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Abstract

We define and study a class of entwined modules (stable anti-Yetter–Drinfeld modules) that serve as coefficient
Hopf-cyclic homology and cohomology. In particular, we explain their relationship with Yetter–Drinfeld modules and D
doubles. Among sources of examples of stable anti-Yetter–Drinfeld modules, we find Hopf–Galois extensions with a
version of the Miyashita–Ulbrich action.To cite this article: P.M. Hajac et al., C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Modules anti-Yetter–Drinfeld stables.Nous définissons et étudions une classe de modules enlacés (modules anti-
Drinfeld stables) qui servent de coefficients pour l’homologie et la cohomologie Hopf-cyclique. En particulier, nous exp
leurs liens avec les modules de Yetter–Drinfeld et les doublets de Drinfeld. Parmi les sources d’exemples de
anti-Yetter–Drinfeld stables, nous trouvons des extensions de Hopf–Galois munies d’une version transposée de l’
Miyashita–Ulbrich.Pour citer cet article : P.M. Hajac et al., C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

The aim of this paper is to define and provide sources of examples of stable anti-Yetter–Drinfeld module
play the role of coefficients for Hopf-cyclic theory [7]. In particular, we claim that modular pairs in involutio
Connes and Moscovici are precisely 1-dimensional stable anti-Yetter–Drinfeld modules.

Throughout the paper we assume thatH is a Hopf algebra with a bijective antipode. On the one hand,
bijectivity of the antipode is implied by the existence of a modular pair in involution, so that then it nee
be assumed. On the other hand, some parts of arguments might work even if the antipode is not bijec
avoid such discussions. The coproduct, counit and antipode ofH are denoted by∆, ε andS, respectively. For
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the coproduct we use the notation∆(h)= h(1) ⊗ h(2), for a left coaction onM we writeM∆(m)=m(−1) ⊗m(0),
and for a right coaction∆M(m)=m(0) ⊗m(1). The summation symbol is suppressed everywhere. We assum
algebras to be associative, unital and over the same ground fieldk. The symbolO(X) stands for the algebra o
polynomial functions onX.

2. The transformation of Yetter–Drinfeld modules

It turns out that, in order to incorporate coefficients into cyclic theory, we need to alter the concept of a
Drinfeld module by replacing the antipode by its inverse in the Yetter–Drinfeld compatibility condition be
actions and coactions. We call the modules-comodules satisfying the thus modified Yetter–Drinfeld comp
conditionanti-Yetter–Drinfeld modules.1 Just as Yetter–Drinfeld modules come in 4 different versions depen
on the side of actions and coactions (see [3, p. 181] for a general formulation), so do the anti-Yetter–D
modules. All versions are completely equivalent and can be derived from one another by replacing
algebraH byH cop, H op, orH op,cop, respectively.

Definition 2.1. Let H be a Hopf algebra with a bijective antipodeS, andM a module and comodule overH . We
callM an anti-Yetter–Drinfeld module iff the action and coaction are compatible in the following sense:

M∆(hm)= h(1)m(−1)S−1(h(3)
) ⊗ h(2)m(0) if M is a left module and a left comodule, (1)

∆M(hm)= h(2)m(0) ⊗ h(3)m(1)S
(
h(1)

)
if M is a left module and a right comodule, (2)

M∆(mh)= S
(
h(3)

)
m(−1)h(1) ⊗m(0)h(2) if M is a right module and a left comodule, (3)

∆M(mh)=m(0)h(2) ⊗ S−1(h(1)
)
m(1)h(3) if M is a right module and a right comodule. (4)

To make cyclic theory work, we also need to assume that the action splits coaction, i.e., for allm ∈ M,
m(−1)m(0) = m, m(1)m(0) = m, m(0)m(−1) = m, m(0)m(1) = m, for the left–left, left–right, right–left, and
right–right versions, respectively. We call modules satisfying this conditionstable. Let us emphasize that
is the anti-Yetter–Drinfeld condition rather than the Yetter–Drinfeld condition that makes the homomo
action◦ coactionH -linear andH -colinear. Therefore the stability conditionaction◦ coaction= id suits the former
and not the latter. The first class of examples of stable anti-Yetter–Drinfeld modules is provided by modul
in involution [4, p. 8]. Since such pairs occur naturally in different contexts, Lemmas 2.2 and 2.3 guarante
amount of examples of anti-Yetter–Drinfeld modules.

Lemma 2.2.Let the ground fieldk be a right module overH via a characterδ and a left comodule overH via
a group-likeσ . Thenk =σkδ is a stable anti-Yetter–Drinfeld moduleif and only if (δ, σ ) is a modular pair in
involution.

The anti-Yetter–Drinfeld modules do not form a monoidal category themselves, but rather a so-calledC-category
over the category of Yetter–Drinfeld modules (see [11, p. 351] for details). More precisely:

Lemma 2.3.LetN be a Yetter–Drinfeld module andM an anti-Yetter–Drinfeld module. ThenN ⊗M is an anti-
Yetter–Drinfeld module viah(n⊗m)= h(1)n⊗ h(2)m, N⊗M∆(n⊗m)= n(−1)m(−1) ⊗ n(0) ⊗m(0), for the left–
left case, and viah(n ⊗ m) = h(2)n ⊗ h(1)m, ∆N⊗M(n ⊗ m) = n(0) ⊗ m(0) ⊗ n(1)m(1), for the left–right case
Similarly,M⊗N is an anti-Yetter–Drinfeld module via(m⊗n)h=mh(2)⊗nh(1), M⊗N∆(n⊗m)=m(−1)n(−1)⊗
m(0) ⊗ n(0), for the right–left case, and via(m⊗ n)h=mh(1) ⊗ nh(2), ∆M⊗N(m⊗ n)=m(0) ⊗ n(0) ⊗m(1)n(1),
for the left–right case.

1 This concept was devised independently by Ch. Voigt and, also independently, by P. Jara and D. ¸Stefan.
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Note that, just as the right–right Yetter–Drinfeld modules are entwined modules [1] for the entw
ψ(h′ ⊗ h) = h(2) ⊗ S(h(1))h′h(3), the right–right anti-Yetter–Drinfeld modules are entwined with respec
ψ(h′ ⊗ h)= h(2) ⊗ S−1(h(1))h′h(3). (Other cases are completely analogous.)

An intermediate step between modular pairs in involution and stable anti-Yetter–Drinfeld modules is
by matched and comatched pairs of [10]. Whenever the antipode is equal to its inverse, the difference
the Yetter–Drinfeld and anti-Yetter–Drinfeld conditions disappears. For a group ring Hopf algebrakG, a leftH -
comodule is simply aG-graded vector spaceM = ⊕

g∈GMg , where the coaction is defined byMg �m �→ g ⊗m.
An action ofG onM defines an (anti-)Yetter–Drinfeld module if and only if for allg,h ∈G andm ∈Mg we have
hm ∈ Mhgh−1. The stability condition means simply thatgm = m for all g ∈ G, m ∈Mg . A very concrete classi
cal example of a stable (anti-)Yetter–Drinfeld module is provided by the Hopf fibration. ThenH =O(SU(2)) and
M = O(S2). SinceS2 ∼= SU(2)/U(1), we have a natural left action of SU(2) onS2. Its pull-back makesM a leftH -
comodule. On the other hand, one can viewS2 as the set of all traceless matrices of SU(2). The pull-back of this em
beddingj :S2 ↪→ SU(2) together with the multiplication inO(S2) defines a left action ofH onM. It turns out that
the equivariance propertyj (gx)= gj (x)g−1 guarantees the anti-Yetter–Drinfeld condition, and this combined
the injectivity ofj ensures the stability ofM. This stability mechanism can be generalized in the following wa

Lemma 2.4.LetM be an algebra and a leftH -comodule. Assume thatπ :H →M is an epimorphism of algebra
and the actionhm = π(h)m makesM an anti-Yetter–Drinfeld module. Assume also thatπ(1(−1))1(0) = 1. Then
M is a stable module.

3. Hopf–Galois extensions and the opposite Miyashita–Ulbrich action

Another source of examples is provided by Hopf–Galois theory. These examples are purely quantum
sense that the employed actions are automatically trivial for commutative algebras. To fix the notat
terminology, recall that an algebra and anH -comodule is called a comodule algebra if the coaction is an alg
homomorphism. AnH -extensionB := {p ∈ P |∆P (p)= p⊗ 1} ⊆ P is called Hopf–Galois iff the canonical ma
can:P ⊗B P → P ⊗H, can(p ⊗ p′) = p∆(p′), is bijective. The bijectivity assumption allows us to define
translation mapT :H → P ⊗B P , T (h) := can−1(1⊗h)=: h[1] ⊗B h

[2] (summation suppressed). It can be sho
that when everything is over a field (our standing assumption), the centralizerZB(P) := {p ∈ P | bp = pb,∀b ∈B}
of B in P is a subcomodule ofP . On the other hand, the formulaph = h[1]ph[2] defines a right action onZB(P)

called the Miyashita–Ulbrich action. This action and coaction satisfy the Yetter–Drinfeld compatibility con
[6, (3.11)]. The following proposition modifies the Miyashita–Ulbrich action so as to obtain stable anti-Y
Drinfeld modules.

Proposition 3.1.LetB ⊆ P be a Hopf–GaloisH -extension such thatB is central inP . ThenP is a right–right
stable anti-Yetter–Drinfeld module via the actionph= (S−1(h))[2]p(S−1(h))[1] and the right coaction onP .

The simplest examples are obtained forP = H . A broader class is given by the so-called Galois objects
Then quantum-group coverings at roots of unity provide examples with central coinvariants bigger than the
field (see [5] and examples therein). Finally, one can generalize Proposition 3.1 to arbitrary Hopf–Galois ex
by replacingP by P/[B,P ] [8, Remark 4.2].

4. The Drinfeld double comodule algebra

For finite-dimensional Hopf algebras, the Yetter–Drinfeld modules can be understood as modules o
Drinfeld double [9, p. 220]. Much in the same way, the anti-Yetter–Drinfeld modules can also be unde
as modules over a certain algebra. This makes the usual notions and operations for modules, like pro
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or induction, directly available for anti-Yetter–Drinfeld modules. To this end, the comodule structure of a
Yetter–Drinfeld module has to be converted into a module structure over the dual Hopf algebraH ∗, so that from
now on we assume that the Hopf algebraH is finite-dimensional.

Proposition 4.1.LetH be a finite-dimensional Hopf algebra. The formula

(ϕ ⊗ h)(ϕ′ ⊗ h′)= ϕ′(1)(S−1(h(3))
)
ϕ′(3)(S2(h(1))

)
ϕϕ′(2) ⊗ h(2)h′ (5)

turns the vector spaceA(H) :=H ∗ ⊗H into an associative algebra with the unitε⊗ 1.

Note that the above product differs from the product in the Drinfeld double ofH [9, p. 214] only by the
additional squared antipode in the second factor. To relate the modules overA(H) with anti-Yetter–Drinfeld
modules, recall first that every rightH -comoduleM becomes a leftH ∗-module via ϕm := ϕ(m(1))m(0).
Conversely, any leftH ∗-module yields a rightH -comodule via∆M(m)= ∑n

i=1h
∗
i m⊗ hi . Here{h1, . . . , hn} is a

basis ofH and{h∗
1, . . . , h

∗
n} is the dual basis. (Of course, this comodule structure does not depend on the

of a basis.) Using this, we get the following connection between the modules overA(H) and anti-Yetter–Drinfeld
modules:

Proposition 4.2.Let H be a finite-dimensional Hopf algebra. IfM is a left–right anti-Yetter–Drinfeld module
it becomes a leftA(H)-module by(ϕ ⊗ h)m := ϕ((hm)(1))(hm)(0). Conversely, ifM is a leftA(H)-module, it
becomes a left–right anti-Yetter–Drinfeld module byhm := (ε ⊗ h)m, ∆M(m) := ∑n

i=1(h
∗
i ⊗ 1)m ⊗ hi . Here

{h1, . . . , hn} is a basis ofH and{h∗
1, . . . , h

∗
n} its dual basis.

The claim of Lemma 2.3 is reflected in the fact that althoughA(H) is not a Hopf algebra itself, it can be show
that the formula(ϕ ⊗ h) �→ (ϕ(2) ⊗ h(1))⊗ (ϕ(1) ⊗ h(2)) makesA(H) a right comodule algebra over the Drinfe
doubleD(H).
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