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Abstract

The problem of constructing impulsive rebalancing of portfolios, introduced by Pliska and
Suzuki, is solved for models with general Markovian prices. Existence of optimal strategy is es-
tablished and its structure described. Quasi-variational inequalities determining the value function
are deduced for multiplicative prices with general Levy noise and the case of Poissonian noise is
considered in some detail.

1. Introduction

An important problem for portfolio managers is to respect the diversification requirement to maintain
proportions of the capital, that should be invested in different asset groups, constant. It is impossible
to rebalance a portfolio continuously, so it usually does not keep exactly to the required proportions.
Therefore each manager has to come up with some algorithm to decide the moments of rebalancing.

Pliska and Suzuki [5] (we have recently learned that this article had been published [6]), improving
the ideas of Leland [4], considered a model consisting a$sets whose prices satisfy

dS; = Si(widt + 0:dWy), i=1,...,d,

whereW; is am-dimensional Brownian motiony; is a vector and; is any real number. Trading
strategy is described by @&dimensional adapted proce§¥;);>o denoting the number of units of
assets held at each moment. They imposed both proportional and constant transaction costs specified
in details later.

In the view of constant transaction costs, any trading strafeggn be described by a sequence
of transaction times (stopping times), 72, ... and resulting portfolio contentd’,,, N,,.... The
process\V; is constant between transaction times i, = Nolycjo.r,[ + Y ioi Nr Licirm [ We

*The research supported by grant PBZ-KBN-016/P03/1999.



introduce a proportion process linked to the stratdgy

we =W<]g:),

where, denoting by, S; the scalar product iiR¢,

w N\ _ (NS NSt
St o NtSt R NtSt '

The transaction costs are expressed in terms of proportions:

d
c(wv) =K +kY |w =
=1

for K > 0 andk > 0. This is a reasonable simplification that enables us to incorporate transactions
costs into a cost functional. Pliska and Suzuki introduced the cost functional

J(II) =E (/OOO e P f(wy)dt + i e‘ﬂ”c<W (ﬁ{) : W(i}ﬁ)) 17i<oo>,

i=1

where f : R? — R is a function measuring quality of the portfolio. They specified further that
f(w) = Mw—w*) oo’ (w—w*)— (w—w*)'u, wheres is a matrix consisting of rows;,i = 1,...,d,

po= (p1,...,uq) € RY w* is a target asset mix andl € R. Ford = m = 2 they established

the existence of optimal strategy and showed that it is characterized by a continuation region of the
proportions where trading is not performed.

In the present paper we cover general Markovian price processes. We consider a market mod-
eled by a general-dimensional positive Markovian proce§s;):>o, representing price movements
of different groups of assets or assets themselves. By positivity we iggn> 0fort > 0,
i =1,...,d) = 1. Our evaluation procedure, measuring quality of the portfolio at each moment, is
determined by a continuous functigrdefined on proportions. We show thatsif is a positive Feller
process then there exists an optimal trading straiégyinimizing the cost functional (II). More-
over, for multiplicative Poissonian prices we show how the optimal strategy can be found explicitly.
The content of the paper is as follows. §& we establish a general existence theorem containing
as a special case result by Pliska and Suzuki [5], without any reference to quasi-variational inequal-
ities. In §3 multiplicative price processes with general Levy noise are considered and the form of
the corresponding quasi-variational inequality for the value function is established. The special case
of Poissonian noise is studied §4. More details on quasi-variational inequalities for discontinuous
process are given in the Appendix.

2. Existence of optimal strategy

We approach the problem of finding optimal solution with the impulse control method. First we prove
existence of solution to the functional equation connected to our problem. Then we show that obtained
solution defines the optimal strategy.

We assume throughout this section thats a Feller process and the functigns continuous.



To formulate the problem in a formal way we take

Ny 2d
Y: = R
as a controlled process. Certainly impulses change only first coordinate, second representing asset

prices is present only for technical reasons. Our goal is to construct a pigcesssfying following
conditions

e there exists an increasing sequence of stopping times, ... with 7; T oo such that first
coordinate ofY; changes only in moments defined @y);—1 o

e second coordinate d&f; is equal to an external price process

e the trading strategy encoded¥his self-financing i.e(N,, — N, _)S;, =0,

e the portfolio wealth is always positive, i.&/;5; > 0,

¢ the number of shares of each stock is non-negative (no borrowing of shares allowéd) .&).

and minimizing the functional

J(Y):IEY0< e—ﬁtF< t> +Ze PTiC(Ny,—, Ny,y Sp)1 Tz<00> (1)

t

r(s) = (v(s))

w N\ _ (NSt NESE
St a NtSt T NtSt

is the proportion functionYy = (No, Sp) is the initial point Gy > 0, Ny > 0, NySp > 0). The cost

of impulses is defined as
~ B M No
e s) - (w(0)w (%)),

Note that between impulses the dynamic&’pis governed by the semigroup

()=o)

for v € C(R%*!,R) and P; — the semigroup fos;.

To derive a functional equation connected to the problem (1) we recall the assumption that
P(S; > 0Vt) =1 and denote

E:{(Z)@de: n>0, n#0, s>0}.

It is obvious that the proces(s‘?) starting from any point ir? does not exitts.
t

where

and
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For functionsv : £ — R we write the equation

ny ny _ . (n,s) ! —pt Ny —pBT N-
U<S>—’CU<S>—1ITle [/0 e F(St>dt+6 MU(&-)]' (2)

where the switching functional is given as
M¢<Z> _ inf{é(n,n+g,s) +¢<”j5> : (”'8%) cE, &= o} . 3)

Notice thatC'(n,n + £,5) = C(0,¢, 5).

The following theorem contains as a special case a result by Pliska, Suzuki [5] concerned with the
case ofS; being a two dimensional Black-Scholes process. Their method was based on the theory of
quasi-variational inequalities (QVI) [1]. We deal directly with the equation (2).

THEOREM 2.1. Assume thatS; is a Feller process anflis a bounded continuous function &%
There exists exactly one bounded continuous solutien s) to the equation (2) and the optimal
strategy for the problem (1) is given by

T = inf{t Z 0: MU(Nt,St) ( ty St)}
=inf{t > 7,1 : Muv(Ng, St) = v(Ny, Se)}s
NTve{neRd (n STv)eE MU( Ti—1" 7—1) (n ST1)+C( Ti— l’n’STi)}

Proof. In order to prove existence of a unique solution to the equation (2) we recall a result from

Zabczyk [7]. Define
h<n) =E ™) [/ e PR (N t) dt}
S 0 St

and letC®(E) be the space of bounded continuous functions.

PROPOSITION 2.2. Assume that(zgt) is a Feller processt’ > 0, h € C*(E), yvh < M(0) for
t

a positive constany and M transformsC?(E) into C?(E). Then equation (2) has exactly one
solutionv € C*(E). Moreover,KC™h tends tov uniformly asn — oo.

In our setting we have to weaken conditions of the above theorem. We define operators

KLy (”) — infE (%) [ / e Pt (F (Nt> + L> dt + e B My (NT)}
S o 0 St S’T

for L € R. Thusk? = K.

LEMMA 2.3. There exists a unique solution to the equatioa Kuv iff there exists a unique solution
to the equation = CLv. Moreover, ifo is the solution ofv = KX thent — % is the solution of
v = K.



Proof. Let? be the solution of = KXv. Then
7 (”) = K% <”>
S S
= inf E (™) [ / e Pt (F (Nt) + L) dt + e B Mo (NT>]
T 0 St S,
) )

L T N, L N.
_ (n,s) —pBt t —BT & T
ﬁHTle [/0 e F<St>dt+e M(v 5) <ST):| .

Thus

A similar reasoning proves second implication. [ |

As a corollary to above results we obtain the following lemma.

St
CP(E). Let F be bounded from below bl L). If there exists positive constamtsuch that

LEMMA 2.4. Assume thak<Nt> is a Feller process) € C*(E) and M transformsC?(E) into

7<h + L/Ooo e—ﬁtdt> = y(h+ g) < M(0)

then there exists a unique solutiore C*(E) of the equationy = X*v. Moreover, the function

v = — % is a unique solution of (2).

Now we shall prove existence of solution to the equation (2) for our specific fun&tifumctional
N, , . N¢\ . , ,
M and process( St>' First notice thak< St> is a Feller process sinc® is a Feller process from
t t
previous assumptions ad; is constant. Observe théat is a continuous function that is defined on
proportions. So it must be bounded, since proportions form a compabtiseR?:

D= {(wl,...,wd) eRY: w; e [0,1], Zd:wi = 1}.
=1

Thus it is straightforward that € C°(E). Let L = min(0, — inf e F(x)). SinceM (0) > K > 0
one can easily find a positive constanguch thaty(h + %) < M(0). Continuity of the cost function

C and the multifunction mappinéZ) into the set of possible impulse destinations implies fHat
transforms the set continuous functions into itself. To showatatansformsC?(F) into C*(E) take
any functiong € C?(E) with o = sup |g|. ThenM g <Z> < K+dk+aandMg (Z) > K —a,s0

Mg € C*(E). Therefore by lemma 2.4 there exists a unique continuous and bounded funttiamn
is the solution tay = Kv. Thus, we have proved the first assertion of the theorem 2.1.

Now, we derive an impulse control for the main problem. Since we know that there exists solution
v to the functional equation (2) we have to prove that the infimum in (2) is attained by some stopping
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time (this would be the moment of the impulse) and that we can find a transaction (chaihge of
that should be made in this moment. It is well known (see Bensoussan, Lions [1], Zabczyk [7]) that
the optimal stopping time is given by = inf{t > 0 : Y; € Z}, whereZ = {y € R?? : v(y) =
Mu(y)}. We only have to prove that for ea¢h, s) € E there existg € RY such tha{n +¢,s) € E

and
MU(Z) — C(0,¢,5) +v<” +§> .

S

Fix (n,s) € E. Both functionsC' andv are continuousy(is also bounded). We first prove that the
infimum is taken over a closed set. In fact this set can be written as

A={¢: (n+&s)€EEs=0={¢:n+&>0,6s=0}\ {—n}.

The self-financing conditiogs = 0 assures that—n) ¢ A, so A is closed. Now take a sequence

&, € Asuch that
C(0,&, 5) +v<n—;€"> — Mv(n) .

S

If ||| - oo thené,, admits a subsequence converging to sgraeFE. Otherwise||¢,|| — co. From
self-financing condition and equivalence of all normsRsrwe obtain that (0, &,,, s) > K + 8]|&,]|

for somes € R,. Hence, the boundednesswimplies thatC'(0,&,, s) + v(&,) — oo, which leads

to contradiction. For completeness of the proof we shall show#that: co a.s. Notice that each
impulse adds a cost of a size at le&St Since the value function is bounded, an infinite number

of transactions in finite time is impossible — its discounted transaction costs would sum up to infinity.
This completes the proof of theorem 2.1. [ |

3. Markov property for proportion process
In this section we assume that the price process is multiplicative i.e.
Si(ys,t) = ySi(s,t), ~veR, seR, >0, t>0, i=1,...,d. 4)

Here(S'(s,t)),. , denotes ari-th coordinate of a price process starting from the psint

>0
S(s,0) = s.

An important example of a multiplicative price process is a solution to the Ito equation

dSi(S,t) = Si(s,t)dZi(t), 1= 1, . ,d, (5)
S(s,0)=s, s€ R?, s> 0.
for a Levy processZi,. .., Zy) with jumps greater thar-1 granting that the solution is a positive
process.

We will show that the proportion process linked $p is Markovian and argue that the control
problem (1) formulated in terms of proportions has an optimal solution. /bdte a simplex of
proportions as defined earlier

d
D ={(wy,...,wq) €[0,1]": > w; =1}.
i=1
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The processV(t) is constant, so, intuitively, we can incorporate it irft¢s, t) using (4). We define
T:RY —D

S1 Sd
T(S) = e .
(5) <S1+"‘+Sd S1+"'+Sd)

Thenw(t) = T(S(5,t)), wheres = (N1(0)S1(0),...Ng4(0)S4(0)) and obviouslyw(t) is indifferent
to scaling of initial conditiors

T(S(5,t)) =T(S(vs,t)), forscalary # 0. (6)
We introduce an operatdr* acting on functions’ : D — R in the following way:
(T*f)(s) = f(T(s), s€RL.

THEOREM 3.1. Let A be a generator for the positive price procésise. almost all trajectories of
(S(s,t))t>0 are positive for a positive initial conditionn Then the proportion process is Markov

with the generator given by

(Af)(w) = (AT f))(w), w e D.

Proof. The proof uses theorem 10.13 in Dynkin [3]. We have to show a few properties of th& map
with respect to the transition function 6s, ). We denote by3 the Borelo-field in R4 and byB

the Borelo-field in D. Let P(t, s,I") be a transition function for the proceS§t), I € 5. We have to
check the following conditions:

) T(RY) =D,
i) T(B) C B,
iii) forall s,s’ € R%such thafl's = T's' andI’ € B we have

P(t,s,T7'T") = P(t,s,T7'I).

The properties i) and ii) are straightforward. Only the third one requires some consideration. If
Ts = T's' then there exists a scalar# 0 such thats = ~s’. Therefore,'(S(s,t)) = T(S(s',t))
from (6). Hence, theorem 10.13 in Dynkin [3] implies that

T*A = AT*.
Takef : D — R, s € R% s > 0 and notice that
(T*(Af))(s) = (AT*£))(s),

(AT (s)) = (AT ))(s5),
(Af)(w) = (AT )T w),

wherew = T'(s) andT ~!w is any element of the counterimagewffor examples. We can simplify
the formula further by noting that € 7-1w. Hence(Af)(w) = (A(T* f))(w). ]

We can reformulate our problem solely in the language of the proportion process. Our trading
strategyll consists of a sequence of stopping timesr, . .. and changes of the proportion process
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at these timesoy, w9, . ... Since the proportion process must be definedRgnalmost everywhere,
we take on the following interpretation of the trading strategy which would allow us to write clearly
the cost functionalw(t) = w(w;,t — ;) for t €]m;, Tit1].

We do not have to limit possible impulses (as in the previous case) to satisfy self-financing con-
dition. It is possible to reach any proportion starting from arbitrary one and satisfying self-financing
condition. Hence, the functional looks as follows

‘](H) =E </0 _Btf dt + Z 'BTZC wz) 1T¢<OO> . (7)

We can use a similar approach as in section 2 to prove a counterpart of theorem 2.1

THEOREM 3.2. Assume thatv is a Feller process anglis a continuous function of. There exists
exactly one bounded continuous solutigiw) to the equation

v(z) = infE (/OT e P f (w(z,t))dt + e_ﬂTMU(w(:L‘,T))>1

Mo(@) = inf (v(y) +clz.y).

(8)

and the optimal strategy for the problem (1) is given by

o =inf{t >0: Mov(w) =v(w)},
=inf{t >7_1: Muvo(w) =v(w)}.

The size of the impulse at the momenis any humber from the set

{weD: Mvo(ws)=v(w)+ clw,,w)}.

Notice that if S is a Feller process then sods Takeg € C®(D), ¢t > 0 and and considej(z) =
Eg(w(m, t)), x € D. The functiong can be written in terms of the price process

§(x) = Eg(T(S(x1))).

Moreover,g o T € C?(E) sog € C*(E), whereE = [0, 00[*\{0} andD C E.

To find explicit solutions to the equation (8) it is convenient to rewrite it in a differential form as
a suitable quasi-variational inequality (QVI). We change the state space in order to have a non empty
interior. We remove the last coordinate and take

D ={wi,...,wg_ 1601 szgl}

— d—1
clu,w) =K+ k> [u' —w'|+ k> (u' —w’)| for K >0,k>0.
= =1

We denote byA the generator for the proportion process in the new state space and make obvious
moadifications to the functiorf. We introduce a switching functional

Muv(w) = ulgg (v(u) + c(w,w)) 9)



for any functionv : D — R. The QVI related to the cost functional (7) takes the form
min (Av(w) — pv(w) + f(w), Mv(w)—v(w)) =0, weD. (10)

Let the price process be two dimensional with the second coordinate being dhaagsthe first

satisfying the Ito equation
dS(s,t) = H(S(s,t—))d((t),

S(s,0)=s, seR, s>0.
Here((¢) is a Levy process with the Fourier transform
E exp ( — is(’(t)) = exp ( — tw(s)),
1 . 1S .
P(s) = 50232 —ius — /]R (e v—-1- 1‘y|§113y>y(dy),

(11)

whereos € Ry, p € R andv is ac-finite measure satisfying

/(1 Ay )v(dy) < oo,
R

We assume thd is chosen in such a way that (11) has a unique weak solution for any initial condition
s > 0. It can be easily verified th&f(s, ¢) is a multiplicative process (cf. (4)) only # is a linear
function. Therefore, without any loss of generality we assumefifat) = x.

PROPOSITION 3.3. The generator for the proportion process for the price process (11) has the
form:
1 2 " 3 ! 2
Au(w) = 57 w(u (w)(1 —w)® — 2u' (w)(1 — w) )
+ ! (w)(1 - w)
—i—/}R (u(qf::;fg) —u(w) — 1y <qwyu’ (w)(1 — w)) v(dy), u€]0,1],
Au(0) = Au(1) = 0.

foru € C?(R).

Proof. Following Bichteler [2], we write the generatgt for S(s,t). Letu € C2(0,1).

Au(s) = lazsu//(s) + psu'(s) + / (u(s + sy) — u(s) — 1|y|glsyu/(s))1/(dy).

2 R

Let
S

T(s) = s+1

The proportion process is obtained’s5 (s, t)). (We recall that the price of the second instrument is
equall.) We apply theorem 3.1 and observe that

iu s oy S 1

ds' \s+1) " \s5+1 (s+1)2

d—Zu s ) s 1 oy s 1
ds? \s+1 s+1) (s+1)* s+1) (s+1)%




Moreover, T~} (w) = %, s +1 = ﬁ which implies our result fow € (0, 1).

1—w’
We extend the generator to the poifit$ in an obvious way. These points are stable for the process
i.e. the process cannot move away from themdsg0) = Au(1) = 0. [ ]

On this stage we can write a QVI for the problem of optimal asset allocation:

min (flv(w) — pu(w) + f(w), Mv(w) — v(w)) =0,w €]0,1],
min (f(w) — Bo(w), Mv(w) —v(w)) =0, w=0,1, (12)

where
Mv(w) =K + iI[lOfl] (klu —w| +v(w)), K >0, k>0.
uel0,

Hence, we conclude that the optimal strategy is described by an impulse fédior- v = 0}.

4. Multiplicative Poissonian prices

For further considerations we restrict ourselves to the case where prices are driven by a Poisson
process. We specify
¢(t) = N(t) =,

whereN (t) is a Poisson process with intensiyand~y € R. The characteristicg:, o, v) of this Levy
process is the followingu = A — v, 0 = 0, v({1}) = v(R) = A. By proposition 3.3 the generator
for the proportion process is given by

Autw) = A (1 (2] = uw)) = (w)uts - ),
We write a QVI for the problem of optimal asset allocation:
min (3 (0 (25) = o0 ) = 20/t = w) = folw) + Flw) Mofw) = o(w) ) =0

w €]0,1], (13)

where
Mv(w) = K + ir[lof” (klu —w| +v(u)), K>0, k=>0.
ue|0,

Moreover, the optimal strategy is described by an impulse reglén—v = 0}. However, we have to
prove that the QVI (13) has an appropriately smooth bounded solution and that this solution satisfies
the functional equation

v(w) = inf </OT e 7 f(w(w, s))ds + e Mo (w(w, T))>. (14)

The functionv(w) defines an optimal strategy as stated in theorem 3.2.
The following theorem could be deduced from general results of Bensoussan and Lions [1] chapter
3, although non-degenerate diffusion term is required there. We therefore present here a direct proof.

10



THEOREM 4.1. Assume thaty # 0. Letv(w) be a bounded continuous function defined@m],
piecewiseC! and with finite left- and right-hand derivatives. #fw) satisfies (13) ir0,1 and
almost everywhere ij0, 1[, thenv(w) solves (14).

Proof. We shall use theorem 5.2 in appendix. First observeTfat) > C'. Moreover, there exists
a sequence,, of C'! functions converging te in sup-norm such that, = v, v}, = v everywhere but
intervals of measure converging@oWe introduce

) = (0 (257 = o)) = w1 - v)

w+1

for w € [0, 1] such that/(w) is defined and continuous. The process, w) has a nonzero drift, so
P(t,w,{v, # v,v], # v'}) — 0 asn — oo for anyt > 0 which proves condition iii) of theorem 5.2.
Moreover, similar argument shows that every set of Lebesgue measure z@&rtfiis of A-measure
Zero, so iv) is satisfied. Therefore

t
Y(w,t) = / e_ﬁsf(w(w, s))ds + e_BTv(w(w,t))
0
is a submartingale, SBY (w,0) > EY (w,0) = v(w) for any stopping timer (f is bounded). The
process
t
Z(w,t) = / e_ﬁsf(w(w, s))ds + e_ﬁTMv(w(w,t))
0

satisfiesZ (w, t) > Y (w, t) sinceMv(w) — v(w) > 0. This leads to the conclusion thatZ (w, o) >
v(w) for any stopping timer. To finish the proof it suffices to show that there exists an optimal stop-
ping timer* (w) such thalf Z (w, 7*(w)) = v(w). Itis true forr*(w) = inf{t > 0 : Mv(w(w,t)) =
v(w(w, b))} [ ]

COROLLARY 4.2. Previous considerations imply thatw) is a unique bounded continuous solu-
tion to (14) and it is the value function for the problem of minimizing (7). Theorem 3.2 shows how
to construct the optimal strategy.

¢From now we assume, without any loss of generality (see the lemma 2.3jj(#has a positive
function. We derive two results.

LEMMA 4.3. If f in non-decreasing of0, 1] thenv is non-decreasing. If in non-increasing on
[0, 1] thenw is non-increasing.

Proof. We sketch the proof of the first fact. The proof of the second one is analogous. Observe that if
x > ' the proportion process satisfie$z, t) > w(z/,t). Denote byy, the potential

vo(z) = E /OOO e_ﬁsf(w(x,s))ds, x € [0,1].

Hencev, is a non-decreasing function. Let
vp(x) = inf E (/ e_ﬁsf(w(:v, s))ds + e PTMuv, 4 (w(x,T))), z € [0,1].
T 0

We can show by induction that, is a non-decreasing function. By theorem 2,2converges uni-
formly to the value function, sov is hon-decreasing. [ |
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LEMMA 4.4. If the difference between minimum and maximumyfat smaller ther3 K the contin-
uation region spans all the interval 1.

Proof. Let f = min,cjoq] f(u), f = max,cp,q) f(u). The value functiony has trivial bounds
f < Bu(z) < f,z €0,1]. HenceMv(z) > v(z) for all z € [0, 1], which implies that the optimal
strategy prohibits any impulses. [

Assume now that there are no proportional costs, ke= 0. In this case all impulses aim at
the same target point* € [0, 1] in which the functionv attains its minimum. Hence, if is non-
decreasing impulses can only occur on some intdbyal] and they aim atv = 0 (minimum ofv).
We know, by direct calculation, thaf0) = f(0)/3. The potential off in 1 equals tof (1)/5. Hence,
the impulse interval is nonempty if and only:ifl) > v(0) + K. The same reasoning applies to the
case of non-increasinf}

4.1. Recursive formulae

We derive a solution to (13) for a specific case of nonempty impulse region atoamd absence of
proportional transaction costs= 0. We do not require monotonicity gf. However, we assume that
f > 0, which is no restriction (see lemma 2.3).

We construct an iterative procedure to find the solution to the QVI (13). We&el = H, H € R
for w € [bo, 1]. The functionv is undefined outside of the interviah, 1]. A pair H,by € R x [0, 1]
is used as an index for the set of solutions.

To formulate the lemma we need to define a sequence

by,
2—b,’

bn+1: n:(),l,...

and introduce the equation being a differential part of (13)

2w

Mo (25) - o)) =t = w) - o) + fluw) <o (15)

We note that the sequenggis strictly decreasing with the limit equal o

LEMMA 4.5. Assume that,, is defined orjb,,, 1] and satisfies (15) fav € [b,, by]. We definev,, 11
on [b,+1, 1] by the formula:

2u
) b o (2 + f(w)
b1 (1) = u<w>< - [ 7<(u)+u11> — du), w € [busr. bl

Upt1(w) = vp(w), w € [by,1].

where¢ = 2£2 and

Thenwv, 1, satisfies (15) fow € [b,,11, bo].
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We can easily see that

o () 4 )
Unt1(w) = (1 ww>§<<1vn(l;00))£ - /wb ) <1<::>15>u:; u)du), w € [bp+1,bol.

Proof of the lemma. Here we show the derivation of the above formulas. We solve

bo

v <w2+w1> + f(w) — M(w) — ' (w)w(l —w) — Bv(w) =0, w € [byi1,by)
v(w) = vy (w), w E [by,1].
First we sort out the homogeneous case

—(A+ Bo(w) — ' (w)w(l —w) =0,

which we simplify to
—&v(w) = v'(w)w(l - w)

for ¢ = # We obtain the solution

v(w) = ¢ <1;“’> -

By settingc = ¢(w) and plugging into the generic equation we obtain

2w

P <w“2 e
V(50 wa-w

Remark. Functionv(w) is unbounded ofp, 1]. It converges tac asw — 0 and to0 asw — 1.

We expect that in the majority of cases the optimal control is determined by the nubnkers<
¢ < b < 1 and consists of making impulsesdavhen the proportion process exits from the interval
[a, b]. Such strategies will be denoted By, ; .. Now we formulate the conditions under which this is
really the case.

Let vy, zr(w) be limit of v, with initial condition vo(w) = H, w € [by,1] in the sense that
Vpg, 11 (W) = vp(w), w € [by, 1]. Definedy ;= sup{w < by : vy, u(w) = H}.

THEOREM 4.6. Assume that the following conditions hold:
1) infuepy 01 001 (w) = H - K,

2) SUPwe(by 41] vpo, 1 (w) = H,

3) f(w) = BH, w e [bo,1],

b*
4) Fw) + Mot (£35) = 0+ OH, w e [ b ],
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5) f(w) > fH, we [0, 2]

H

Then
v(w) = Lgwsby 30001 (W) + Lweny 4

is a solution to (13). Moreovef,[bg bo.co where
0

c= arginfwe[bgoﬂ,l]Ubo,H(w)’
is the optimal strategy.

Proof. The conditions grant that is piecewiseC'! with finite left- and right-hand derivatives and
satisfies (13) in all points bub,, ),,en. By theorem 4.1 is a value function for the control problem
of minimizing (7). [ |
Remark. If f(by) > SH thenv'(bp—) < 0 and the condition 2) is satisfied.

If we know a priori that the functiom attains its minimum in the first intervab,, by] then the
target pointu* can be characterized by the following transcendental equation

1 AH+ fu*) H _/% AH A+ f(w) (16)

v(u*) A+ B v(bo) « yr(w)u(l —u)

To obtain above equation we observe that*) = 0. From (15) we have
AH — (B+ Nv(u®) + f(u*) = 0.

Hence
AH + f(u)

o) =375
and we take the formula far(v*) from lemma 4.5.

If we assume that
1 AH + f(u)

viu) A+
is decreasing im, then the equation (16) has at most one solution. We recallfthab which makes

the expression under integral non-negative.
Similar, but more complicated equations can be obtaingd,iby] is replaced byby 1, bx].

4.2. Impulse regions

In this section we will show that for any reasonable regidn [0, 1] there exist an evaluation function
f such that the optimal control impulse region is exadtly
We introduce a family of functions:

.wfhw”ccwam,QWWHGMU,QWMZL 4y =,

(2) (2)

. (G €lal), g a) =ga(r) =1,

gl,r,a)0§l<r§1,aeR+
Glra() =0 G501 () = o,

dw 9l lro

c o), g2

lLr,a

(Lr)
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o (0 ocreraer, CCHOD, 2| €lal), gl =1, Lol =a,

for somea € (0, 1).

Now, we proceed with the construction of the functipstarting from the right end. We assume
that on the impulse region the value functioms equal tol. We will grant that the value function
is bounded byl. Hence, by setting the impulse cdst = 1 — min v, we obtain the solution to the
QVI. The following lemma shows how to extend the functibso as to keep to the required impulse
region. Before, we introduce a notatio; b] < ¢ if a < ¢ andb < ¢. Analogously,a,b] < [c,d] if
[a,b] < cand[a,b] < d.

LEMMA 4.7. Assume that the value functianand f are defined o, 1] andv}[b = 1, for some

b > b. For any interval) < [I,r] < b there exists an extension g¢fto [I, 1] such that is the
solution to the QVI onl, 1] with [I,r] being a part of the impulse region andb| — a part of a
continuation region.

2w

1+w

W <L vl =1 F@) = (B+N +l(=—) >0, wellr].

Proof. We set
A+ 8= 2o 25) - 1)
~vb(1 — b) '

We extendf on(r,b) in such a way that| , = gfb)’a}[r b 1€

o =

2w
1+w

fw) =~y (w)w(l —w) + Bo(w) + )\(U(w) - v( )), w € [r,b).
The functionf is continuous orr, b). Moreover, the condition on the derivativgb) = « implies
continuity inb.

To definef on|l, ) we have to assure that

f(w)—(ﬁ+A)+Av(12+ww) >0, we L], (17)
We check that 5
Fr) = (B+X) + o IT) -0,

sincev’(r) = 0. We extendf to [/, ) in any way that grants the inequality (17) and continuity of
[ ]

THEOREM 4.8. Let (I,,),—1... ~ be a family of closed intervals ij), 1] with non-void interior sat-
isfying I,,+1 < I,. There exists a functioyi and the impulse cost’ > 0 such thatJ,,_,
is the impulse region of the optimal strategy.

.....

Proof. If I; = [b,1] we setv\[ = (3. OtherwiseJ; = [I,7] < 1. We put

b1]=1’ | [b.1]

b, v‘[ =1,

U{[r,l] = 97(“ 1.7]
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taking appropriatef as in the above lemma. For next intervals, excluding the last, we apply the
lemma. Let/y = [I, 7] be the last interval. If = 0 then we apply the lemma. Otherwise, we proceed
as follows. We take
21
g g e A 8= 0 2) = @)
o4) = Jra N1 =1) '

We definef appropriately, as in the lemma. Foito be the solution to the QVI, we have to specify
the impulse cosK. We putK = 1 — minv. Now, we observe thaf is a continuous function on
[0,1], v € [a,1] andv is a solution to the QVI. ]

The above theorem can be generalized to the case of infinite number of disjoint intervals with
nonempty interior converging t@

5. Appendix A

We state and prove here an auxiliary result needed in the proof of the theorem 4.1.

Let X (¢,z) be a Markov process on the spa@dg, £) with respect to the filtratior{7;) and a
semigroup(P;). By (A, D(A)) we denote its generator. We formulate and prove a general result
giving the probabilistic interpretation of the solution (in some sense, specified later) to the equation

Av(w) — pv(w) + f(w) =0(=>0,<0).
DEFINITION 5.1. A setB < £ is of null . A-measureif

Ve e EVt >0 Plp(x) =0.

THEOREM5.2. Letv : E — R be a continuous function such that there exists a sequence of
functionsv,, € D(.A) and a functior satisfying
i) v, — vinsup-norm,
ii) hisdefinedA-a.s.,
ii)
t t
E / e " Av, (X (s,2))ds — E / e P*h(X(s,z))ds,
0 0
V) h(z)— pv(z) + f(x) > 0 .A-a.s., for a continuous functiofi: E — R.
Then .
Y(t,x) = e_ﬁtv(X(t,:c)) —v(x) + / e_ﬁsf(X(ac, s))ds
0

is a submartingale (if it is well-defined and integrable).

For the proof of the theorem we will need the well-known lemma

LEMMA5.3. Let Z(t),t > 0 be an adapted and measurable proce&inFor any Borel function
f:Ry xR SR

E </abf(u,Z(u))du ]—'a> = /abE(f(u,Z(u))|.7-"a)du

if left- or right-hand side exists.
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Proof of the theorem. The proof consists of two parts. First we show that (¢, z) > 0. Then we
exploit Markov property ofX (¢, ) to show that it is a submartingale. We have

d
%Ptvn = P, Av,,

sincewv,, is in the domain of4. Hence

d
ae*ﬂtPtvn = e P P Av, — Be Pt Pu,.

We integrate above equation and we obtain
t t
e PP, — v, = / e PP, Av,ds — ﬁ/ e P P, ds.
0 0

We change the order of integration and get

E (e_ﬁtvn (X(t,z)) — vp(z) — /Ot e P <.Avn (X(s,2)) — Boy (X(s,x)))ds) = 0.

We letn — oo and by i), iii) we get

E <eﬁtv(X(t,x)) —v(z) — /Ot e P (h(X(S,x)) — ﬂv(X(s,x)))ds) =0.

¢From condition iv) we have (h — fv) < f, so

EY(t,z) =F <e% (X(t,z)) —v(z) + /Ot e P f (X (a, s))d5> >0,
that can be written equivalently
=P Pu() — v() + /0 PP, f()du > 0. (18)
We shall show thaY (¢, z) is a submartingale. We take< s < ¢ and write
E(Y(z,t)—Y(2,5)| Fs) =
=FE <eﬂtv(X(t, ) — e (X (s,2)) + /t eﬂ“f(X(u,:c))du]fs>

S

=E (e v(X(t,2)) | Fs) — E (e #v(X(s,2)) | Fs) + E (/t e U f(X (u,z))du ‘ .7:5).

s

¢ From Markov property oX (¢, z) we get
E (e‘ﬁtv(X(t,x)) ‘ .7-"3) =ePtp,_w (X(s, m))
Lemma 5.3 implies

E (/: e_ﬁuf(X(u,x))du ) ]:s> = /: e_’BuPu_sf(X(s,x))du.
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Combining the above results leads to
E(Y(z,t)—Y(2,5)| Fs)
t
— e P (eﬁ(ts)Pt_sv(X(s,x)) —v(X(s,)) +/ eﬁ“Pu_sf(X(s,x))du> >0

from (18). [ |

COROLLARY 5.4. Under the assumptions of the above theoreni(if) — Sv(x) + f(x) < 0
(=0) A-a.s. ther (¢, x) is a supermartingale (martingale).
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