn as ν →∞

in the space of measures. According to Lemma 3.1, we have

µn(dx) =
∫
M
hn(λ)F (λ)ν̃x(dλ)m̃(dx),

and as 1 ≥ hn and hn ≡ 1 on K, we see that

An = lim sup
ν→∞

∫
{uν∈A,Φ(uν)∈Un}

f(uν(x))µ(dx) ≥ ‖µn‖ ≥
∫

Ω

∫
K
F (λ)ν̃x(dλ)m̃(dx).

Therefore, if the condition i) is satisfied, we have
∫
K F (λ)ν̃x(dλ) = 0 for m̃ almost all

x ∈ Ω.
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On the other hand, as hn(λ) = 1 on U
n+1

, and 1 ≥ hn ≥ 0, we see that∫
Ω

∫
M
hn−1(λ)F (λ)ν̃x(dλ)m̃(dx) = lim sup

ν→∞

∫
{uν∈A}

hn−1(Φ(uν(x))f(uν(x))µ(dx) ≥

≥ An ≥
∫

Ω

∫
K
F (λ)ν̃x(dλ)m̃(dx).

Applying the Lebesgue’s Dominated Convergence Theorem (as hn → χK pointwise),
we see that condition ii) implies

lim
n→∞

An =
∫

Ω

∫
K
F (λ)ν̃x(dλ)m̃(dx) = 0.

The lemma is proved. 2

Proof of Lemma 3.4 We take f = g in Lemma 3.3. 2

At the end of this section, for completeness of our arguments, we give the proof of
Theorem 2.1. The proof we present is a slight modification of that given in [6, 31], and
[2] and uses our three abstract lemmas. This is only one of the possible ways of proving
Theorem 2.1. One could also use more direct methods based on the papers of Ball [6]
and Hungerbühler [31].

Proof of Theorem 2.1.

“1):”We use similar arguments as in [2]. Let us compactify Rm to the sphere Sm

by adding one point at infinity with the help of the stereographic projection. We take
g ≡ 1 and A = Rm.

Let f ∈ C0(Rm). According to Lemma 3.1 the measure f(uν(x))µ(dx) weakly ∗
converges in the space of measures to the measure f(x)m̃(dx) where

f(x) =
∫
Sm
f(Φ−1(λ))ν̃x(dλ).

Since f ◦Φ−1 vanishes at the north pole {∗} of the sphere, after changing variables we
obtain

f(x) =
∫

Rm
f(λ)νx(dλ),

where νx = (Φ−1)∗(ν̃x 6 (Sm \ {∗})) is the pushforward of the measure ν̃x restricted to
Sm \ {∗}.

At the same time the sequence {f(uν)} is weakly convergent in L1(Ω, µ) (even
weakly ∗ in L∞(Ω, µ)) to some function F . This implies that in Lemma 3.2 (f, νx) = 0
ms almost everywhere and (f, νx)p(x) = F (x) for µ almost all x. Set µx = p(x)νx. As
(f, µx) is the weak ∗ limit of f(uν) in L∞(Ω, µ), we have

lim sup
ν→∞

‖f(uν)‖L∞(Ω,µ) ≥ ‖(f, µx)‖L∞(Ω,µ).
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In particular (f, µx) ≤ 1 if f ≤ 1 µ almost everywhere, and ‖µx‖M(Rm) ≤ 1 for µ almost
all x.

“2):”; “i)=⇒ ii)”: We forward arguments from [31] and suppose by contradiction
that after passing to a subsequence we have

µ({|ui| ≥ i}) > ε

for some ε > 0 and every i ∈ N. Thus

µ(Ω)− ε > µ(Ω)− µ({|ui| ≥ i}) =
∫
{Ω∩{|ui|<i}}

µ(dx) ≥
∫

Ω
f r(ui)µ(dx),

where r ∈ N, r ≤ i, and f r is the continuous function such that f r(λ) ≡ 1 for |λ| < r/2,
f r(λ) ≡ 0 for |λ| ≥ r and 0 ≤ f r ≤ 1 elsewhere.

After letting i→∞ and using part 1) we deduce that

µ(Ω)− ε >
∫

Ω
(f r, µx)µ(dx).

Next we let r →∞, apply the Lebegue’s Dominated Convergence Theorem twice and
verify that the right hand side of the above inequality tends to

∫
Ω ‖µx‖M(Rm)µ(dx).

This implies

µ(Ω) >
∫

Ω
‖µx‖M(Rm)µ(dx),

what contradicts the assumption i).

“ii)=⇒ iii)”: We may assume that Ω
′

= Ω. Let f satisfy the assumption iii). Take
f r ∈ C0(Rm) such that f r ≡ f on B(r) ⊆ Rm and |f r| ≤ |f |. Let us decompose

f(uν)µ = f r(uν)µ+ (f − f r)(uν)µ.

According to part 1), after extracting the subsequence {uν} the first term converges
weakly ∗ in the space of measures to µr = (f r, µx)µ. At the same time the second one
converges to some measure νr. Since {f(uν)} is weakly compact in L1(Ω, µ) and the
tightness condition ii) is satisfied, we easily check that ‖νr‖M(Rm) → 0, as r → ∞.
On the other hand, by the Lebesque’s Dominated Convergence Theorem we get µr →
(f, µx)µ as r →∞. Thus

µ = ∗ lim
ν→∞

f(uν)µ = µr + νr
r→∞→ (f, µx)µ.

Since by assumption the sequence {f(uν)} is weakly convergent in L1(Ω, µ), its limit
must be equal to (f, µx).

“iii)=⇒ i)” We substitute f ≡ 1 in iii). Then {f(uν)} converges weakly in L1(Ω, µ)
to (1, µx) = ‖µx‖M(Rm), and f(uν) ≡ 1. Hence ‖µx‖M(Rm) = 1 for µ almost all x.

That ends the proof of the theorem. 2
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4 Proof of the Representation Theorem

Our goal now is to give the proof of Theorem 1.3. The proof will be based on the
following lemma.

Lemma 4.1 Assume that

1) A ⊆ Rm is the Borel subset associated to the triple (Φ,M0,M) where M,M0 ⊆ RN ,
and M∗ = M \M0 is closed subset of RN .

2) uν : Ω → Rm is a given sequence of µ–measurable functions, which satisfy the
tightness condition (12) and generate the Young measure {µx}x∈Ω ∈ P(Ω,Rm, µ).

3) g : A → R+ is the continuous function such that supν
∫
{x:uν(x)∈A} g(uν(x))µ(dx) <

∞.

Then the following statements hold true.

i) If M̃0 = Φ(intA), and f ∈ C(M) is such that F ∈ C0(Rm), where F (λ) =
f(Φ(λ))g(λ) if λ ∈ A and F (λ) = 0 otherwise, we have∫

intA
f(Φ(λ))g(λ)µx(dλ) = p(x)

∫
M̃0

f(λ)ν̃x(dλ), (17)

for µ almost all x ∈ Ω, where p(x) is the same as in assertion ii) of Lemma 3.1.

ii) Let ν̃0
x = ν̃x 6 M̃

0 ∈ M(M̃0), µA,x = g(λ)χ{λ∈intA}µx(dλ) ∈ M(intA). Then for µ
almost all x ∈ Ω, we have

Φ∗(µA,x) = p(x)ν̃0
x. (18)

Proof. “i):” Take F (λ) = f(Φ(λ))g(λ) if λ ∈ A and F (λ) = 0 otherwise, and
assume that F ∈ C0(Rm). Then F is supported in A, and vanishes at infinity and on
∂A. Applying the theorem of Young we get

F (uν(x)) ⇀ F (x) =
∫

Rm
F (λ)µx(dλ) =

∫
intA

f(Φ(λ))g(λ)µx(dλ) in L1(Ω, µ).

Hence F (uν(x))µ(dx)
∗
⇀ F (x)µ(dx) in M(Ω). According to Lemma 3.2,

F (x)µ = (f, ν̃x)m̃ = (f, ν̃x)p(x)µ+ (f, ν̃x)m̃s.

Since f vanishes on M∗, which is the support of ν̃x for m̃s almost all x, it follows
that the second term of the above decomposition vanishes. Note also that f ≡ 0 on
M1 = M \ Φ(intA). Hence (f, ν̃x) =

∫
M̃0 f(λ)ν̃x(dλ).
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“ii):” It suffices to note that the left hand side of (17) reads as∫
intA

f ◦ Φ(λ)µA,x(dλ) = (f ◦ Φ, µA,x) = (f,Φ∗(µA,x)),

while the right hand side of (17) reads as (f, p(x)ν̃0
x). Now the assertion follows from

the fact that if U ⊆ RN is an open set, ν1, ν2 ∈ M(U) and (f, ν1) = (f, ν2) for every
f ∈ C(U) such that f ≡ 0 on ∂U then ν1 ≡ ν2. In our case U = M̃0. 2

Now we are in the position to prove Theorem 1.3.

Proof of Theorem 1.3. We may assume that f does not vanish on one of the
bricks: A = Ai of compactification of Rm only. To abbreviate we will omit the index
“i” in this part of the proof.

Let uν(x) ∈ A. We have

f(uν(x)) =
f

g
(uν(x))g(uν(x)) = F (Φ(uν(x))g(uν(x)),

where F = (f/g) ◦ Φ−1. According to Lemma 3.1, we have (as f = fχ{λ∈A})

f(uν(x))µ(dx)
∗
⇀
∫
M
F (λ)ν̃x(dλ)m̃(dx) = A, (19)

where m̃ and {ν̃x}x∈Ω are the same as in Lemma 3.1. Using the Lebesgue–Nikodym’s
decomposition of m̃ with respect to µ as in Lemma 3.2 we verify that

A =
∫
M
F (λ)ν̃x(dλ)p(x)µ(dx) +

∫
M∗

F (λ)ν̃x(dλ)m̃s(dx).

Since the first integral is the sum of two: the one over M̃0 = Φ(intA) and the second
over M1 = M \ Φ(intA), we derive from Lemma 4.1 that

A =
∫

intA
f(λ)µx(dλ)µ(dx) +

∫
M1

F (λ)ν̃x(dλ)p(x)µ(dx) +

+
∫
M∗

F (λ)ν̃x(dλ)m̃s(dx) = A1 +A2 +A3.

Decomposing further M1 = M∗ ∪ (M1 \M∗), and recalling that m̃ = p(x)µ + m̃s, we
see that the last two integrands sum up to∫

M1\M∗
F (λ)ν̃x(dλ)p(x)µ(dx) +

∫
M∗

F (λ)ν̃x(dλ)m̃(dx) = B1 + B2. (20)

Let h(x) = ν̃x(M
∗), Ω1 = {x ∈ Ω : h(x) 6= 0}, and choose y ∈ M∗. Then the second

term in (20) can be modified to

B2 =
∫
M∗

F (λ)νx(dλ)m(dx), (21)
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where νx is such that (F, νx) = 1
ν̃x(M∗)

∫
M∗ F (λ)ν̃x(dλ) for x ∈ Ω1 and (F, νx) = F (y)

otherwise, and m(dx) = h(x)m̃(dx).

Since M1 \M∗ = Φ(∂A ∩ A), after the change of variables in B1 we derive

B1 =
∫
∂A∩A

f

g
(λ)(Φ−1)∗(ν̃x(dλ))p(x)µ.

Let

w(x) =
∫
∂A∩A

1

g(λ)
(Φ−1)∗(ν̃x(dλ)) =

∫
M1\M∗

1

g(Φ−1(λ))
ν̃x(dλ),

and q(x) = w(x)p(x). Since we assume that g(λ) > α if λ ∈ ∂A∩A, it follows that w(x)
cannot be infinite. Choose an arbitrary a ∈ ∂A∩A, set Ω2 = {x ∈ Ω : ν̃x(∂M \M∗) >
0}, and define the measure νx by

νx =
1

w(x)

1

g(λ)
(Φ−1)∗((ν̃x 6 (M1 \M∗))(dλ)), if x ∈ Ω2, (22)

and νx = δa otherwise. Then

B1 =
∫
∂A∩A

f(λ)νx(dλ)q(x)µ.

That ends the proof of the theorem. 2

5 On supports of Young–like measures

In this section we will prove the following theorem which deals with supports of mea-
sures appearing in Theorem 1.3.

Theorem 5.1 Suppose that Conditions A and B are satisfied. Let i ∈ {1, . . . , k} and
assume further that K ⊆Mi is a closed subset such that there exists a sequence of open

subsets in Mi: {U r}r∈N such that ∩rU r = K, U
r+1 ⊆ U r for every m ∈ N and

Ar := lim sup
ν→∞

∫
{x:uν(x)∈Ai,Φi(uν(x))∈Ur}

gi(u
ν(x))µ(dx)

r→∞→ 0. (23)

Let mi, mi, {νix}x∈Ω, {νix}x∈Ω be as in Theorem 1.3.

Then we have.

i) supp νix, suppµx ⊆ Φ−1
i (M0

i \ K) for µ–almost every x, and suppνix ⊆ M∗
i \ K for

mi–almost every x.
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ii) Let M∗
i = M∗

i,∞ ∪M∗
i,b where

M∗
i,∞ = {m ∈M∗

i : if mk ∈M0
i ,mk → m as k →∞ then

|g(Φ−1
i (mk))| → ∞ as k →∞},

M∗
i,b = M∗

i \M∗
i,∞,

and let mi = qi(x)µ+mi
s be the Lebesgue’s–Nikodym decomposition of the measure

mi with respect to µ. Then suppνix ⊆M∗
i,∞ for ms almost every x ∈ Ω.

Proof. To abbreviate we will omit an index “i” in our notation.

“i):” Let A = Ai and ν̃x be the measure from Lemma 3.1. Then according to
Lemma 3.4 we have suppν̃x ⊆ M \ K. Now the assertion follows from formulae (21)
and (22) used to define measures νx and νx and from Lemma 4.1.

“ii):” Let F (λ) = g(λ)dist(Φ(λ),M∗
∞) if λ ∈ A and F (λ) = 0 if λ 6 ∈A. According

to the Theorem 1.3, after extracting the subsequence, we obtain F (uν)
∗
⇀∫

intA
F (λ)µx(dλ)µ(dx) +

∫
∂A∩A

F (λ)νx(λ)m(dx) +
∫
M∗

dist(τ,M∗
∞)νx(dτ)m(dx)

in the space of measures. It suffices to prove that the singular part of the above measure
(with respect to µ), equal to

(
∫
M∗

dist(τ,M∗
∞)νx(dτ))ms(dx)

vanishes. This will follow from the fact that the sequence F (uν) is weakly compact in
L1(Ω, µ). To prove this, according to the Dunford–Pettis criterion it suffices to show
that

Ak = lim sup
ν→∞

∫
{|F (uν)|>k}

|F (uν(x))|µ(dx)
k→∞→ 0.

Define the following sets:

Dν = {x : |F (uν(x))| > k},
Cν = {x : |F (uν(x))| > k, dist(Φ(uν(x)),M∗

∞) < ε},
Eν = {x : |F (uν(x))| > k, dist(Φ(uν(x)),M∗

∞) ≥ ε},

and let us decompose
∫
Dν =

∫
Cν +

∫
Eν . Then the first integral is not bigger than

ε lim sup
ν→∞

∫
uν∈A

|g(uν(x))|µ(dx),

while the second one is zero if we take k large enough. To see this it suffices to show
that Eν = ∅ if k is large enough. Let

Aε = {λ ∈ A : dist(Φ(λ),M∗
∞) ≥ ε}.
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We will show that there exists a constant Cε such that

|g(λ)| ≤ Cε if λ ∈ Aε. (24)

Essentially, note that the function 1/g : A → R+ is continuous on A, M∗
∞ is closed,

and M∗
∞ is the maximal set K such that the function G = 1

g
· Φ−1 : M0 → R+

extended by 0 to the set K ∪ M0 is continuous. This implies that there exists a
constant Lε > 0 such that the extension G̃ of G to M0 ∪M∗

∞ satisfies |G̃(m)| ≥ Lε
for every m ∈ (M∗

∞ ∪M0) ∩ {m : dist(m,M∗
∞) ≥ ε} = M0 ∩ {m : dist(m,M∗

∞) ≥ ε}.
This gives (24) and together with the fact that the function dist(Φ(λ),M∗

∞) is bounded,
implies that Eν = ∅ for k sufficiently large. The theorem is proved. 2

6 From weak ∗ convergence in measures to weak

convergence in L1

Now we are going to explain when can we expect that the sequence {f(uν)} is weakly
convergent in L1(Ω, µ). This will be done with the help of Theorem 6.1 formulated
below. It generalizes Theorem 2.9 in the paper by Alibert and Bouchitte [2], who
have obtained similar result with the additional assumption that the function f in the
formulation of Theorem 6.1 is continuous. Our proof is based on similar techniques.

Theorem 6.1 Suppose that

1) conditions A and B are satisfied,

2) f ∈ F , and M∗
i,∞,M

∗
i,b are the same as in Theorem 5.1,

3) mi, mi, {νix}x∈Ω and {νix}x∈Ω are the same as in Theorem 1.3,

4) functions pi, qi ∈ L1(Ω, µ) are such that

mi(dx) = pi(x)µ(dx), mi(dx) = qi(x)µ(dx) +mi
s(dx),

where both expressions describe the Lebesgue’s Nikodym’s decomposition of mea-
sures mi and mi with respect to the measure µ.

Then the following statements are equivalent.

i) For every i ∈ {1, . . . , k}, we have

lim supν∈N

∫
{x∈Ω:uν(x)∈Ai:dist(Φi(uν(x)),M∗i,∞)<ε}

|f(uν(x))|µ(dx)
ε→0→ 0. (25)
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ii) The sequence |f(uν)| is weakly convergent in L1(Ω, µ) to

∫
∪iintAi

|f(λ)|µx(dλ) +
k∑
i=1

pi(x)
∫
∂Ai∩Ai

|f(λ)|νix(dλ) +
k∑
i=1

qi(x)
∫
M∗
i,b

|fi(λ)|νix(dλ),

(26)

iii) For every i ∈ {1, . . . , k} we have

(
∫
M∗i,∞

|fi(λ)|νix(dλ))mi = 0

in the space of measures.

We also have the following two remarks.

Remark 6.1 The condition (25) is satisfied if it is satisfied with g substituted by f .

Remark 6.2 If one of the conditions i) or iii) in the formulation of Theorem 6.1 is
satisfied, then the formulae (26) holds with |f | substituted by f and |fi| substituted
by fi. This follows from the fact that f = f+ − f− where f+ = max{f, 0} and
f− = max{−f, 0}.

Now let us prove the above theorem.

Proof of Theorem 6.1. Obviously, we can assume that f is nonnegative and f
does not vanish on one of the Aj’s in Condition A only, say on Ai. To abbreviate let
us omit the index i in our notation.

“i) =⇒ ii)′′ This part of the proof is achieved in two steps. In Step 1 we check that
two conditions in Dunford–Pettis criterion

lim sup
ν→∞

∫
{uν∈A}

f(uν(x))µ(dx) <∞, and (27)

lim sup
ν→∞

∫
{uν∈A,f(uν(x))>k}

f(uν(x))µ(dx)
k→∞→ 0. (28)

are satisfied. In Step 2 we recognize the limit of {f(uν)}.

Proof of Step 1: The first condition follows from inequality f(λ) ≤
g(λ)‖f/g‖L∞(A) and the assumption ii) in Condition B. Let us check the second condi-
tion. Take an arbitrary ε > 0, and let Aν = {uν ∈ A, f(uν) > k}. Then Aν = Bν,ε∪Cν,ε
where Bν,ε and Cν,ε are given by:

Bν,ε = {x ∈ Aν : dist(Φ(uν(x)),M∗
∞) < ε}, Cν,ε = {x ∈ Aν : dist(Φ(uν(x)),M∗

∞) ≥ ε}.
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Thus, it suffices to prove that both expressions: lim supν→∞
∫
Bν,ε

f(uν(x))µ(dx) and
lim supν→∞

∫
Cν,ε

f(uν(x))µ(dx) can be arbitrary small if k is large enough. By assump-
tion i) the first expression is arbitrary small if we choose ε small enough. On the other
hand, as f ≤ g‖f/g‖L∞(A), and according to (24) in the proof of Theorem 5.1, we see
that the second expression vanishes if we let k to be large enough.

Proof of Step 2: According to Theorem 1.3, after passing to a subsequence
{f(uν)} converges weakly ∗ in the space of measures to∫

intA
f(λ)µx(dλ)µ(dx)+

∫
∂A∩A

f(λ)νx(dλ)m(dx)+
∫
M∗

(f/g)◦Φ−1(λ)νx(dλ)m(dx). (29)

Let us recall that according to (21) the measure νx was constructed by

(F, νx) =
1

ν̃x(M∗)

∫
M∗

F (λ)ν̃x(dλ),

for m–almost all x, and ν̃x is the same as that in Lemma 3.1 (where A = Ai). By
Lemma 3.3 the measure (f/g) ◦Φ−1ν̃x 6 M

∗ is supported on M∗
b . Thus the last term in

(29) equals∫
M∗
b

(f/g) ◦ Φ−1(λ)νx(dλ)q(x)µ(dx) +
∫
M∗
b

(f/g) ◦ Φ−1(λ)νx(dλ)ms(dx).

On the other hand, we have just proved in Step 1 that the sequence {f(uν)} is weakly
compact in L1(Ω, µ), so the last term in the above expression vanishes. That completes
the proof of Step 2.

“iii)⇐⇒ i)′′

Let hδ : A → [0, 1] be defined by hδ(λ) = 0 if dist(Φ(λ),M∗
∞) > δ, hδ(λ) = 1

if dist(Φ(λ),M∗
∞) < δ/2, and hδ(λ) = −2δ−1dist(Φ(λ),M∗

∞) + 2 if dist(Φ(λ),M∗
∞) ∈

[δ/2, δ]. Define

fδ(λ) =

{
f(λ)hδ(λ) if λ ∈ A

0 if λ 6 ∈A , and

Aδ = lim supν∈N

∫
{x:uν(x)∈A:dist(Φ(uν(x)),M∗∞)<δ}

f(uν(x))µ(dx).

According to Theorem 1.3 fδ(u
ν) converges weakly ∗ in measures to

Bδ =
∫

intA
fδ(λ)µx(dλ)µ+

∫
intA∩A

fδ(λ)νx(dλ)p(x)µ+
∫
M∗

Fδ(λ)νx(dλ)m,

where Fδ(λ) = fδ/g ◦ Φ−1. Note that |fδ| ≤ |f2δ|, and
∫

Ω Bδµ(dx) ≤ Aδ ≤
∫

Ω B2δµ(dx).
After letting δ → 0 and using the Lebesque’s Dominated Convergence Theorem, we get

lim
δ→0

Aδ =
∫

Ω

∫
M∗∞

f/g ◦ Φ−1(λ)νx(dλ)m(dx).
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which implies that i) is equivalent to iii).

“ii) =⇒ iii)′′ This part follows directly from Theorem 5.1. 2

Remark 6.3 Suppose that f in the assumptions of Theorem 6.1 does not vanish on
one of compactificaton bricks A = Ai only, and let us omit the index i in our notation.
Assume additionally that

lim sup
ν→∞

µ({x : uν(x) ∈ A, dist(Φ(uν(x)),M∗
∞) < ε}) ε→0→ 0. (30)

Then we have two observations.

1) If the sequence {f(uν)} is weakly convergent in L1(Ω, µ), then its weak limit
must be equal to

f(x) =
∫
intA

f(λ)µx(dλ) + p(x)
∫
∂A∩A

f(λ)νx(dλ) + q(x)
∫
M∗
b

(f/g) ◦ Φ−1(λ)νx(dλ).

2) If instead we only assume that the sequence {f(uν)} is only bounded in L1(Ω, µ)
then we can use the Chacon’s Biting Lemma (see e.g. [8]) and find a sequence {Er}
of subsets of Ω such that Er+1 ⊆ Er, µ(Er) → 0 as r → ∞, and a subsequence of
{f(uν)} is weakly convergent in L1(Ω \Er, µ) for an arbitrary r ∈ N to some function
f̃ . This function f̃ is called the biting limit of {f(uν)}. By the first observation with
Ω substituted by Ω \ Er we verify that f̃ = f . In the case when f is continuous on
the whole Rm (A = Rm) such property was proved by Alibert and Bouchitte in [2,
Theorem 2.9].

Remark 6.4 If in the previous remark we assume instead of (30) that

lim sup
ν→∞

µ({x : uν(x) ∈ A, dist(Φ(uν(x)),M∗) < ε}) ε→0→ 0,

then analogous observations as in Remark 6.3 hold with

f(x) =
∫
intA

f(λ)µx(dλ) + p(x)
∫
∂A∩A

f(λ)νx(dλ).

7 Special cases

In this section we are going to illustrate our Representation Theorem on concrete
examples. To abbreviate our notation through this section we will assume that

1) Ω ⊆ Rn is the compact subset, µ ∈M(Ω) is the Borel measure,
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2) uν : Ω→ Rm is the bounded sequence in L1(Ω, µ),

3) F ⊆ Rm is the closed subset such that uν → F in the measure µ.

Let us consider at first the case when k = 1 and A1 = Rm in Theorem 1.3. The
following result was obtained in a slightly more general version by Alibert and Bouchitte
(see Theorem 2.5 in [2]).

Theorem 7.1 Let us define the following objects

F(Ω×Rm) := {f ∈ C(Rm) : f∞(λ) := lim
t→∞

f(tλ)

t
∈ C(Sm−1)},

F∞ := {λ ∈ Rm : ∃λk∈Rm,tk∈R : λk → λ, tk →∞, tkλk ∈ F}.

Then there exists a subsequence {uν}ν∈N still denoted by the same expression, a pos-
itive measure m ∈ M(Ω), families of probability measures {µx}x∈Ω ∈ P(Ω,Rm, µ),
{ν∞x }x∈Ω ∈ P(Ω, Sm−1,m) such that

f(uν)
∗
⇀
∫

Rm
f(λ)µx(dλ)µ+

∫
Sm−1

f∞(λ)ν∞x (dλ)m

in the space of measures. Moreover, the following properties hold:

i)
∫
Rm |λ|µx(dλ) ∈ L1(Ω, µ) and suppνx ∈ F ,

ii) suppm ⊆ suppµ and suppν∞x ⊆ F∞ ∩ Sm−1 for m almost all x ∈ Ω.

Proof. This follows from Theorem 1.3. Let A = Rm, g(λ) = 1 + |λ|, and Φ(λ) =
λ

1+|λ| : Rm → B(1) ⊆ Rm. Then M∗ = Sm−1, M∗
∞ = M∗, M∗

b = ∅, and for λ ∈ Sm−1

we have f/g ◦ Φ−1(λ) = f∞(λ) = limt→∞
f(tλ)
t

. 2

Now we will study the weak limit of {f(uν)}ν∈N in the case when f has a finite
number of discontinuity points. We have the following theorem.

Theorem 7.2 Assume that A1, . . . , Ak ∈ Rm, θi(λ) := λ−Ai
|λ−Ai| , f ∈ C(Rm \ ∪kj=1Aj)

and f has radial limits at ∞ and at Ai for every i ∈ {1, . . . , k}, which means that the
expressions

f∞(λ) := lim
t→∞

f(tλ)

t
, and fi(λ) := lim

t→0
f(tθi(λ) + Ai)

are well defined. Set

F := {f : Rm → R : f ∈ C(Rm \ {A1, . . . , Ak}), f∞(λ) ∈ C(Sm−1),

fi(λ) ∈ C(Sm−1)} for i ∈ {1, . . . , k}}
F∞ := {λ ∈ Rm : ∃λk∈Rm,tk∈R : λk → λ, tk →∞, tkλk ∈ F}

F i := {λ ∈ Sm−1 : ∃λk∈F\Ai : λk → Ai, θi(λk)→ λ as k →∞}, i = 1, . . . , k.
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Then there exist:

a subsequence {uν}ν∈N still denoted by the same expression;

a positive measure m ∈M(Ω);

µ–measurable functions pi, qi : Ω→ [0, 1] where i = 1, . . . , k;

families of probability measures {µx}x∈Ω ∈ P(Ω,Rm, µ), {ν∞x }x∈Ω ∈ P(Ω, Sm−1,m),
and {νix}x∈Ω ∈ P(Ω, Sm−1, µ) where i ∈ {1, . . . , k}

such that

i) f(uν)
∗
⇀
∫
Rm\{A1,...,Ak} f(λ)µx(dλ)µ+

∫
Sm−1 f∞(λ)ν∞x (dλ)m+

+
k∑
i=1

∫
Sm−1

f i(λ)νix(dλ)pi(x)µ+
k∑
i=1

f(Ai)qi(x)µ

in the space of measures,

ii) {µx}x∈Ω is the Young measure generated by the sequence {uν}ν∈N,
∫
Rm |λ|µx(dλ) ∈

L1(Ω, µ) and suppµx ⊆ F for µ almost all x ∈ Ω,

iii) suppm ⊆ suppµ and suppν∞x ⊆ F∞ ∩ Sm−1 for m almost all x ∈ Ω, suppνix ⊆ F i

for i = 1, . . . , k and µ almost all x ∈ Ω,

iv) pi(x)+qi(x) = µx({Ai}) for µ–almost all x, in particular
∑k
i=1 pi(x)+

∑k
i=1 qi(x) =∑k

i=1 µx(Ai) ≤ 1 for µ–almost all x.

Proof. We sketch the proof only, leaving easy details to the reader. Choose r, R ∈ R
such that the sets U1, . . . , Uk+1 are disjoint where Ui = B(Ai, r) for i = 1, . . . , k, and
Uk+1 = Rm \ B(R). Cover Rm by U0, . . . , Uk+1 where U0 = {λ ∈ Rm : |λ| < 2R, |λ −
Ai| > r/2}, and let {φr}r=0,...,k+1 be the continuous partition of unity subordinate to
this covering. After decomposing f =

∑
i φif =

∑
fi, it suffices to prove that the result

is true if either 1): f ∈ C(Rm) and A1, . . . , Ak 6∈ supp f or 2): f ∈ C(Rm \ {Ai}) and
suppf ⊆ B(Ai, r).

In the first case it suffices to apply Theorem 7.1.

In the second one we decompose Rm by bricks: A1 = Pi := B(Ai, r) \ {Ai},
A2 = {Ai}, A3 = Rm \ B(Ai, r) and apply Theorem 1.3 to two families of sequences
{f(uν)χ{uν∈B(Ai,r)\{Ai}}}ν∈N and {f(uν)χ{uν(x)=Ai}}ν∈N separately. In the case of the
first sequence we compactify the ring Pi by adding the sphere Sm−1 at {Ai} and shrink-
ing the sphere Sm−1(Ai, r) to a single point. Namely, let φr(s) = −s + r : R → R,
ri(λ) = |λ − Ai|, Φi(λ) = φr(ri(λ))θi(λ) : Pi → B(0, r) ⊆ Rm. Then we associate
Pi to the triple (Φi, P (0, r), B(0, r)). As for the second sequence, the set A = {Ai}
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is compact, so we associate it to the triple (id, {Ai}, {Ai}). Now it is easy to deduce
assertions i), ii) and iii).

Let us prove the assertion iv). Take f ∈ C0(Rm) such that suppf ⊆ B(Ai, r) and
f ≡ 1 in some neighborhood of Ai. According to the just proved part i), we have

f(uν) ⇀
∫
B(Ai,r)\{Ai}

f(λ)µx(dλ) + pi(x) + qi(x) in L1(Ω, µ).

On the other hand, using the classical Young’s theorem (see Theorem 2.1), we observe
that

f(uν) ⇀
∫
B(Ai,r)

f(λ)µx(dλ) in L1(Ω, µ).

Thus pi(x) + qi(x) =
∫
{Ai} f(λ)µx(dλ) = µx({Ai}). This ends the proof of theorem. 2

Remark 7.1 In the case when m = 1 we have
∫
S0 f i(λ)νix(dλ) = f−(Ai)ν

i
x({−1}) +

f+(Ai)ν
i
x({+1}) where f−(Ai) and f+(Ai) are left and right hand side limits of f at

Ai.

We end this section with the following theorem. Its simple but technical proof is left
to the reader. Obviously, it is possible to construct many examples of similar nature
and generalize the presented ones in various directions.

Theorem 7.3 Assume that supν‖uν‖L∞(Ω,µ) < ∞ and M ⊆ Rm is a smooth and
closed k–dimensional submanifold. Let (Y1)λ, . . . , (Ym−k)λ be an orthonormal basis in
the normal space to M at λ ∈M such that the mapping M 3 λ 7→ ((Y1)λ, . . . , (Ym−k)λ)
is continuous. Define the following expression for f : Rm → R

f̂(λ, θ) := lim
t→0+

f(λ+ t
m−k∑
i=1

θi(Yi)λ) where θ = (θ1, . . . , θm−k) ∈ Sm−k−1.

and let us consider the following class of functions

F := {f : Rm → R : f ∈ C(Rm \M) ∩ C(M) and for every (λ, θ) ∈M × Sm−k−1

the mapping f̂(λ, θ) is well defined and f̂(λ, θ) ∈ C(M × Sm−k−1), lim
λ→∞

f(λ) = 0}.

Take f ∈ F . Then the following statements hold.

i) There exists a subsequence {uν}ν∈N still denoted by the same expression, the family of
probability measures {µx}x∈Ω ∈ P(Ω,Rm, µ), {νx}x∈Ω ∈ P(Ω,M, µ), {νx}x∈Ω ∈
P(Ω,M × Sm−k−1, µ) and µ–measurable functions p, q : Ω→ [0, 1] such that

f(uν) ⇀
∫

Rm\M
f(λ)µx(dλ) +

∫
M
f(λ)νx(dλ)p(x) +

+
∫
M×Sm−k−1

f̂(λ, θ)νx(dλ, dθ)q(x)

in L1(Ω, µ). Moreover, {µx}x∈Ω is the Young’s measure generated by the sequence
{uν}ν∈N, and p(x) + q(x) = µx({M}) for µ–almost all x ∈ Rm.
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ii) If k = m − 1 there exist families of measures {µx}x∈Ω ∈ P(Ω,Rm, µ),
{ν1

x}x∈Ω, {ν2
x}x∈Ω, {νx}x∈Ω ∈ P(Ω,M, µ), and µ–measurable functions q1, q2, p :

Ω→ [0, 1] such that

f(uν) ⇀
∫

Rm\M
f(λ)µx(dλ) +

∫
M
f(λ)νx(dλ)p(x) +

+
∫
M
f+(λ)ν1

x(dλ)q1(x) + +
∫
M
f−(λ)ν2

x(dλ)q2(x).

Moreover, we have p(x) + q1(x) + q2(x) = µx(M) ≤ 1 for µ almost all x, and
f+(λ) = limt→0,t>0 f(λ + tYλ), f−(λ) = limt→0,t>0 f(λ − tYλ) where Yλ is the
orthonormal vector to M at λ.

8 Links with Convergence Theorem

Our goal now obtain the following version of Convergence Theorem, holding for the
single–valued function. This assumption will be relaxed later.

Theorem 8.1 Suppose that Conditions A and B are satisfied with g ≡ 1 and addition-
ally the sequence {uν} in Condition B converges µ–almost everywhere to some function
u. Let f ∈ F and assume that the sequence {f(uν)} is convergent weakly in L1(Ω, µ).
Then its limit equals µ–almost everywhere to

f(x) = f(u(x))χu(x)∈∪ki=1intAi
+

k∑
i=1

pi(x)
∫
∂Ai∩Ai

f(λ)νix(dλ) +

+
k∑
i=1

qi(x)
∫
M∗i

fi(λ)νix(dλ) (31)

where {νix}x∈Ω ∈ P(Ω, ∂Ai ∩ Ai, µ) and {νix}x∈Ω ∈ P(Ω,M∗
i , µ) are the same as in

Theorem 1.3, pi(x), qi(x) ∈ L1(Ω, µ) and are nonnegative, moreover,

k∑
i=1

pi(x) +
k∑
i=1

qi(x) = χu(x)∈Rm\∪ki=1intAi
, for µ− almost all x ∈ Ω. (32)

In particular the limit function f satisfies f ∈ conv(f#(u(x))) for µ–almost all x.

Remark 8.1 The representation (31) describes precisely the limit function f and quan-
tities pi, qi, {νix}x∈Ω and {νix}x∈Ω are independent on the choice of f . This will follow
from the proof. Studying supports of measures νix and νix with the help of Theorem 5.1
one can precisely describe the smallest subset F (x) in the set of accumulation points
f#(u(x)) such that f(x) ∈ conv(F (x)).
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Proof of Theorem 8.1. At first we note that the Young measure {µx}x∈Ω gener-
ated by {uν} is the Dirack delta concentrated at u(x) for µ–almost all x. Then we apply
Theorem 1.3 with mi = pi(x)µ and mi = qi(x)µ + mi

s in the Lebesgue’s–Nikodym’s
decomposition of measures mi and mi with respect to µ to identify the limit of {f(uν)}
in the space of measures. The fact that this limit equals fµ follows from Theorem 6.1
and Remark 6.2. The formula (32) follows from substitution f ≡ 1 to (31), while the
last statement is the direct consequence of (32). 2

At the end of this section let us remark that the assumption that f is single–valued
in the formulation of Theorem 8.1 can be relaxed. Namely, we have the following
remark.

Remark 8.2 If we assume that f is the selection of some multifunction F and take
wν(x) = f(uν(x)) we obtain the version of Convergence Theorem holding for the re-
stricted class of multifunctions.

9 Some other applications

Let me briefly describe some possible applications of the nonclassical Young measures.

1) PDE’s with discontinuous datas. It is well known that the classical Young
measures are widely applied to nonlinear PDE’s with continuous coefficients (see e.g.
[17, 44]). On the other hand some discontinuous problems are treated with the help
of Convergence Theorem in Set–Valued Analysis; most often one has to do with dif-
ferential inclusions (see e. g. Chapter 10 in [4] and Chapter 2 in [3]). Then one must
be sure that the sequence {uν} converges almost everywhere. Now one can relax this
assumption and apply our Representation Theorem to problems with discontinuous
datas or to differential inclusions. This can be done in the similar way as the classical
Young measure theory is applied to nonlinear problems with continuous datas. But
now we apply the nonclassical Young measures. Interesting applications to differential
inclusions with discontinuous datas are object of the forthcoming paper of P. Gwiazda
and A. Zatorska [26].

2). Measure–valued solutions. In many non–convex optimization problems and in
nonlinear PDE’s there does not exists any classical solution to the problem, but only
the generalized solution the so–called measure–valued solution which involves Young
measures (see e. g. [13, 44, 38, 58, 53] and their references). Now one can consider
also discontinuous problems and apply the nonclassical Young measures to obtain the
measure–valued solutions to such problems. This will be done in the work of P. Gwiazda
[25] who applies the nonclassical Young measures to construct the measure–valued
solutions to the Savage–Hutter model of the granular flow.

3). Numerical approximation of Young measures. Many nonlinear PDE’s are treated
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by numerical methods. This methods require to discritize the problem to the sequence
of related problems, each of them having the solution {uν} (ν ∈ N) in some finite–
dimensional space. Then one applies theoretical methods ensuring that the sequence
is convergent in some sense. To verify that the limit function u is the solution of
the main problem one needs to compute Young measures generated by {uν}, or by
its subsequence. Now also equations with discontinuous constrains can be treated
by similar techniques. We refer for example to [11, 40, 51, 52] and their references for
related results involving classical Young measures. Let me mention that recently also M.
Kruz̆́ık, T. Roub́ıc̆ek in [39] have pointed out that there a the need to introduce Young
measures controlling discontinuous functions and apply them in numerical methods in
PDE’s.

4). Three modelling examples.

a) The Savage–Hutter model of the granular flow. In the two–dimensional Savage–
Hutter model of the granular flow (see [19, 32, 33]) one considers the system of equations

ht + divx(hu) = 0,

(hu)t + divx(hu
2) +

1

2
h2 = hs(x, u),

where all u = u(t, x) is unknown function (t ∈ R+, x ∈ R2), s = s(x, u) and h = h(t, x)
are given functions, and s is discontinuous with respect to the second variable. The
discontinuity is similar to that of signum function: sign(u) = u

‖u‖ where u = (u1, u2).

b) Non–Newtonian fluids. Our next example comes from the theory of non–
Newtonian fluids (see e. g. [60]). It is usefull in many research fields, for example in
chemistry, glaciology, biology and geology. Non–Newtonian fluids are solutions (global
in time) to systems describing the motion of both: incompressible liquids and com-
pressible isothermal gases in a bounded domain Ω ⊆ Rd, d ≥ 2. In the simplified
version the system reads as (see (1.55) and (1.56) on page 12 and Chapter 5.2 in [44])

divxv = 0,

ρ0(vi)t + ρ0

d∑
j=1

vj
∂vi
∂xj

= − ∂π
∂xi

+ divxτ
E
i (e) + ρ0fi, i = 1, . . . , d,

where τEi = (τEi1 , . . . , τ
E
id), is the stress tensor, v = (v1, . . . , vd), vi = vi(t, x), t ∈ R+, x ∈

Rd, ρ0 ∈ R, e = e(v) = ∇v + (∇v)T is the symmetric part of the velocity gradient
(with respect to x variable), and π is the so–called undetermined preasure. Usually
one assumes that the tensor τE is the continuous function. Now one can relax this
assumption and generalize many results of Chapter 5.2 in [44], such as construction of
measure–valued solutions (and some other results contained in this book) to systems
with discontinuous constraints.

c) Hyperelasticity theory. Let us consider the total energy functional of the elasticity
theory

I(u) =
∫

Ω
W (∇u(x))dx,
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where u : Ω → R3, is the displacement, Ω ⊆ R3 and W : R3 → R+ is the stored
energy function. In the hyperelasticity theory stationary point u of such functional
(with the specified function W ) and the given boundery condition u = u0 on ∂Ω is the
solution of the related Euler–Lagrange equilibrium equations, where by physical reason
the adissible deformations u satisfy the constraint det∇u(x) > 0 almost everywhere.
One also has to assume that W (F ) → +∞ as detF → 0+, in particular the typical
W is discontinuous, as one cannot compress the material with finite energy, see e. g.
Chapter 4, pages 137–138 in [9].

5). One more remark. It may happen that the given partial differential equation
does not contain any quantity of the form f(u) where f is discontinuous, but it is still
solvable with the help of the nonclassical Young measures. This happens for example
in the paper of Crandall [10] who considers the Cauchy problem ut+

∑n
i=1(Φi(u))xi = 0

where Φi are continuous and treats it via the theory of semigroups of nonlinear
transformations. This treatment requires to consider the time–independent equation
u +

∑n
i=1(Φi(u))xi = h where h ∈ L1(Rn). For the sake of this equation he introduces

the linear operator acting on L1(Rn), whose domain is defined with the help of discon-
tinuous function sig0 : R → R, sign(r) = r

|r| if r 6= 0 and sign(0) = 0 (see Definition

1.1 in [10]). Several results contained there are based on the version of Convergence
Theorem, the cousin of our Representation Theorem.
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ul. Śniadeckich 8, 00–956 Warszawa 10, skr. poczt. 21, Poland
email: kalamajs@mimuw.edu.pl

31


