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ABSTRACT

We consider a stochastic version of a system of two equations formulated
by Burgers in [2] with the aim to describe the laminar and turbulent motions
of a fluid in a channel. The existence and uniqueness theorem for a global
solution is established. The paper generalizes the result from the paper [11]
by Da Prato and Gatarek dealing with the equation describing only the
turbulent motion.

1 Introduction

The paper is concerned with the stochastic version of two hydrodynamic
equations for the turbulent flow in a channel between parallel walls. The orig-
inal non-stochastic model was first proposed by Burgers in [2]. The system is
derived from the theory of turbulent fluid motion and has similar properties
as the Navier-Stokes equation, but is simpler to study.

Let U = U(t) denote the primary velocity of the fluid, parallel to the
walls of the channel, whereas the second one v = v (¢, ) denote the secondary
velocity of the turbulent motion. Let P, p and p be constants representing,
respectively, an exterior force, analogous to the mean pressure gradient in the
hydrodynamic case, the density of the fluid and its viscosity. Set v = % > 0.
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According to [2], the functions U(t), v(t, -), t > 0, should satisfy the following
system of equations

d(;—t(t) = P—-vU(t)— /v2 (t,x) dx for t > 0, (1)
ov(t,x) O (t,x) 9 (5
(r) B0 e - L o) @)

with the initial and boundary conditions
U (0)=Uo, v(0,z) =wvo (), v(t,0) =v(t,1) =0, z € (0,1), t>0. (3)
The simplified version consisting of one equation on v only (U(t) = 0), ¢ > 0,

ov(t,xz)  Pv(t,x) I, ,
0) 0] D ’

with the initial and boundary conditions
v(0,2) = v (2), v(t,0)=v(t,1)=0 (5)

for z € (0,1) and for ¢t > 0, was investigated by many authors, e.g., in [20]
and [25]. For the stochastic version of such equation see e.g. to the papers
(7], [8], [10], [18], [21] and [23].

The system (1)-(3) was analysed in [2] and [3]. The existence and unique-
ness theorem for the global solution of the system was examined by Dlotko
in [9], using the Galerkin method. Other properties of such systems were
studied by Cholewa and Dlotko in [5].

The Burger’s system (1)-(3) as well as the Burger’s equation do not dis-
play any chaotic phenomena and therefore a stochastic perturbations of (4)
was proposed as a better model, see [4], [6], [19].

The stochastic Burgers’ equation is of the form

i) _ 200D D )+l ot

with the initial and boundary conditions (5), where B is a Brownian sheet

on [0,00) x (0,1) and azggf) is the time-space white noise.
The existence and uniqueness theorem for (6) with additive noise g = 1

was established in [12] and the case of general g, in [11].
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Our paper generalizes the existence and uniqueness result from [11] to
the system

1

WO - e win @
ov(t,x)  Pv(tx)
o~ Vo UMk (8)

9*B(t, )

_a% (v* (7)) + g (v (t2) —5 5~

with the initial and boundary conditions (3). We adapt the method from
[11]. We prove first the existence of a local solution by proper modification
of the drift terms and Banach fixed point argument and then we establish a
priori estimates to get global existence.

2 Preliminaries and formulation of the main

result
Let (Q, F, (F)icpo,r), P) be a filtered probability space on which an increas-
ing and right-continuous family (Ft)te[QT] of sub—o—algebras of F is defined
such that Fy contains all P-null sets in . We model mathematicaly the

space-time white noise B as the distributional derivative of the cylindrical
Wiener process W

W) = > Wilt)er. )

Here (e},) is an orthonormal basis of L? = L?(0, 1),

2
ex(r) = \/;sin krx, x € (0,1), k=1,2,... (10)

The scalar product in L? is denoted by (-, ),

and the norm by | - || .



We consider the following stochastic one-dimensional Burgers’ problem

1

%t(t) = P—vU(t) - /v2 (t,z) dz for t > 0, (11)
ov(tz)  Pu(tx)
G = Vg tUMv(ta) (12)

—((% (v2 (t,a:)) +g(v(t ) an_t(t) for

with the initial and boundary conditions

u) = U,
v(0,z) = wvo(x) forx e (0,1), (13)
v(t,0) = v(t,1)=0 fort> 0.

We assume that g is a real valued Lipschitz continuous and bounded function.
Notice that if we replace v by —u in (12), then we obtain an equivalent
form of equation (12) with the positive sign before & (v2 (¢, z)).
We have the following definition

Definition 1 A pair of processes ( g ) is a weak solution to problem (11)-

(13) if and only if U(t), t > 0, and v(t), t > 0, are adapted continuous
processes with values in RY and L, respectively, U(0) = Uy, v(0) = vy and :

(i) for arbitrary ¢ > 0 :
t t
U(t)=Uy+tP — y/ U(s)ds —/ | v(s)||*ds, P-as., (14)
0 0
(ii) for arbitrary ¢ > 0 and arbitrary ¢ € C3°(0,1) :

(v(t), ) = (vo,%) / ©)ds (15)



Notice that from the very definition of the distributional derivative a%UQ, for
arbitrary v € L? :

(get0) == [ V@) etahds = ~(02, 1)

Xz

We introduce now an equivalent concept of the integral solution. Let S(t),
t > 0, be the classical heat semigroup on L? . Then, for v € L?:

Z 7% ’U €k (A (16)

k=1

with the convergence of the series in L?. It is well known that the generator

A of the semigroup S(t), t > 0, is identical with the second derivative oper-

ator 6‘92 on the domain D(A) consisting of functions v such that v, 2% are

absolutely continuous with gig € L?, v(0) = v(1) = 0. In some places S(t),
t > 0, will be denoted by e?t, t > 0.

We need the following lemma with the proof postponed to Appendix.
Lemma 1 The operator S(t), t > 0, can be extended linearly to the space

of all distributions of the form 5.0, U E LY(0,1), in such a way that it takes
values in L* and

IS( )—v 1<l vl Z—k2 RN, (17)

Definition 2 A pair of continuous adapted processes ( [1{ ) with values in R*

and L, respectively, is said to be an integral solution to problem (11)-(13) if

U0 = e+ [P ofs) s (18)
and
o(t) = S(t)vo + /0 "S(t— $)U (s) o(s)ds (19)
" /0 S - ) o (s)ds + / St — 5)g(u(s))dW (s).
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In the integral
t
0
/o S(t— s)%zﬁ(s)ds, t>0

we use the extension of the operator S(t — s) described in Lemma 1.
We have the following result which proof can be found for instance in
24].

Proposition 2 A continuous adapted process ( g ) is an integral solution

to problem (11)-(13) if and only if it is a weak solution to problem (11)-(13).
The main result of the paper is contained in the following

Theorem 3 System (11)-(13) has a unique weak solution.

The proof is given in the following sections.

3 Existence of a local solution

Let m,1 : R — B;(0,n) be the projection onto the interval By(0,n) =
{U e R":| U |< n} and let 1,5 : L? — By(0,n) be the projection onto the
ball By(0,n) = {v € L?: || v ||< n}, where

Uif |U|<n,
mn1(U) :{ WU >, (20)
e £ o
Ui v ||< n,
Tn2(v) = { 2 v > . (21)

Let Z%, p > 1, denote the space of all continuous adapted processes
U(t)
v(t)

) on [0, 7] with values on R' x L? such that

U

I X =l () s (22)

= (B(supiepor | U() P)YP + (B(supeepo,r || v(#) [7)7 < o0



with fixed initial conditions U(0) = Uy, v(0) = vg. We define

U

HC, ) =T e + v flar (23)

Now we prove

Proposition 4 For arbitrary p > 4 and each n = 1,2, ... the following sys-
tem of equations

Ut) = e U, +/0 €_V(t_5)(P— | Tn2v(s) ||2)ds (24)
and
v(t) = S(t)vo +/0 S(t— s)mp U (8) mp2v0(s)ds (25)

+/0 S(t— S)%(?Tng?}(S))zdS + /0 S(t—s)g(v(s))dW (s),
t €0,7]

has a unique weak solution in the space Z%.

Let us stress that we look for a continuous and adapted process v(s),
s >0, with values in L? and such that %(ﬂmgv(s))z is the derivative in the
distribution theory sense (on the interval (0,1)) of the function belonging
to L*(0,1) (because (m,2v(s))? € L'(0,1)). From Lemma 1 we have that S
can be extended to the derivatives of the functions from L'(0, 1). Therefore,
equation (25) has a clear meaning.

Proof of Proposition 4. We introduce nonlinear operators F,,, G, H,
and I, acting on processes U(t), t > 0, and v(t), t > 0, according to the
following formulae:

t

FUo)(t) = e"'Up+ / eI (P~ || mou(s) |P)ds (26)
0
1_ —vt

_ e
e thfo
1%

t
P [ e | mants) )i,
0

G(Ujv)(t)Z/O S(t = s)g(v(s))dW (s), (27)
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H,(U,v)(t) = /0 S(t— 3)%(7%21)(5))2(15
and .
L,(U,v)(t) = S(t)vy —I—/O S(t— s)mp U (s) mp2v(s)ds.

Observe that system (24)-(25) is equivalent to fixed point problem:

U=F,(U,v),
v=GU,v)+ H,(U,v) + L,(U,v).
We shall show that for arbitrary n the mapping

U Fo(U,v)
Co )= Cawn) + Hy) + L0, 0)

(28)

(29)

(30)

(31)

(32)

is a contraction in the space Z%@, for properly chosen T,,. Therefore, system
(30)-(31) has a unique solution on the interval [0,7,,]. By the standard it-
eration procedure system (30)-(31) has a unique global solution denoted by

Un

Un

€0

First we shall show that for each n = 1,2,... and T > 0 there exists a

constant Cr,, such that for X = ( g ), X = ( g ) e Zb .
F.(U,v) F,(U,)
I Caw,o)+ vy U + L0 )~ L@ o) + BT D) + 1,05 ) 17
< Cral (D)= (Y. (3)
We have from (23):
F.(U,v) F,(U,)
o) + By (U,0) + Lw,v) )~ Ca@.0)+ HO,0) + 1,05 ) 7
- H Fn(va) _FR(U76) ”LT . - -
+ || (GU,v)+ H,(U,v) + L,(U,v) — (G(U,v) + HU,v) 4+ 1,,(U,v)) |la1 -
(34)



Step 1°. First we consider
Fo(U,v)(t) = Fu(U, 7)(t)
= /Ot e mav(s) IIP — || 720 (s) [2)ds.
We shall find a constant Cr,,, such that

= _ U
I Fu(U,v) = Fo(U,0) |ha< Cp, 11 () ) = (

Slw

Since v > 0 and
| mna | = [ mab I<a=0b 1, a,be L?

therefore,
| EU.0)(0) - EuT,0)() |
t
< / e ||| mnav(s) 2 — || muat(s) ] ds
Ot
- / eI | (|| mav(s) |
S () D Tago(s) |+ [l mnaB(s) ) | ds

t
< o / e ||| 1 00(s) | — || want(s) ||| ds
0

IN

2n/0 | o(s) = (s) || ds.

From the Holder inequality, if ¢ = p%l, we have
t

Elsupieon (2o [ || ols) = o(s) | ds)
0

< (2n)pE[(/0 [o(s) = v(s) || ds)”]

IN

< (2n)PTPE(supser || v(t) —o(t) [|7).

9

) [l

(2n)? E( / I o(s) — (s) |I” ds)( / s)

2
q

(35)



Hence

” Fn(va) _Fn(UaE) ||1,T

— (E(supiero.r] | Fa(U,0)(t) — Fu(T,0)(2) [P))7
< 2T || v =7 [|ar -

So we can set
Cr, =2nT.
To go further let us recall that, see (25),
L,(U,v)(t) + Ho (U, 0)(t) + G(U, v)(t)

= S(t)vy —i—/o S(t — $)mn1Uy (8) Tpovn(s)ds

+/0 S(t — s)%(wmgv(s))st + /0 S(t—s)g(v(s))dW (s).

Step 2. We estimate now
| G(U,v) = G(U,7) [la.r -

To treat the stochastic integral

/0 S(t = s)lg(v(s)) — g(v(s))]dW (s)

we use the factorization procedure similarly as in [26], [11] (see also [24]).
Let us fix  such that Il) < v < 1 and define on LP([0,T7], L?) for ¢ € [0, T :

¢
R.h(t) = / (t — s~ LAt p(s)ds,
0

h € LP([0,T), L?). Then for t € [0,T] :

RY(t) = / S(t — 5)lg(v(s)) — g(@(s))|dW (s)
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sin 7y

5 /O (t =) g(u(s)) — g(u(s)]dW (s), t € [0,T).

By Holder inequality, for 0 < ¢ < T, h € LP([0,T], L?)
=g+l

h(t) |[< (———=)7 || b ||1r :
I By ()“_(('y—l)q—l—l) 17 Nl zro.m,22)

Therefore R, is a bounded operator from L?([0,T], L?) to C([0,T], L*) and

TO=De+1

Y(t) =

supo<i<r || RyR(E) [|I< (—( T 1) R llzeqom,z2)
T( 1)p,1+1 p—1
< | )7 B llzeosm 2y
(v=1);5+1

1,1 _
where - + 7= 1. So
7O+

1B, 1< (o) (37

Note that »
—1)—+1 )
(v )p — 1> 0
We therefore have
E(supo<i<r || G(U,v)(t) — G(U,v)(t) ||”) (38)
< IR P ENY I5oqorce) -

Denote by || K || gs the Hilbert-Schmidt norm of the operator K. Thus
1K [s= D I K S5 7
j=1

where (f;) is an orthonormal basis of L%
By Burkholder’s inequality, for arbitrary adapted operator valued process
¢ and p > 2,

E(supogth / qb dW |p

< L[ 1606) Ihs ds)E
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Therefore

T
E Y = | EIY@ P d
0
P sin 77y
< (Lop Ty
p Y

/0 [E(/Ot I et = 5) 7 g(v(s)) — g(@(s))] IIrs ds)2]dt.

Note that

I et — 5)7[g(v(s)) — 9(@())] ls
= (t=5)""" || e g(u(s)) — g(@(s))] IIFrs,

and, for an orthonormal basis (f;) in L?,

I 6A“‘s)[g(v( )) = 9@(s)] Il7rs
= Z | et — 9(@(s)1f; II*
2

k=1

Moreover
I (o(u(s)) — gfo(s)e I
_ / (g 2))en(z) [? da
< %th@A [ o(s,0) — (s, ) [P d
< 2l Iyl o(s) = (s) I

and

| eA(t‘s)[g(v( ) = 9(0(s))] ||HS
=~ H 9 ILipll v s) II” 26’2 s
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Consequently

/0 E | Y@)|rd

P sin 7y
< 1>p\

g

‘p

N
- ~
=

o\w
-~

|
&
e
3

p
g ILipll v P Qe ds)2]dt.
k=1

¢ > 2 +oo > 2,2
/ (t—s) g e 2w S (-9) )ds < / 572 g e 2 F %) ds = a,.
0 0

k=1 k=1

Since v < ;11, therefore a, < +o0. Consequently

P\ sin 7y 2 Zia )3
| G(U,v) - GU,) [5,< (p_l) | 5 ¥ ( 1911752 (ay)"
E(sups<r || v(s) —0(s) [|"), (39)
and we can set
2 _ ot D sin 7y 2% ’ 1
Ch = THEDETD ) g i (). (10)

Step 3°. We shall show that for each n = 1,2, ... and T' > 0 there exists a

constant C7,, such that for X = ( g ), X = ( (@] )€ Z%

I Ho(U,v) = Ho(U, ) |22 (41)

U U

< A (D)l

Let us recall that
— ! 0 , 0 .\
Hy(U,0)(t) = Ho(U,0) = | S(t = s)(5-[(Tn20(s))” = 5 (70,20(s))])ds.
0 x Ox
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By Proposition 11, (see also Lemma 2.1 in [11]), there exists a constant C'
such that for all ¢ € [0, T

[ St 5 (rars)? = (raat9)7) | ds (42)

< Ctisupeer | (10,20(5))” = (m0,59(5))* [l 0,) -

Since
| mpa —mpb |[<|la—0bll,  abeL?

for every s € [0, T7,
| (7,20(s))* = (m0,20(5))* 20, < 20 | w(s) = T(s) || -
Consequently
supier || Ha(U,v) = H(U, ) | < 20T *supi<r || v(t) = 0(t) || ,

| Ha(U,0) = H(U,) |or< 2CnT5 || 0= |lor . (43)

We can set
Ci,, =20nT"*. (44)

Step 4°. We shall find a constant C7,, such that:
I Ln(U,v) = L(U,9) [l (45)

OETLAYS

< Gl

Since || S(t) ||< 1 for every t > 0,
|| ]n<U7 U)(t> - In(Uvﬁ)@) ||
t
< / 15(t =) [l mnaU (s) wn20(s) = 01 U(s) 70 20(s) || ds
0

t
< / | Ta U (5) 70n 50(5) — 70n1 T (5)727(s) || ds.
0

14



But notice that for all s >0

IN — IN = IA

TpaU (8) Tpov(s) — Tp1U(8)mn20(s) ||
| (701U (8) = T U(8))mn20(s) ||

T U(8)(m,20(s) — 7,20(s)) |

| M1 U (5) = T U(s) ||| ma20(s) |

T U(8) || magv(s) — ma20(s) |
n|U(s)— U()H”HU() o(s) |-

By the Holder inequality

I LU, v) =

I(U,0) ll2r
t

< E(Sumg[n/ (1T (s)=U(s) | + 1l v(s) —3(s) [)ds]”

0

p
q

<7ﬂml<uu$—ﬁwn+nwﬁ—v@nvwxédﬁ.

Since, for non-negative a, b, (a + b)? < 2°P~1(a? + V), we have

+MAQ

+TFE (sups<r

I LU 0)(1) = 1(U, ) 5.1

§2“%WW%MA(HN$—U®PM$

| v(s) —0(s) [|")ds)}
< P InPTPYTE (sups<r | U (s)
| v(s) —o(s) [|P)}

—U(s) )

However (a + b)* < a® + b* for a,b > 0, 0 < o < 1, and therefore

And we can set

INIA A

1(U, v)(t) L,(U,) o7
TnZP(HU Uy + | v—1 87
025 (| U =T |lur + || v =7 |la7)
Tn2" | X=X |-

C%n = Tn2" .

15
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Step 5°. Finally set
CT,n = max (C’%Jm 1= 17 27 374)7 (47>

then (33) holds.
Taking into account explicit expressions for the constants Crfp,n, 1=1,2,3,4,
there exists such 7T;, that Cp, , < 1.

Step 6°. By Banach fixed point theorem there exists a unique fixed point
F,.(U,v)

U
of the operator ( ” ) — ( G(U.v) + Ho(U,v) + I, (U, v)

) in the space Z7, .

Hence there exists a unique solution ( (U]" ) of problem (24)-(25). By a stan-

dard iteration procedure there exists a unique solution to problem (24)-(25)
on arbitrary time interval [0,77]. B

4 Proof of Theorem 3

Un(t)
Un(t)

T, = min [inf{t > 0:| U,(t) *> n?}, inf{t > 0:[| v, (¢) |*>n?}].  (48)

Let X, (t) = ( ), t > 0, be the solution to problem (11)-(13). Define

Notice that X,(t) = X,,(t) for m > n and ¢t < 7,. Therefore, we can set
X(t) = X,(t) if t < 7, and this is a solution to problem (11)-(13) on the
time interval [0, 7o), where

Too = My youTh.

We shall prove that 7., = +o0.
Let X (t) = ( ut) ) be a possibly exploding solution to problem (11)-(13)

v(?)
defined on [0, 7.,). We set

V(t) = o(t) — Z(t), (49)
that is,
U(t) U(t)
( V(t) ):( v(t) )_( Z(t} )»



where
20 = [ 90 ecr AW (), Z(0) =0

Recall that by the Sobolev imbedding theorem (see [1], Theorem 7.57, p.
217) we have for a domain 2 C R" with smooth boundary that if

s>0,1<p<mn,n>spandp<r<np/(n-—sp), (50)
then W*P(Q) is continuously imbedded into L"(€2) :
WeP(Q) — L"(Q).

Therefore, if n =1, Q = (0,1), p =2, s = 1 and 7 = 4 then (50) holds
and .
H#(0,1) = L),
where we use notation W#2(0,1) = H*(0,1). Notice that H7(0,1) — L*(£)
means that there exists ¢ > 0 such that for all u € H3(0,1)

<l wllyg 0

Moreover, there exists ¢ > 0 such that

2
1
el (=) l2l w0

The following Proposition can be obtained by factorization procedure (see

[26], [13] and [17)).

Proposition 5 Let A be a self-adjoint non-positive operator generating the
semigroup S(t),t > 0, on a Hilbert space H such that

T
/0 | () g dt < oo.

Let 0 < v+ 1% < % and & 1s an adapted stochastic process with values in the

space L(H) = L(H, H) of linear operators in H. Then there exists a constant
C > 0 such that

t

E(supoercr || (—A)" / S(t — $)E(s)dW (s) |

0

T
< CE( / ) €Gs) 12 g1y ).

17



Applying Proposition 5 with v =
operator by g(u(5))Xecr..;

Blowposier || (—)42(0) )

£, p =4, and £(s) the multiplication

< OB([ 1€6) .12 ) < OTsum, | (o) |< o
0

Let
p=suprepr || Z(t) [|74 - (51)
From Proposition 5 and the above estimates we have
Bup = E(supiepor || Z(t) [|74) < CE(suprep | Z(t) 7 1)

H4
d?
< CE(supsepor || <_dq: )5Z(1t) 1) <

Thus
Eu < oo.

The following is a standard result on interpolation inequalities ([22],
Corollary 1.1.8).

Corollary 6 Let (X,Y )y, and (X,Y), be interpolation spaces for 0 < 6 < 1,
1 <p<oo. Thereis C(0,p) such that

1y lcewye, < COP) Ny Iy Iy for every y €Y.

Then, see [22] (Example 1.1.3, pp. 13-14) we get that there exists a
constant ¢ such that for v € H'(0,1) and 0 < § < 1

Il o< e u 171 g o) - (52)
We shall prove the following basic estimate.

Lemma 7 There exist a constant C' such that for arbitrary o > 0 and V' &€
Hy, Z € L* we have

| / VEI < OV IRV Il Z s (53)
and
W VIRIV 1l Z fles (54)
< TNV Z 420 IV Iy 45 VIR

18



Proof. Observe that from the Schwartz inequality we have
| [veSais ([ viani[ zani [ 15 1P
—dx x x — x)2
ox - ox
= [V llzall Z Nlzall V- Iy -
From the Sobolev imbedding inequality we get
[V ilm<a VI,
and from (52) we obtain
eIt
IVl g< el VIRV G-
Since V € H;
3 1
IVl es |V IRIV I, -

Therefore there exists ¢4 such that

| Vza—vdiUKC LV ISV U Z ol V L (55)
aSE >~ 4 H& L HO

s1u i
< allVIETV g2 e
and (53) holds.

To prove (54) we observe that using the generalized Young inequality for
statr=1,pqr>0withp=4 ¢=2% r=8, weget

3 5
VATV Al Z s

2 501 1
= I Z el V-IE eV g =V I

5
I Z g ve | (HeVilli)” azviis
- 4 q r

1 2 4 52 2 1 2
< SIVIBIZ I 502 1V Iy 455 VP

From (53) and (54) we get
1 oV 3 5
= /vza—mdx|§\|V||4HVllﬁ,élllem

1 2 4 52 2 1 2
< JIVIENZ Il +502 |V [y 45 |V 2.

Now we prove
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Proposition 8 If for V € C([0,T],L?), Z € L>=([0,T], L*(0,1) ) and con-
tinuous function U

v OV 9
EARE A Z)— —(V + 2)?
5 = Vapz TUWV A 2) = o (V+2)% (56)

V(0) = vy, (57)
then there exists a constant C' such that for all t € [0,T7,
IV 2 +U2 < Clut [ vo |I* +U(0) + 1)el @, (58)
where p is given by (51).

Proof. We can assume that V' is a strong solution to (56). We have

oV 02V B ,
SO
1d ov oV
9 >
ov oV
0 0
2 —_— [ES—
+(V2 V) +2(VE 5V +
0
2 [ES—
(22 v
Since
0 0 oV
2 7 — 7 1/2 _o( "
(V4 2V) = (V% V) = =25V, V)
B o,
—2(%7‘/ )
SO 8
2 2 =
vt 2y =0
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and we have

1d ov oV
ST VV) = —w(CL S UV V) + UV, 2),
p) , 0
+2(VZ, %V) + (27, %V)

or
d 2 2 2
57 I VIF+v [V Ig=UVI"+U(V,2)

2 dt
oV LV

| V) =) / 22() 2 () |
( / ar >dx>2 1 v

< 1 Z 1zl 5 V =0 Z 2V g

Further we have

IN

< —HVHH1+ 1 Z 11z -

But from (53) and (54) we have

| /VZangaﬂ
5
< [—||VH 1 Z |Izs +3 042||VHHHr A LA
Therefore
1d
th I VP IV IE<U VI +U(V Z) (59)
5
w2Ch | V2 ||L4 +30° 1V Iy 455 1V 7]
€
+5 1 Vi + I Z Iz -
Now we consider equation
Ly —u(p— | V4 Z |2 (60)
2dt ‘
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Adding (59) and (60) we obtain

%%[|\vWF+Uﬂ+vHVH;+wU2
< TNV IP+UV2) 4+ 201 |V P Z [ 4202 |V 3y +55 1V I
b VIR 4o | Z 1 +UP= V4 2 )
s—ﬂwzwaﬂ—mwuZMHﬁfuvmv% IV I

€ 2
+5 | V||Hé+2_€“ZHL4+UP_U||Z”

because
up— || v+
= UP-|VI*-2(v.2)- | Z |7
UP-U|V|*=20(V.Z2)-U || Z|*.
Observe that from the Young inequality

~U\WV,Z)+UP~-U | Z|?

Uz 1 Uz 1
< | (V,ZU) | +— + P2+—+—||ZHL4

2 2 2
swwwmmwﬂ+fu%+ﬁwm4
< LivieeizesZalre T bz
Thus
ST VI AU 4w |V
2dt 0
< SIVIP+U ) 2P
+U;+%P2+U;+% | Z |3
V2017 | VIPIZ I 4207 1V I
b | VISV By 4o 121
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Now we choose o and ¢ to get

e 5
=1+ 2.920a%
v 2+8 Ca
Therefore
1d
—— V|2 +U? U?
Sl IV IE+U% 4
1 1
SV +SU ) 2
Uz 1 Uz 1
s _P2 s - Z 2
+2+2 +—2+2 I |74
1
+20{7 | v HZHL4+ HVH}+ HZH4

For arbitrary Z € L,
I Z 1<l Z s (1 Z 11740 Z Nl70 +1,

therefore, neglecting the term vU? in the left hand side of the inequality, we
arrive at

SL VI U
ULV P +U%)(1 Z e +1) + C( Z 14 +1),

where C' is the maximal number among:

c 1 n 1 3 1 n 1 1 . 1
272 8a?’ 27 2 2" 2 2
Consequently
I V) |12 +U%()
< B CUZIADE (| gy 2 4U2(0)) + C / HIZ@ILD (| Z(s) |44 +1)ds

So the required estimate holds. B

Continuation of the proof of Theorem 3
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Let X, (1) = ( g:g;

(13), where U, (t) is the solution to (18) and v,(t) is the solution to (19).
By (58) (compare Lemma 3.1 of [11]) there exists a constant C; > 1 such
that

) be a, possibly exploding, solution to problem (11)-

Un(t) " + [ oa(®) I +1

ININ —

Cupt | Ua(0) 2+ [ v [ +1)el 0+ 1
Cr(pt | Un(0) |7 + || wo [|* +2)el 0
S0
log (| Un(t) [* + [l va(t) [I* +1)
< log Cy +log(p+ | Un(0) [* + || wo |I* +2)
+C(pn+1)T
S0

Ellog supeer( | Un(t) [* + [ va(t) |I* +1)
< log Cy +log(Ept | Ua(0) [ + | o [I* +2)
+C(Ep+ 1)T.

By Jensen inequality it follows that

E( supieppr) log( | Un(t) P+ || valt) [|> +1)
< log Cy +log(Ep+ | Un(0) I + || wo I +2)
+C(Ep+1)T = Kr.

Since by the Chebyshev inequality

P(r, < T)
= P(supseo,r) log (| Un(t) [* + || va(t) [I* +1) > log (n + 1))
E(supseory log (| Un(t) > + || va(t) I* 1)

- log(n + 1)

we get, for a new constant K,



as n — 00. Hence 7o = c0. R
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Appendix
An estimate for extended heat semigroup

Let us recall that S(t) is the heat semigroup introduced in (16). We prove
now

Lemma 1. The operators S(t), t > 0, can be extended linearly in the
space of all distributions of the form 8%1}, v € LY(0,1), in a way such that

9 — 27 2 272 k24\1/2
| S(t)ﬁ_gv <[l v llz1(o.1) (kz:; ﬁk e T

Proof. Set v = 1. By Parseval’s identity

| S(t)u |I°= 2672”2’“%(% er)?, ue L2

k=1

Let v € L? be an absolutely continuous function such that a%v € L?. Then

| ()2 2= 3 2y O 9 ()enl€)de)”.

k=1

Integrating by parts

1 1
\/g/o %v(ﬁ) sin km€ d§ = _\/glm/o v(§) cos kr§ dE.
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Therefore
r/ E)ex(€)de |< V2 k/ o€ | d

and consequently
0
| S(t)gv <[l v [z 0,1)

« (Z 27rk,26—27r2k:2t)1/2‘

k=1

Since absolutely continuous function with square integrable derivatives are
dense in L'(0,1) the required extension of S exists. It will be denoted with
the same symbol S(t), t > 0. From this lemma follows. B

Our aim is to prove in an elementary way the following result from [12].

Proposition 9 For arbitrary T > 0 there exists C' such that for t <'T" and
for measurable, bounded, L*(0,1)-valued function v(s), s € (0,t) :

/ | S(o (o) || do < C#/* sups<t || v(8) ||lro,1) -

Proof. Set v = 1. We have to show that for a constant C > 0and 7" > 0

T ©0°
( e—27r2k2tk2)1/2dt < CT1/4.
[

k=1

The function -
=) e 1> 0
k=1
is the Laplace transform of purely atomic measure p which associates with
points 272k? masses k2, k =1,2, ...

Let
Vo) =n0.a)= 3 K= 3 &
2m2k2<o kS% z

One easily finds that U is slowly varying and

U(Uy) _.3/2
U(o) =y

lim , , y>0.
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Consequently, by tauberian theorems (see [15], p. 422-423)

: h(t) 5
lim tﬁ)@ = F<§>

1

But U(3) ~ 353 as t — +00 and therefore

1 1

"~ Srgy e

and for a constant C .
h(t) < C t <Ty.

32 " =

Finally

T T
1
M)At < C | —dt =4CTY*, T < Ty,
B B t3/4

and therefore, the required inequality follows. Bl
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