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The Problem

The problem of quantile estimation has a very long history and abundant literature:

in out booklet we shall quote only the sources which we directly refer to.
We are interested in small sample and nonparametric quantile estimators.

”Small sample” is here used as an opposite to "asymptotic” and it is meant that
the statistical inference will be based on independently and identically distributed
observations X1,...,X,, for a fixed n. A short excursion to asymptotics is presented
in Chapter 6.

”Nonparametric” is here used to say that observations Xi,...,X,, come from an
unknown distribution F' € F with F being the class of all continuous and strictly
increasing distribution functions and, for a given ¢ € (0,1), we are interested in
estimating the gth quantile x, = z,(F) of the distribution F. If ¢ is fixed (for
example, if we are interested in estimating the median only), the conditions for F
may be relaxed and F may be considered as the class of all locally at z, continuous
and strictly increasing distributions; we shall not exploit this trivial comment. The
nonparametric class F of distributions is rather large and one can hardly expect to get
many strict mathematical theorems which hold simultaneously for all distributions
F € F. An example of such a theorem is the celebrated Glivenko—Cantelli theorem
for the Kolmogorov distance sup |F,, — F|. It appears that the class F is too large
to say something useful concerning the behavior of L-estimators; classical estimators
and their properties are discussed in Chapter 2. The natural class of estimators in F
is the class 7 of estimators which are equivariant under monotonic transformations of
data; under different criteria of optimality, the best estimators in 7 are constructed
in Chapter 3.



Our primary interest is optimal nonparametric estimation. Constructions of optimal
estimators are presented in Chapter 3 followed by their applications to parametric
models (Chapter 4) and some results concerning their asymptotic properties (Chap-
ter 6). An excursion to optimal interval estimation is presented in Chapter 5. In
Chapter 3 to Chapter 6 we present almost without changes previous results of the
author published since 1987 in different journals, mainly in Statistics, Statistics and

Probability Letters, and Applicationes Mathematicae (Warszawa).

Observe that in the class F of distributions, the order statistic (X1.,,. .., Xn:n ), where
Xin < ..., < X,.n, is a complete minimal sufficient statistic. As a consequence we
confine ourselves to estimators which are functions of (X1.,,, ..., Xp.n). Some further
restrictions for the estimators will be considered in Chapter 3. We shall use T'(¢) or
shortly T as general symbols for estimators to be considered; the sample size n is

fixed and in consequence we omit n in most notations.



2

Classical Approach (inverse of cdf)

For a distribution function F, the gth quantile z, = x,(F) of F' is defined as z, =
F~Y(q) with

(1) F~Hq) = inf{z: F(z) = q}.

For F € F and ¢q € (0,1) it always exists and is uniquely determined. The well
recognized generalized method of moments or method of statistical functionals gives

us formally

(2) T(q) = F, '(q) = inf{a: Fu(z) > ¢}

as an estimator T'(¢q) of x,; here F,, is an empirical distribution function. Different
definitions of Fj, lead of course to different estimators 7. One can say that the variety
of definitions of F;, (left- or right-continuous step functions, smoothed versions, F;, as
a kernel estimator of F', etc) is what produces the variety of estimators to be found in
abundant literature in mathematical statistics. We shall use the following definition

of the empirical distribution function:

® Fale) = 5 3" 1o (X0).

where the indicator function 1(,0071,] (XZ) = 1if X; < x and = 0 otherwise. Note that

under the definition adapted, the empirical distribution function is right-continuous.

There are two kinds of estimators widely used. Given a sample, if F},(x) is a step
function then estimator (2) as a function of ¢ € (0,1) takes on a finite number of
different values, typically the values of order statistics from the sample; if F,(x) is
continuous and strictly increasing empirical distribution function, so is its inverse
Qn(t) = E;(t), t € (0,1), the quantile function, and T(q) can be considered as a
continuous and strictly increasing function of ¢ € (0,1). An example give us esti-
mators presented in Fig. 2.2.1 (Sec. 2.2). In what follows we discuss both types of

estimators.



A natural problem arises how one can assess quality of an estimator, compare distri-
butions, or at least some parameters of distributions of different estimators of a given
quantile, or even the distributions of a fixed estimator under different parent distri-
butions F' from the large class F? In other words: how one can assess the quality of
an estimator in very large nonparametric class F of distributions? No characteristics
like bias (in the sense of mean), mean square error, mean absolute error, etc, are
acceptable because not for all distributions F' € F they exist or if exist they may be

infinite.

What is more: it appears that the model F is so large that assessing the quality of
an estimator T of the ¢-th quantile z,(F') in terms of the difference T'— z,(F') makes
no sense. To see that take as an example the well known estimator of the median
mp = z95(F) of an unknown distribution F' € F from a sample of size 2n, defined
as the arithmetic mean of two central observations Ma,, = (Xy.2n + Xnt1:20)/2. Let
Med(F, Ms,,) denote a median of the distribution of My, if the sample comes from
the distribution F'

Theorem 1 (Zielinski 1995). For every C' > 0 there exists F' € F such that
Med(F, Man) — mp > C.

Proof. The proof consists in constructing F' € F for a given C' > 0. Let Fj be the
class of all strictly increasing continuous functions G' on (0, 1) satisfying G(0) = 0,
G(1) = 1. Then F is the class of all functions F satisfying F(z) = G((z —a)/(b—a))
for some a and b (—oo < a < b < 400), and for some G € Fy.

For a fixed ¢ € (§,1) and a fixed € € (0, 1), let Fy. € Fy be a distribution function
such that

1 1 1
Fo(2) =1 Fe)=z-¢
t, (2> 5 te(t) 5 €

1 1 1
Ft’g(t—z): 5—25, Ft,E(t—f— 1)21—26

N —
N—

Y

NI

Let Y7,Y5,...,Ys, be a sample from F; .. We shall prove that for every t € (
there exists € > 0 such that

1
(4) Med (Ft75, §(Yn:2n + Yn+112n)> <t

Consider two random events:
Al = {O < Yn12n < t? 0 < Yn—|—1:2n < t},

AZZ{OSYn:QnSt_

Y

1
S Yn—|—1:2n S t+ Z}?

e~ =
N =

W



and observe that 4; N As = () and

(5) A1UA2C{ (Ynion + Yog12n) < th

If the sample comes from a distribution G with a probability density function g, then

the joint probability density function h(z,y) of Y,.2n, Y41 2y is given by the formula

) = -G @) - G g(olat), 0z <y,

and the probability of A; equals

Po(Ar) :/Otdm/;dyh(x,y).

Using the formula

pt+q—1

To+a) [ -1 _pa-1g — PHa—1)\ joq _ ypra-1-j
i) J, 00 ;( § e,
we obtain ,
- 2n 2n—j
Pa(Ar) = G(t) (1-GH)™" .
o= 3 (5)

For Pg(As) we obtain

Observe that

and



Let €1 > 0 be such that
()G

(Ve < e1)

and let 5 be such that
9 1 2n
(Ve < e9) Z( " —) .

Then for every e < & = min{e1,e2} we have C;(e) + C2(¢) > 1 and by (5) for every

N =

Y

e <E,
1
(Yn:2n + Yn+1:2n) S t} > Cl (5) + 02(5) >

PFt,s{§

which proves (4).
For a fixed t € (i, %) and € < g, let Y, Y7,...,Y5, be independent random variables

identically distributed according to F; ., and for a given C' > 0, define

1
= —Yont1-ion
i=1,....2n.

Xi:2n:C'2 1
-
2

Let F' denote the distribution function of X. Then
1 1

1
Hence F_1(§) =0 and
1
(Xn:2n + Xn+1:2n) < C} - P{§ (Yn:Zn + Yn—l—l:Zn) > t} <

N —

1
P{§
L]

1
Thus Med (F, — (Xnon + Xn+1:2n)) > C, which proves the Theorem.

It is obvious from the proof of Theorem 1 that similar result holds for all non-trivial
L-estimators; "non-trivial” means that two or more coefficients o in ) | «; X, do not

equal zero.
We may overcome the difficulty as follows. If T = T'(q) is an estimator of the gth

quantile of an unknown distribution F' € F, then F(T) may be considered as an
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estimator of the (known!) value q. The distribution of F(7T) is concentrated in the
interval (0,1) and we exactly know what it is that F(T") estimates. Of course all
moments of the distribution of F(T") exist and we are able to assess quality of such
estimators F' in terms if their bias in mean (or bias), bias in median, mean square
error (MSE = \/Er(F(T) — q)?), mean absolute deviation (M AD = Ep|F(T) —q|),
etc, as well as to compare quality of different estimators of that kind. Some estimators
T have the property that F(7T') does not depend of the parent distribution F € F;

they are "truly” nonparametrical (distribution-free) estimators. Estimators which do
not share the property may perform very bad at least for some distribution F' € F
and if the statistician does not know anything more about the parent distribution

except that it belongs to F, he is not able to predict consequences of his inference.

In this Chapter we discuss in details some well known and widely used estimators T’

and assess their quality in terms of F(T)).

2.1. Single order statistics

By (3) and (2), as an estimator of the gth quantile we obtain (cf David et al. 1986)

W { Xngin, if nqg is an integer,
T =
q

X(ngl+1:m> if ng is not an integer.
where [z] is the greatest integer which is not greater than x.

The estimator is defined for all ¢ € (0, 1) but due to a property of F,, as defined in (3)
(continuous from the right and discontinuous from the left) it is not symmetric. We
call an estimator of the ¢-th quantile Xj4).,, symmetric if k(1 —q) = n — k(q) + 1.
A rationale for condition of symmetry for an estimator is that if a quantile of order ¢
is estimated, say, by the smallest order statistic Xi.,, then the quantile of order 1 — ¢
should be estimated by the largest order statistic X,,.,. For estimator acgl), if ng is
not an integer, and (k — 1)/n < ¢ < k/n for some k, then [ng] =k — 1, :Egl) = Xkn,
[n(1 —¢q)] =n—k and :Egl_)q = Xp—k+1:m. If, however, nqg is an integer and ¢ = k/n

then mgl) = Xt but 1 —q =1—-Fk/n, [n(1 —¢q)] = n—k and 2 = Xk

1—q
To remove the flaw we shall define x((ll) = X, if ng is an integer and ¢ < 0.5, and
xél) = Xpqg+1 if ng is an integer and ¢ > 0.5. Another disadvantage (an asymmetry)

of the estimator xgl) is that if ¢ = 1/2 (estimating a median) and n = 2m for an
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integer m, then the estimator equals X,,., instead of being a combination of two
central order statistics X,,., and X,,11.,. We may define, in full agreement with
statistical tradition, x(()lg) = (X + Ximt1:n)/2 but that is not a single order statistic
(see next Section) and we prefer to choose X,,., or X,,11., at random, each with

probability 1/2.

Eventually we define the estimator (we call it standard)

(6) iﬂq - Xk(q):n
where
( ng, if ng is an integer and ¢ < 0.5,
nqg+ 1, if nqg is an integer and ¢ > 0.5,
k(q) =

g +10,1/2(U), if ng is an integer and ¢ = 0.5,

( [ng] + 1, if ng is not an integer.

Here U is a uniformly U(0, 1) distributed random variable independent of the obser-
vations X1,..., X, and 1, (:1;) is the indicator function which equals 1 if z € (a, b)
and 0 otherwise. In other words: to estimate the median (i.e. for ¢ = 0.5) take the
central order statistic if the sample size n is odd or choose at random one of two
central order statistics if n is even. Note that 2, may differ from the typical xél) only
when estimating the quantiles of order ¢ = j/n,j = 1,2,...,n i.e. if nq is an integer.

The distribution function of ,, if the sample comes from a distribution F', is given

by the formula

(3 O E@I-F@I + 1) (F@L-F@)?, if ng s an ineger
. 7mE and ¢ = 0.5
S (1) F )1 — F(a))n, otherwise
\ j=k(q)

If ¢ = 0.5 then #, is a median unbiased estimator of the median F~!(1/2) and also
Ez, equals the median, if the expectation exists. Estimator acgl) does not have that

property.

Sometimes estimators :1:((12) = X[ngins x(g?’) = X[(n+1)q]:n» OF x((;l) = X[(n+1)q]+1:n are

used. The statistics are however defective in a sense:



:1:((12) = X[ngl:n = Xon for ¢ < 1/n so that the statistic is not defined for ¢ close to

zero, but it is well defined for all ¢ in every vicinity of 1; an asymmetry arises. The

order statistic X,,.,, is never used;

a:,(f’) = X[(n41)q):n 1S DOt symmetric and not defined for ¢ < 1/(n + 1);

gc,(14) = X[(n+1)g]+1:n 15 not symmetric and not defined for ¢ > n/(n + 1) though well

defined for all ¢ € (0,n/(n +1)).

One can argue that there is no sense to estimate quantiles of the order close to 0 or
close to 1 if a sample is not large enough. Then, for example, the following estimators
give us a remedy
R Xinglns if {nq} < 0.5, A Xinglins if {nq} < 0.5,
%:{&MHW if fng} > 05, %:{&mﬂm if {ng} > 0.5.
Here {z} = x—[z] is the fractional part of = (”the nearest integer principle”). Another
construction gives us
5y = {X[(nﬂ)qm, ?f q < 0.5, or B — {X[(nﬂ)q]:n, ?f q <0.5,
X((n+1)gl+1:n, if ¢>0.5. 1 X((n+1)gl+1:n, if ¢=>10.5.
The former is not defined outside of the interval [1/n,1/n), the latter outside the
interval [1/(n + 1),1 — 1/(n 4+ 1)); observe that the intervals are not symmetric.

However, a more serious problem is to choose between <{nq} < 0.5,{ngq} > 0.5)
or ({nq} < 0.5,{nq} > 0.5) in the former case or between (q < 0.5, > 0.5) and

(q < 0.5,q > 0.5) in the latter case; or perhaps introduce a new definition of the
estimator for ¢ = 0.5. A possible corrections of the definitions when estimating the
median from a sample of size n, if n even, is to take the arithmetic mean of central
observations, which is a common practice, but then the estimator is not a single order

statistic which we discuss in this Section.

Another approach consists in defining an estimator as in (2) with a modified empirical

distribution function, e.g.
1 n
Fn(x; w) = E Z wn,il(—oo,m} (Xz)
i=1

("weighted empirical distribution function”) instead of (3). For example, Huang and
Brill (1999) considered

-2
[1_”—], i=1n,
Wi = 1 n(n—1)

. i=23....n—1

N =

n(n—1)

9



which gives us

A

xHB(Q) = X[b]+2:n7 qc (07 1)7

with

0.8

06—+

0} A —

Y O E—

0 I I I I
0.2 0.4 0.6 0.8 1

Fig.2.1.1. Two estimators
from the sample (0.2081, 0.4043, 0.5642, 0.6822, 0.9082)

generated from the uniform U(0, 1) distribution

Estimator X, q41:n - solid line; Huang-Brill estimator -dots

Solid lines and dots are at the same levels X1.,,, X2.n, etc

Note that both estimators take on the values of single order statistics (Fig. 2.1.1):

k—1 k
ZACq:Xk;n if T<q<ﬁ

and

kE—n/2—-1 1 k—mn/2
o<+

1
2 n(n —1) 2 /nn—-1)
with suitable modifications if ng is an integer. The Huang-Brill estimator Z;5(q) is

defined on the interval (0.5 — 0.5\/n/(n —1), 0.5+ 0.5y/n/(n —1)) D (0,1).

How can we assess the quality of the estimators and to decide which estimator to

i‘HB(Q) = Xk:n iff

choose?

10
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Fig.2.1.2.

Distribution of &, for N (0, 1) [dashes] and E(1) [solid] parent distributions

The variety of distributions leads of course to a variety of distributions of a given
estimator. As an example consider distributions of &, for ¢ = 0.3 if the sample of size
n = 10 comes from the normal N(0,1) and from the Exponential E(1) distributions
(Fig. 2.1.2).

An advantage of single order statistics as quantile estimators T=T(q)= Xj., for
some k is that if a sample Xi,...,X,, comes from a distribution F' € F then the
distribution of F(T) = Uy., does not depend on the parent distribution; here Uy.,
is the kth order statistic from the sample from the uniform U(0,1) distribution. It
follows that the distribution of F'(T) is the same for all F' € F; that for n = 10 and
q = 0.3 as above is presented in Fig. 2.1.3; the quality of the estimator in the whole

class F is completely characterized by that distribution.

Fig.2.1.3.

Distribution of F(z,) for n =10 and ¢ = 0.3
if the sample comes from any distribution F € F

Bias, median-bias and their absolute values, M SE and M AD of the estimators are

exhibited in Fig. 2.1.4 - 2.1.7.
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In Fig. 2.1.8 and Fig. 2.1.9, MSE and M AD of both estimators are compared
for samples of size n = 10 and n = 20 respectively. The figures demonstrate that
manipulations with empirical distribution function may introduce some asymmetry

in estimators as well as in their quality.

0.1

0.1 —

P

\M\[\ M\ f\[\ f\f\ I\[\M\ f\f\ f\f\ f\f\ 0.05 -

-0.1 —

0
02 04 06 08 1

a) Median bias of Z4
n=10 dots, n=20 solid b) Absolute median bias of Z4

n=10 dots, n=20 solid

0.2

0 T T T T
0.2 0.4 0.6 0.8 1

c) MAD of z4: n=10 dots, n=20 solid

Fig. 2.1.4.
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0.12

0.1 —

D

\N\N\[\ i\f\ i\f\ ;'\I\ f\f\ i\r\ oy 0.05 —
A T

-0.1 —

0 +——— T
02 04 06 08 1

a) Bias of Z4: n=10 dots, n =20 solid
b) Absolute bias of Z4: n=10 dots, n=20 solid

0.2

0 I I I I
0.2 0.4 0.6 0.8 1

¢) MSE of £4: n=10 dots, n=20 solid

Fig. 2.1.5.
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a) Median bias of 5

n=10 dots, n=20 solid

0.2

0.2

0.2 0.4 0.6 0.8 1

b) Absolute median bias of g

n=10 dots, n=20 solid

|
0.2

0.4

|
0.6

Fig. 2.1.6.
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|
0.8 1

¢) MAD of Zyp: n=10 dots, n=20 solid




0.2

0 ‘-'l B l = .8 l i |
0.2 0.4 0.6 0.8 1

a) Bias of 2 p: n=10 dots, n=20 solid
b) Absolute bias of £ 5: n=10 dots, n=20 solid

0.2

0 I I I I
0.2 0.4 0.6 0.8 1

¢) MSE of gp: n=10 dots, n=20 solid

Fig. 2.1.7.
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0.2 0.2

[n]
P

[ [ [ [
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

n=10 n=20

Fig. 2.1.8. MAD of up - dots, &4 - solid

0.2 ¢ 0.2

[n]
P

[ [ [ [
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

n=10 n=20

Fig. 2.1.9. MSE of Zup - dots, Z4 - solid

Though not fully satisfactory, we choose estimator Z, as a benchmark for assessing

other estimators below.

To the end we return to estimators which we rejected as ”defective” at the very
beginning of this Section. Fig. 2.1.10 exhibits absolute median-bias and M AD of
estimators :B,(f) = Xingl:ns x((f) = X[(n+1)q)m> %(14) = X[(n+1)q]+1:n, and the standard

estimator Z,.
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0.2 0.2

I I I I -0.2 T T T T
0 02 04 06 08 1 0 02 04 06 08 1

MAD Median Bias

Fig. 2.1.10. Mean Absolute Deviation and Median Bias of four estimators

Bq Xinglin oo X{n+1)ghn —==-=--- X[(n+1)al+1m

We clearly see that from all those estimators only the estimator &, deserves some

attention.

When estimating the median of an unknown distribution F' € F from a sample of
an even size 2n, estimator £, is randomized: it chooses X,,.2,, or X, 4 1.2, With equal
probability 1/2; otherwise the estimator is not randomized. Let Lg(T) denote a loss
function of an estimator 1" when estimating the median of F'. Then the risk of the

estimator 1" is ErLp(T). For Z( 5 from a sample of size 2n we have

Ep(Zo.5) = %(EFL(Xn;Qn) + EFL(XnHQn))
_ %(EL(U,%%) + EL(Unt121))
1 1 2n)! i . 1 o)l i .
N 5[/0 L(z) (n(—lg!n!w (I-x) dl"‘i‘/() L(@%m (1—x) dw]
L (@2n—-1)!

= ooy A

L(Un12n—1) - EFL(Xn:Zn—l)

!

which means that the risk of the randomized estimator Zg s from a sample of size
2n is is equal to the risk of the non-randomized estimator Zg s from the sample of
size 2n — 1. It follows that instead of randomization we may reject one observation
from the original sample: randomization for the median amounts to removing one

observation.
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2.2. Local Smoothing

Given ¢, the local smoothing idea consists in constructing an estimator of the g¢th
quantile x, on the basis of two consecutive order statistics from a neighborhood
of X[g+1:n- Perhaps the best known example is the sample median which for n
being an even integer is defined as the arithmetic mean of two ”central” observations:
(X2 + X2 41.0)/2. A possible rationale for the choice is as follows. According to
Definition (3)

Fo(Xg) = Jim Fu(Xgirm — 1) = %

The left-continuous version of the empirical distribution function

/ ]‘ g
R = 31 (x)
=1

satisfies )

028, Fp(Xgm +1) = F(Xg 1) = 2
so that there is no reason to choose X 2o instead of X 241 OF vice versa as an es-
timator for the median x5 and to define the sample median depending on a choice
of the right- or a left-continuous version of the empirical distribution function. Sta-
tistical tradition suggests to take the mean of both. Another point of view on the
choice (X o+ X %+1:n) /2 as an estimator of the median was presented in the previ-
ous section when discussing the cases of {ng} = 0.5 or ¢ = 0.5. It appears that the
resulting estimator performs not very well in the very large statistical model F (see

Theorem 1 above).

More generally, a simple linear smoothing based on two consecutive order statistics

leads to the estimator

(7) &, = (1—(n+1)q+[(n+ 1)q])X[(n+1>q]:n+ ((n+ 1)g— [(n+1)Q]>X[<n+1>q]+1:n

which however is naturally defined for ¢ € [1/(n + 1),n/(n + 1)) only. A reason
for choice of (n + 1)q in (7) instead of nq as in (6) is that as a special case of (7)
we obtain the central value Xn 1., of the sample (X1., ..., Xy.n) if nis odd, or the

arithmetic mean (X 2.t Xz +1:n)/2 of two central observations if n is even. Examples

18



of estimators (6) and (7) as functions of the order ¢ of the quantile to be estimated,

for a fixed sample from the uniform U (0, 1) distribution, are exhibited in Fig. 2.2.1.

1 1
0.8 — 0.8 —
0.6 — 0.6 — -
0.4 — 0.4 —
0.2 — 0.2 —
0 [ [ [ [ 0 [ [ [ [
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
Estimator g Estimator &4
Fig.2.2.1

Estimators Zrs and &4 as functions of ¢ € (0,1)
from the sample (0.1375, 0.4716, 0.6575, 0.8741, 0.9398)
generated from the uniform U(0, 1) distribution

In opposite to the standard estimator £, from the previous Section, %, 5 is not " truly”
nonparametric estimator: it is obvious that the distribution of Z,s from the sample
depends on the parent distribution of that sample (which is also the case for z,), but
it appears that the distribution of F(#,s) also depends on the parent distribution
F. It is a result of the fact that the estimator is not equivariant with respect to

monotonic transformations.

Theorem 2. If the sample comes from the uniform U (0, 1) distribution, then for the

estimator ;s we have

P{i,s(q) <s}=DB(s;k+1,n—k)+
(—1)k+1 (ﬁ)k S (CD()(E) B — k4 1), ifs <A

(0¥ (25) Sho(-D () Blssk—i+1n—k), ifs> A

where k = [(n + 1)q|, A = {(n + 1)q}, B(x;p,q) is the distribution function of the
Beta random variable B(p, q) at x:

B(z;p,q) = % /Om P11 — )7 dt,
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and B(x;p,q) = 1 — B(x;p, q) is the tail of that random variable. Another, perhaps

more suitable for numerical calculations, formula is

P{#,s < s} =B(s;k+1,n—k)

min{1,s/\}

i n! / s — \u K (1 . u)n—k—ldu.
Hn—k—1) 1=\

S

Proof. The formula may be obtained as follows. The join probability distribution

function of Xg.,, and Xgy1.,, is

n! b1 1
= 1—y)" <zr<y<l1
f(@:y) (k—l)!(n—k—l)!w ( v) » Osz=sy<
and
(8) P{iLSSS}:/ /f(x,y)dxdy,
S
where
S={(z,y):(1-Nz+Iy<s, 0<z<y<1}=AUB
with
a=lo<y<s 0<a<y)
and

- A
B:{sﬁyﬁmin{l,i},ﬂﬁxﬁs y}

(see Fig.2.2.2).

o \s=0.6

i I I I I
0 0.2 0.4 0.6 0.8 1 7

Fig.2.2.2.Integration areas in (8) for A = 0.3
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Integrating over A gives us

/A [ sy = [ dy / "t (2, y)
n! s

: k n—k—1
= 1-— dy = B(s;k+1,n— k).
Ty [, Yy = Bk L= k)

By the equality

the integration over B gives us

min{1,s/A}

e = N (= SR

S

which gives us the second formula. Performing simple calculations we obtain

/B [ oy -

k n—k—1 . 1
n—k— o
(—1)3(" b 1) (;)j /uﬂ (1—uw)f du, its<A
- j
A

S0 () (2 ity

and the result follows. ]

Probability distribution function is given by the formula

min{1,s/A}

1i)\ (k- 1)!(;&!—14;_ 1)! / (Sl__)\;)kl(l—u)"—k—ldu

S

which may be useful in theoretical analysis of properties of the estimator Z, 5.
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a) Median bias of Z1s b) Absolute median bias of &1
0.15 0.15
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0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8
C) MAD Of.’%LS d) MSE OfiILs

Fig. 2.2.3. (n=10 dots, n=25 solid)

If a sample comes from a distribution F' € F then the distribution function of ¢ is

given by the formula:

Pr{Z.s < s} :B<F(5)§k+ Iin— k)

+ k;(n+_1). /Fk (T_AAU) (1= F(u)" " f(u)du
= (F(s);k+ 1,n— k)
n! e s — AF7L(t)
e I AR G e e KU
F(s)

The formula may be easily obtained by the method used in the proof of Theorem 2.
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If a sample comes from the uniform U(0, 1) distribution then the estimator #,5 of

the ¢g-th quantile is unbiased:

Bliys) =
= (1= (Vg + [0+ V) EX uynygen + (0 + Da = [0+ 1)) EX {4 1)g14 1

[(n+1)q]
n—+1

[(n+1)g] +1 _

+ (0 g~ [(n+ 1)) S

= (1= + g+ [(n+1)q)
Median bias, absolute median bias, Mean Absolute Deviation, and standard deviation

of the estimator are exhibited in Fig. 2.2.3.

2.3. Global smoothing

Global smoothing consists in constructing a smooth (continuous and strictly increas-

ing) version @, of the empirical quantile function and estimating the ¢-quantile z,
by Qn(q). Typically,

n

Qn(u) = Zw(u,j, n)Xjm, 0<u<l,
j=1
with suitably chosen functions v which may be considered as "kernels” (then an
additional parameter - the windows width - is usually added) or simply as functional
coefficients associated with order statistics. We shall not consider general kernels
estimators here; all what is known in general case are asymptotic properties which
are out of our concern. In the fixed sample size case the estimators may be considered

as L-estimators; below and in Sec. 2.4, we present a choice.

2.3.1. Harrell-Davis estimator.

Harrell-Davis estimator (Harrell and Davis (1982), David and Steinberg (1986)) is

based on the following reasoning:

Since E(X(n+1)4) converges to F~1(q) for ¢ € (0,1), we take as our
estimator of x4 = F~'(q) something which estimates E(X(n41)q)
whether or not (n + 1)q is an integer.
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Expectation of Xj.,, is given by the formula

+oo
B(X,0) = sy | o @)= F@)dr

— 00

1

1
—— = | FYprla—pnidt
B(i,n—H—l)/o W1 =) ’

and “something which estimates E(X.,)” is the ”sample mean”

1 1 ) .
. — S R O & AL
B(i,n—i-l—l)/o o (OF (=)

Assuming j = (n+ 1)q and

the Harrell-Davis estimator of x, takes on the form
n
(9) ‘/'%HD(q) - Z Wq,j’an;n, O < q < 17
j=1
where

1
B((n+1)g, (n+1)(1 - q))

"
- / T a1 pena-a-tg,
(

j=1)/n

Harrell-Davis estimator is defined for all ¢ € (0,1). By the well known equality

relating beta and binomial distributions

L(p+q) xp71 _ \g—1 _pHI?l ptqg—1 729(1 — g\Pta—1-J
r(p)P(q)()/t = d’f‘g( ;7 )ea-s

we have

and similarly



Hence

A

Tup(q) = X1masq—0 and Zup5(q) = Xpwm as ¢ — 1.

Estimators Z,,(q) as functions of ¢ € (0,1) for three samples generated from the
uniform U (0, 1) distribution are exhibited in Fig. 2.3.1.

[ [ [ [
0 0.2 0.4 0.6 0.8 p !

Fig.2.3.1. Harrell-Davis estimators &g p(g) as functions of ¢ € (0,1)
Random samples from the uniform U(0, 1) distribution
Sample (0.261, 0.513, 0.822, 0.919, 0.993) - solid
Sample (0.137, 0.189, 0.592, 0.657, 0.752) - dashes
Sample (0.060, 0.117, 0.580, 0.807, 0.929) - dots

The estimator, like other non-trivial L-statistics, is not equivariant with respect to
monotonic transformations of data so that the distribution of F(Z,,) depends on
the parent distribution F' € F; that is demonstrated in Fig. 2.3.2, for sample of
size n = 10, for parent distributions uniform U(0,1), normal N(0,1), and Pareto
Fo(z)=1—2"% x>0, fora=0.5 and o = 1.
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
MSE Bias

Fig. 2.3.2. Standard Deviation and Bias of Zxp

To compare the estimator with some other traditional ones (Section 2.5) we shall

consider its behavior for the uniform U(0, 1) distribution of data.

2.3.2. Bernstein polynomial estimator.

The literature of the estimator is rather abundant, most results however concern
asymptotic properties; some recent studies of the estimator appeared in Cheng (1995),

where the estimator of the gth quantile is defined as

(10) b= (22)) a0 X 0<a<t,

j=1

Estimator Z;.(q) as a function of ¢ € (0,1) for three samples generated from the
uniform U (0, 1) distribution are exhibited in Fig. 2.3.3.

26



0 | | | |
0.2 0.4 0.6 0.8 1
Fig.2.3.3. Bernstein polynomial estimators Zg.(q) as functions of ¢ € (0,1)
Random samples from the uniform U(0, 1) distribution
Sample ( 0.084 0.257 0.267 0.785 0.833 ) - solid
Sample ( 0.252 0.547 0.59 0.61 0.785 ) - dashes
Sample ( 0.189 0.691 0.717 0.758 0.896 ) - dots

The estimator is well defined for all ¢ € (0,1) and formally even for ¢ =0 and ¢ = 1
under the convention that 0° = 1; then 2.(0) = X1., and 25.(1) = Xy.n.

-0.2
[ [ [ [ [ [ [ [
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
MSE Bias
Fig. 2.3.4. Standard Deviation and Bias of Z g,
U(0,1) o N(O,1) cooevveeeenn Pareto(1) ------- Pareto(0.5)

The estimator, like other non-trivial L-statistics, is not equivariant with respect to
monotonic transformations of data so that the distribution of F(%.) depends on

the parent distribution F' € F; that is demonstrated in Fig. 2.3.4, for sample of
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size n = 10, for parent distributions uniform U(0,1), normal N(0, 1), and Pareto
Fo(r)=1—2=% 2 >0, for « = 0.5 and « = 1. To compare the estimator with some
other traditional ones (Section 2.5) we shall consider its behavior for the uniform
U(0,1) distribution of data.

2.4. Kaigh-Lachenbruch estimator

The celebrated Kaigh-Lachenbruch estimator (twice in Encyclopedia of Statistical
Sciences, Vol. 7, 1986 Wiley: David, C.E. and Steinberg, S.M. (1986), Keating,
J.P. and Tripathi, R.C. (1986)) was introduced in the original paper (Kaigh and

Lachenbruch 1982) as follows (with minor changes in notation):

For a fixed integer k satisfying 1 < k < n, consider the selection of a
simple random sample (without replacement) from the complete sam-
ple X1, ..., X, and denote the ordered observations in the subsample
by Yikms- -, Yekin. An elementary combinatorial argument shows
that for each integer r satisfying 1 <r <k

(DG
O

P{Yr:k;n:Xj:n}: TSjST—f—TL—k‘.

For 0 < ¢ < 1 a sample quantile estimator of x, based on the ob-
servations in a single subsample would be Y|4 1)q):k;n- We define the

alternative quantile estimator K L(q) to be the subsample quantile
averaged over all (Z’) subsamples of size k so that the estimator of the
qth quantile takes on the form

' f () G2

A peculiarity of the estimator consists in that, given a sample and estimating any
quantile x4, ¢ € (0,1), it can take on only k different values and it is defined for ¢
from the interval [1/(k + 1),1) only.

For example (Fig. 2.4.1), for the sample (0.2081, 0.4043, 0.5642, 0.6822,0.9082) of size
n = 5 and k = 3, the estimator takes on three different values only, e.g. the value
0.3025 when estimating the gth quantile of any order ¢ € (0,0.333). If £k = 1 then

no quantile z, of order ¢ < 0.5 is estimable and each quantile x, of order ¢ > 0.5 is
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0.8
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0.4 —
0.2
not defined
S o : : :
0.2 0.4 0.6 0.8 1

Fig.2.4.1. Original Kaigh-Lachenbruch estimator as a function of ¢ € (0, 1)
for n = 5,k = 3from the sample (0.2081, 0.4043, 0.5642, 0.6822, 0.9082)
generated from the uniform U(0, 1) distribution

estimated by the same value 2?21 Xj.n/n. For k = n the estimator equals X (,41)g:n
(see the comment following Formula (6)). The drawbacks do not play much role in
the asymptotic theory but for fixed size samples a serious problem in applications
arises. As a remedy we may define, like as in (6), » = r(g) rather than r = [(k + 1)¢]
and consider the modification

r+n—*k (j—1
(11> jKL = Z %Xj:n
j=r k

with
( kq, if kq is an integer and g < 0.5,
kqg+ 1, if kg is an integer and ¢ > 0.5,
r=r(g) =19 k& e
2 +10,1/9(U), if kq is an integer and ¢ = 0.5,
| [kq] + 1, if kq is not an integer.

The modified estimator Z,, like the estimator (6), is defined for all ¢ € (0,1) (Fig.

2.4.2). For k = n the estimator is identical with the standard estimator Z, defined
by (6).

Both in original and modified estimator there is no general rule concerning a choice of
parameter k; bias and standard deviation of estimators for n = 10 and k = 2, 4,6, 8, 10
are exhibited in Fig. 2.4.3 (original estimator) and Fig. 2.4.4 (modified estimator), all
calculations for the uniform U(0, 1) parent distribution. No choice of k is uniformly
better than other.
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0.2 0.4 0.6 0.8 1

Fig.2.4.2. Modified Kaigh-Lachenbruch K L(q) estimator (11) as a function of ¢ € (0,1)
for (n =5,k = 3) from the sample (0.2081, 0.4043, 0.5642, 0.6822, 0.9082)

generated from the uniform U(0, 1) distribution

0 0.3
0.1 - 0.2 —
v A": ] Kl :'41 \
0.2 - 0.1 -
-0.3 | | s | | | | |
0 0.2 0.4 06° 0.8 1 0 0.2 0.4 0.6 0.8 1
Bias MSE

Fig.2.4.3. Original Kaigh-Lachenbruch estimator. Uniform parent distribution. Sample size n = 10
........................ — e k=4 ——eee— k=6 G k=8 - k=10




0.3

0.8

0.6

0.4

0.2

MSE

0.3

-0.3

Bias 0.6 0.8

0.4

0.2

Fig.2.4.4. Modified Kaigh-Lachenbruch estimator. Uniform parent distribution. Sample size n = 10

k=10
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A more careful insight into above results suggests to consider the Kaigh-Lachenbruch
estimator Z,, with k£ depending on ¢ in an "optimal” way, for example in such a
way, that, given ¢, the Mean Square Error of the estimator is minimized. Numerical
calculations for uniform U(0,1) parent distribution, for n = 10 and ¢ = 0.01j,

7 =1,2,...,99, give us the optimal k as in the following table:

k
0.01 - 0.09 0.91 - 0.99 10
0.10 - 0.10 0.90 - 0.90 9
0.11 - 0.12 0.88 - 0.89 8
0.13-0.13 0.87 - 0.87 7
0.14 - 0.16 0.84 - 0.86 6
0.17 - 0.19 0.81 - 0.83 )
0.20 - 0.22 0.78 - 0.80 4
0.23 - 0.29 0.71 - 0.77 3
0.30 - 0.39 0.61 - 0.70 2
0.40 - 0.42 0.58 - 0.60 4
0.43 - - 0.57 1

The Mean Square Error of the Kaigh-Lachenbruch estimator with k£ adapted to q as

in the Table above is presented in Fig. 2.4.5; for comparison, the Mean Square Error

of the standard estimator 2, is also presented.

0.15 —

0.05 —

0 0.2 0.4 0.6 0.8 1
MSE

Fig.2.4.5. Modified Kaigh-Lachenbruch estimator with optimal k - solid
and the standard estimator 4 - dotted. Uniform U(0, 1) parent distribution
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The solid curve in Fig. 2.4.5 presents the lower envelope of curves of vV MSE from
Fig. 2.4.4.

Like other nontrivial L-statistics, the estimator is not distribution free in the sense
that F'(Zx,) depends on the distribution F' € F of data; if a statistician knows only
that the unknown parent distribution F' is a member of the family F, then, like in
the case of .4, Typ, and Zz., he is not able to predict the error of his estimation.
What is more: a statistician is not able neither to choose an adequate £k =1,2,...,n
nor to optimize the choice by adopting the best k = k(¢q) depending on the order of
the quantile to be estimated. Let us consider the problem in details for the case of

the exponential parent distribution.

Fig. 2.4.6 exhibits the M SE of the Kaigh-Lachenbruch estimator for £ = 2,4,6, 8, 10
for the Exponential F(z) =1 — e~! parent distribution.

0.3

0.2 —

0 0.2 0.4 0.6 0.8 1
MSFE
Fig.2.4.6. Modified Kaigh-Lachenbruch estimator. Exponential parent distribution. Sample size n = 10
......... k=2 I A ————= k=6 R S k=10
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Now optimal k = k(q) for ¢ = 0.01,0.02,...,0.99 are as in the following table

k
0.01 - 0.09 0.91 - 0.99 10
0.10 - 0.11 0.89 - 0.90 9
0.12 - 0.12 0.88 - 0.88 8
0.13-0.14 0.87 - 0.87 7
0.15-0.16 0.85 - 0.86 6
0.17-0.20 0.84 - 0.84 5)
0.21 - 0.25 0.82 - 0.83 4
0.26 - 0.33 0.78 - 0.81 3
0.34 - 0.43 0.70 - 0.77 2
0.44 - 0.48 4
0.49 - 0.49 0.67 - 0.69 )
0.50 - 0.56 3
0.57 - 0.66 1

Fig. 2.4.7 exhibits the Mean Square Error of the Kaigh-Lachenbruch estimator with
k = k(q) optimal for the exponential parent distribution.

0.15 —

0.05 —

0

0.2

0.4 0.6 0.8 1

MSE

Fig.2.4.7. Modified Kaigh-Lachenbruch estimator with optimal k - solid
and the standard estimator &, - dotted. Exponential parent distribution

Like as in Fig. 2.4.5, the optimal Kaigh-Lachenbruch estimator performs better than
the standard estimator 4, however to construct the Kaigh-Lachenbruch estimator an
illegal information has been used, that about the exponential parent distribution. In

our nonparametric model F all that we know about the parent distribution is that the
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distribution function is continuous and strictly increasing. We may try to base the
Kaigh-Lachenbruch estimator on k = k(q) calculated, for example, for the uniform
U(0,1) parent distribution and to use such ”suboptimal” estimator in the general
nonparametric model F. The Mean Square Error of the "suboptimal” estimator if

x

the parent distribution is exponential F'(x) = 1 — e ? is presented in Fig. 2.4.8

0.25 —

0.20 —

0.15 —

0.1 —

0.05 —

| | | |
0 0.2 0.4 0.6 0.8 1

MSE

Fig.2.4.8. Suboptimal Kaigh-Lachenbruch estimator for exponential parent distribution - solid
and the standard estimator &4 - dotted

In Sec.2.5 we shall compare the suboptimal Kaigh-Lachenbruch estimator with other

estimators considered above.

2.5. Comparisons of estimators

Facing the problem of estimating the ¢-th quantile of an unknown distribution of
which it is known only that it belongs to the nonparametric family F, we have to

decide which estimator to choose.
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First of all observe that the class F of distributions which we consider in our non-
parametric model is very large: it consists of all distribution with continuous and
strictly increasing distribution functions. The variety of distributions leads of course

to a variety of distributions of a given estimator.

If T is a quantile estimator, then it is obvious that to the fact, that the model
is very large, there are no possibilities to compare the bias (in the sense of mean
value), variance, quadratic risk etc, because such parameters typically do not exist,
and if exist then they heavily depend on the unknown distribution F' € F. Let
us recall our considerations which followed Theorem 1. To overcome the difficulties
we consider F(T') instead of T'; all moments of F(T) exist and, for example, the
theory of minimum variance unbiased estimators may be fully applied. In Chapter 3
we consider the problem of optimal estimators in a class of estimators T' for which
properties of F'(T') do not depend on the distribution F', so that optimal estimators
are uniformly optimal in the class considered. Estimators Z,s, Zxp, Tp., and Ty,
do not share that property and we confine ourselves to comparing the estimators for
some parent distributions. As a criterion of comparison we have chosen the bias and
the Mean Square Error of F(T).

All comparisons below are based on simulation results; the exact theoretical distribu-
tion is explicitly known only for Z, (Section 2.1) and Z,s (Section 2.2). We decided
to present results for small sample of size n = 10 and to simulate the behavior of esti-
mators for 10° runs. To assess the accuracy of simulated results, Table 2.5.1 presents
the exact and simulated values of some quantiles of distributions of the estimator

under consideration

Table 2.5.1. Quantiles

Estimator 0.05 0.25 0.5 0.75 0.95
24  theor 0.15003 0.26085 0.35510 0.45770 0.60622
simul 0.14956 0.26092 0.35543 0.45785 0.60661
I.s  theor 0.11492 0.20575 0.28761 0.38171 0.52764
simul 0.11538 0.20572 0.28819 0.38148 0.52565

The results allow us to consider the simulation results as sufficiently exact.
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Fig. 2.5.1-2.5.12 exhibit simulation results for the parent distributions: uniform
U(0,1), normal N(0,1), Pareto with distribution function 1 — 1/z and Pareto with
distribution function 1 — 1/4/z, exponential, and a ”special” distribution H with

distribution function

q(§> , ifo<ax<gq
H(z) = 4 a

q+(1—q)(a:_;]> , ifg<ax<l,

1—

0.8 -

0.6 -

0.4

0.2

| [ [ [
0 0.2 0.4 0.6 0.8 1

Distribution function H

which appeared to be very illustrative for the behavior of estimators (Zieliski 1995).
Mean Square Error and Bias of the estimators considered here for the distribution H

with parameters ¢ = 0.25 and o = 20 are presented in Fig. 2.5.11 and 2.5.12.

As a conclusion we obtain that the only estimator stable (robust) with respect to its
bias and Mean Square Error under changing the parent distribution is &,. Perhaps
however a preferable estimator is &, s which has smaller bias and Mean Square Error;
these parameters do not change very much (Fig. 2.5.13 and Fig. 2.5.14) and even
under as exotic parent distribution as the distribution H remain quite acceptable.
What is more, both estimators have explicitly given distribution function which may

be treated numerically.
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Fig.2.5.1. MSE for the parent distribution F' = U(0, 1)
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Fig. 2.5.5. MSE for the Pareto(1) parent distribution F(z) =1—1/z,z >0
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Fig.2.5.6. Bias for the Pareto(1) parent distribution F(z) =1—-1/z,2 >0
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Fig.2.5.7.M SE for the Pareto(0.5) parent distribution F(z) =1-1/y/z,z >0
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Fig.2.5.8. Bias for the Pareto(0.5) parent distribution F(z) = 1—1/y/Z,z >0
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Fig.2.5.9. MSE for the exponential distribution F(z) =1—e™ %
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Fig.2.5.10. Bias for the exponential distribution F(z) =1 —e™*
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Fig.2.5.11. MSFE for the distribution H
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Fig.2.5.13. MSE of &5 for different parent distributions
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Fig.2.5.14. Bias of &1 s for different parent distributions
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Optimal estimation

In the classical approach (Chapter 2), a heuristically constructed estimator is a start-
ing point for investigations. Sometimes rationale for a choice of estimator are seem-
ingly very natural: for example sample quantile is taken as an estimator of the popu-
lation quantile. Not all statisticians agree concerning what is ”qth sample quantile”:
Xinglin, Oor perhaps X[, 41)g):n, Or something else. Sometimes rationale are more
sophisticated, like celebrated Harell-Davies or Kaigh-Lachenbruch estimators. Gen-

erally, an estimator is a result of a heuristic process.

In optimal estimation approach, which is basic for this chapter, an estimator is for-
mally constructed as a solution of a problem of finding a minimum or a maximum of
a criterion defined on a given set. ” A given set” which we have in mind is the class of
estimators under consideration. Typically the criterion generates an ordering in the
class of estimators and the problem is to find the best element with respect to this
order. Perhaps the most difficult problem arises from the fact that we interested in an
ordering such that if an estimator 7" is better than estimator S for a given distribution
F € F then T is better than S for all model distributions F' € F (uniformly in F).
The class of distributions F under consideration is very large (recall: it is the class
of all continuous and strictly increasing distribution functions) and such ”uniform
orderings” can be constructed only in some very specific and rather narrow classes of

estimators.

3.1. The class of estimators

First of all, according to what was said in Chapter 1, we consider estimators which
are functions of order statistic Xi.,,..., X,.n. We are going to dramatically further

restrict the class of estimators to be considered; ”dramatically” means e.g. that
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nontrivial L-statistics will be excluded. To justify such restriction observe that our
nonparametric model F is is so large that if a random variable X has a distribution
F € Fand g : R* — R' is a continuous and strictly monotonic transformation of
the real line, then the random variable Y = ¢g(X) has a distribution which belongs
to F. Denote by G the class of all such transformations g; every g € G leaves the
model F invariant. We are not going to present here the full theory of invariance of
statistical models (an elementary and excellent exposition one can find in Lehmann
1983); a general conclusion from the theory is that a natural class of estimators in
such models is the class of equivariant estimators: an estimator T = T'(x1, 22, ..., Zy)

is said to be equivariant under a transformation g of the sample space if

(1)  T(g9(z1),9(z2),...,9(zn)) =9 (T(x1,22,...,2n)), 1 <z23<...< 1z

In what follows we confine ourselves to the class 7 of estimators which are equivariant
under every g € G. Property (1) holds for all g € G if and only if T'(z1, x2, ..., Ty) =1,
for an arbitrarily fixed j. ”Arbitrarily fixed” means that we may consider j as a
random variable with values in {1,2,...,n}, independent of Xi.,,...,Xp.n. As a
consequence, the class 7 of estimators which we consider for a given n we identify

with the class of all randomized order statistics X j.,,:

(2) TeT iff T=X,, forarandom variable J on {1,2,...,n}.

A consequence of the equivariance is that if the sample comes from a distribution

F € F, then for every q

) PriT <uy(F)} = Pri{Xyn < 2q(F)} = Pr{F(X}.n) < ¢} = P{UJsn < g},

which does not depend on F'; here P without index F' denotes the probability under
the uniform distribution U(0,1).

By (2) and (3), constructing an optimal estimator in the class 7 amounts to con-
structing the optimal distribution on {1,2,...,n} for the random variable J. By (3)
if an estimator is better than any other for a specific parent distribution then it is
better for all distributions F' € F, i.e. uniformly in F.
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The class 7 of estimators is rather narrow which is a consequence of the fact that
the class F of distributions is very large. If we wish to include L-estimators into
the class of estimators that we consider, we must restrict the nonparametric class of
distribution which we take into account (see Fig. 2.3.2 for Harrell-Davis estimator
or Fig. 2.4.4 for Kaigh-Lachenbruch estimator); otherwise we will be not able to say
anything concerning errors of our estimation. Some global restrictions, like unimodal-
ity (which excludes Beta distributions) or distributions with densities f which satisfy
the condition f(x) > n > 0 with a known 7 (which excludes normal distribution and
most distributions of practical interest) seems to be hardly tractable. Local restric-
tions, for example f(x,) > n > 0 at the quantile of interest z,, need some additional
knowledge which is rather unattainable for the statistician. To obtain practical con-
clusions for the very large nonparametric family F of distribution in our model we
confine ourselves to the above class 7 of estimators. The class seems to be the largest

class of estimators that can be reasonably treated in the nonparametric model F.

3.2. Criteria

If T € 7 is an estimator of g-th quantile x,(F’) of a distribution ' € F then obviously
the distribution of T" should be located near z,(F') and should be concentrated around
zq(F'). A full discussion on measuring location and spread in nonparametric models

is presented in series of papers by Bickel and Lehmann 1975-1979.

As a measure of location we choose a median and as the optimal estimator we choose
the median—unbiased estimator which is most concentrated around the median in
the class of all median—unbiased estimators. A case of particular interest is the
interquartile range of a distribution F' defined as F~1(3/4) — F~1(1/4). If a median—
unbiased estimator 77 is more concentrated than a median—unbiased estimator 715
then its interquartile range is of course smaller than that of T5. The most concentrated

median—unbiased estimator is constructed in Sec. 3.3.1.

Other optimality criteria (Uniformly Minimum Variance estimators in Sec. 3.3.2,
Uniformly Minimum Absolute Deviation estimators in Sec. 3.3.3, and Optimal esti-
mators in the sense of Pitman’s Measure of Closeness in Sec. 3.3.4) are considered
in terms of F(T); for T they do not have any sense (cf introduction to Chapter 2

above).
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3.3. Optimal estimators

3.3.1. The most concentrated median—unbiased estimator

Choose a level @ € (0,1). An estimator 7% is said to be the most concentrated

estimator of the g-th quantile z,(F") at a level « in a given class 7 of estimators if
190 Pe{T* <z,F)} =«

(4) 20, Pp{T* <t} < Pp{T <t} fort<uz,(F) and
Pp{T* <t} > Pp{T <t} fort>ux,(F) foralTeT

(see Fig. 1). Estimators concentrated at the level a = 0.5 are median unbiased.
Typically we are interested in constructing the most concentrated median unbiased
estimator. Observe that without the condition 1° above every constant is a most con-
centrated estimator; the condition 1° plays here similar role as (mean-)unbiasedness

of the estimator with minimum variance.

>

Fig.3.3.1. Estimator of x, with solid cdf
is more concentrated at the level o than that with dashed cdf

If estimators T and S are distributed symmetrically around an estimand 6, which is

rather exceptional when estimating quantiles, there is an alternative way of arriving
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at the criterion. Following Bickel and Lehmann (1976) one can consider 7' as more
dispersed about 6 than S if |T" — 6| is stochastically larger |S — 6|. Then the most
concentrated median unbiased estimator of the quantile z, is that which is the less
dispersed about z, in the class of estimators under consideration. Full analogy to

minimum variance unbiased estimators is obvious.

In what follows, following Zieliniski (1988), we construct effectively the most concen-
trated median-unbiased estimator of the gth quantile z,(F') of an unknown distribu-
tion F' € F.

Denote

o) = PelXin < ()} =3 (M)ea-ar

J

and observe that a median unbiased estimator exists iff 71 (q¢) > 1/2 > m,(¢). Given g,
the smallest n = n(q) for which a median-unbiased estimator exists is given by the
formula n(q) = min{n : n > —log 2/log(max{q,1—¢})}. On the other hand, given n,
the order ¢ of a quantile to be estimated should satisfy 1 — (1/2)/™ < ¢ < (1/2)'/".

Given ¢ € (0,1), we define the class 7(q) C 7 of all median-unbiased estimators of
the gth quantile:

. - 1
T(q) = { Xom: PU =]} =2, D Amila) =5
j=1

Given ¢ and n > n(q), let k£ be an integer such that

1

Tr(q) > 5 > Tt1(q)-

1
The case that 7, (q) = 3 for some k will be discussed later on.

Let

1
* 5_71']@-1—1((]) * * * .
)\ - k+1:1_ ks )\ZIOfOI‘Z¢{]{J,/€—|—1}

and let T = X j«.,,, where J* has the distribution (A}, A3, ..., A%).
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Lemma 1. Forall T € 7(q), all F € F, and n > 0 such that ¢ + 71 < 1,

Pp{T" < 2q1y(F)} 2 Pr{T < 241 (F)}

Proof. Consider the following linear programming problem: given n > 0, find A =

(A1, A2, ..., A, which maximizes

(5) Pr{T < zg4y(F)} = Zkﬂj(q + 1)

under the restrictions

All vertices of the polyhedron (6) are of the form: all but two coordinates \;,i =

1,2,...,n, equal zero, and those two, say A, and Ay, r < s, satisfy

1
Armr(q) + Asz(q) = 9
Ar+ A = 1.

Due to the sequence of inequalities

1
m1(q) > ... > m(q) > 3 > mpe1(q) > ... > m(q) >0

and due to the first of the conditions (6), we have r < k and s > k + 1. Given r and

s, the criterion (5) takes on the form
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Given s, W, ; can be written as

+ 7s(q + 1)

(1 ),Wr(q+77)—7rs(q+77)

7 (q) — ms(q)

so that maximizing W, s with respect to » < k with a fixed s > k + 1 amounts to

maximizing

VS(T): WT(Q‘FU)_%(C]'H?)‘

T (q) = 7s(q)

By the definition of m,.(q) we obtain

Oy + Qg1+ .00+ Qg1
‘/;gr — T T ,
() ﬁr+ﬁr+1+~"+ﬁs—1

where o = (7;) (g+n)?(1—qg—n)""7 and §; = (?) ¢’ (1 —q)" 7. Observe that

a; Qs
bt e i=1,2,

Bi  Bix1’

oon—1
and hence by Lemma 3 below
Vi(r) <Vi(k), r <k,

uniformly in > 0 such that ¢ +7n < 1.

Now, given r = k, W,. ; may be written as

1 (g +n) —ms(g+n)
7Tk(q+7])— <7Tk(Q)_ 2) Wk(q)—ﬂ's(Q) ’

so that maximizing W}, s with respect to s > k + 1 with a fixed r amounts to mini-
mizing
_ m(g+n) —ms(g+n)

Uels) == —m@

Similarly as in the first part of the proof,

ap + Qg1+ ...+ Qs
U S) = )
() Bk + Brs1 + ...+ Bs—1
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and by Lemma 3 below and arguments as above

Up(k+1) <Uk(s), s>k+1,
uniformly in n > 0 such that ¢ +7 < 1. It follows that W, ; is maximized by r = k
and s = k 4+ 1, which ends the proof of Lemma 1.

Lemma 2. Forall T € 7(q), all F € F, and £ > 0 such that g — & >0

Pe{T* < 2,-e(F)} < Pr{T < ay_¢(F)}.

Proof is similar to that of Lemma 1 except that now, for a;; = (7;) (q—&)(1—q—&)"
and ﬁj = (?)qj(l — q)n—j’ we have ij/ﬂj > aj+1/ﬁj+1. []

1
Suppose now that m,(q) = 5 for some k = 1,2,...,n — 1. Take a positive h small

enough to have

1
7rk(q + h) > 5 > 7rk+1(q+ h)
Given h, by Lemmas 1 and 2 the optimal estimator of the (¢ + h)-quantile is that
with

1
AL(h 2 ~ e+ ) v 1(h 1= X(h

All quantities under consideration are continuous in ¢ and hence, by passing to limits

as h — 0, the solution is given by A} = 1. To establish the result for &k = n, it is

1
enough to take a negative h and consider the inequality 7,,—1(¢+h) > 2 > mn(q+h).
As a simple consequence we obtain

Theorem 1. In the class T (q) of median-unbiased estimators of the qth quantile,

T* is the most concentrated one. ]

For the sake of uniformity of notation, the median-unbiased most concentrated esti-

mator 1T will be denoted as %, or, if ¢ is specified, as Zx,(q).

In the above proofs, the following Lemma 3 was used.
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Lemma 3. Let aq,a09,...,am,01,02,..., 8B, be positive numbers. If

a1 a9 (0%
<—<...< =

BB B

then for « <m and j > 1

a1+ oo ... < a1+ Qo ...y, < Qj+ Qi1 .0y
Bi+Bet...tBi  Pitfot..tBm B+ Bitit.. .t B

Proof of the Lemma is elementary. ]

If G is the distribution function of an estimator T, the interquartile range G~1(3/4) —
G~1(1/4) of the distribution G will be called the interquartile range of the estimator

T. As a simple consequence of Theorem 1 we have the following Corollary.

Corollary 1. The interquartile range of the estimator T, is smaller than that of

any other median-unbiased estimator T' € T (q). []

The property stated in Corollary 1 gives us a full nonparametric analogue of the idea if
uniformly minimum variance unbiased estimators in classical (parametric) statistics.
It appears that the estimator Z, uniformly minimizes Mean Absolute Deviation -
see Sec. 3.3.3. A comment on optimality of . in a context of nonparametric testing
H: F71(q) <u against K : F~1(q) > u for a fixed u, one can find in Reiss (1989).

3.3.2. Uniformly Minimum Variance Unbiased Estimator.

If 6 is an estimator of a real parameter 6, the estimator 0 is said to be unbiased if
Egf = 6 for all  and it is said to be uniformly minimum variance unbiased (UMVU)

if Vargé < Vargé for all unbiased estimators 6.

If T is an estimator of the gth quantile, in our model with the family F of distribu-
tions F' the expectation ErT of the estimator, and in consequence the variance, may
not exist and the UMVU criterion as above makes no sense. According to what we
said above, we modify the criterion as follows: an estimator T' of the gth quantile
is said to be unbiased if FpF(T) = ¢ for all F € F, and it is said to be uniformly
minimum variance unbiased if VarpF(T) < VarpF(Z,) for all F € F and all un-
biased estimators Z,. Rationale behind the modified criterion is that if 7" is to be
a good estimator of the gth quantile x, = z,(F") and F is a continuous and strictly

increasing function, then F(7') should be a good estimator of F'(z,) = g.
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Estimators T € 7 from a sample of size n are of the form T = X ;.,,, where J is a
random integer with a distribution P{J = j} = A;,j = 1,2,...,n. If the sample
X1,..., X, comes from a distribution F' € F then F(X;.,,) = Uy.p,, where Uy, ..., U,

is a sample from the uniform distribution U(0,1). Hence
n 1 .
EpF(Xyp) =Y NEUjp=——> j)\;
j=1

and

VarpF(Xj.,) =

(n+ 1)1(’/1 i 2) Zj(j + 1)/\j - EI%‘F(XJ:n)

Construction of the minimum variance unbiased estimator of the gth quantile, reduces

to minimizing VarpF (X j.,) under the condition ErF (X ;.,) = ¢, which amounts to

solving the following linear programming problem: find Ay, A2 ..., A\, which minimize
mn
> i+ DN
j=1

under the restrictions

1 no .
n—l—lzj:lj)\j —1
2221)‘1' =1

A, A2, A, >0
Due to the fact that

n

1 1 n
< i <
n+1 _n—i—ljzlj T = n4+1’

1 n

n+1"n+1
the case, routine technique for linear programming problems (or the method applied

unbiased estimators of the ¢-th quantile exist only if g € { 1 If that is

in Sec. 3.3.1) gives us

Me=k+1—(n+1)g,

)\k+1 = (n-l-l)q—k:,

Aj=01if j#kand j#k+1
where k = [(n + 1)q].

The estimator has been introduced by Uhlmann (1963); we shall denote it by Zy,, or

Zwu(q) if needed. As a consequence we obtain the following theorem
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Theorem 2. In the class of all unbiased estimators T' of the gq-th quantile, i.e.
estimators such that EpF(T) = q for all F' € F, the randomized estimator

. k, with probability A\, = k+1— (n+ 1)g,
Two(q) = . e
k + 1, with probability 1 — A,
has the uniformly smallest variance. ]

The variance V,,(q) = VarpF(Zy. ) of the optimal estimator for the sample of size n

is given by the formula

C([(n+D)gl+1)(2(n+1)g—[(n+1)q])
Valq) = (n+1)(n+2) B

Another formula for the variance of the minimum variance unbiased estimator is

(n+1)g—[(n+1)q]) ([(n+1)g] +1 - (n+1)q) N q(1—q)

Va(q) = (n+1)(n+2) n+2 "’

the formula has been given by Uhlmann (1963). As one could expect, the variance is
a symmetric function of ¢ in the sense that V,,(¢) = V,,(1 — ¢q) and if k = [(n + 1)¢]
is optimal for ¢ then n — k 4+ 1 is optimal for 1 — ¢q. Fig. 3.3.2 exhibits the variance
Vi (q) as a function of ¢ € [1/(n+ 1),n/(n+ 1)] for some values of the sample size n.

0.04
0.03 —
0.02

0.01

Fig.3.3.2.

Variances V,,(q) of the estimator &, for some sample sizes n
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Observe, that for every n, in the class 7 there exist an estimator that minimizes
Mean Square Error M SE,, (q) without the additional condition of unbiasedness. For

an estimator T' = X j.,, we have

MSE,(q) = Er (F(ij) - q)2 =E(Usn) —q)*

=> NE(Ujm —q)
j=1

_ - I'(n+1) ' j—1 n—j
_;F(j)r(n—j+1)/o @= @' (1 — o)™ de

= (n+1)1(n+2) ' j(j+1—2(n+2)q))\j+q2

Estimator that, for fixed n and ¢, minimizes Mean Square Error is Xj«.,, where j*
minimizes j(j + 1 — 2(n + 2)q). Observe that z(z + 1 — 2(n + 2)q) for real = is a

quadratic function which has its minimum at z,;,, = (n + 2)g — 0.5. Hence

( 2

1, ifg< ——

n -+ 2

. 2
7 =< NI 2)q — 0.5], if
(7) j [(n+2)q i s <a<
. n
n, ifg>——
\ n + 2

where NI[z] denotes the integer nearest to x:

[x], if {z} <
NI[z] =

N = DN =

[z] +1, if {z} >
One may change (<, >) to (<, >) in the definition of NI[z] above; it does not influence
the value of Mean Square Error. As a consequence we obtain the following result

Theorem 3. In the class of all estimators 7, the estimator Xj-.,, of the g-th quantile

with j* defined by (7) has uniformly minimal Mean Square Error. O

The estimator which minimizes Mean Square Error will be denoted by Z,,5z or by

Zase(q) if needed.
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In opposite to unbiased estimators, estimator which minimizes Mean Square Error
MSE,(q) is well defined for all ¢ € (0,1); Fig. 3.3.3 exhibits MSE, (q) for selected

values of the sample size n.

Fig.3.3.3.
MSE of the optimal estimator Z,,s5 for some n

Mean Square Error of optimal estimators are obviously smaller than that of unbiased

estimators; that is presented in Fig. 3.3.4.

0.02

0.01 - *

Fig.3.3.4.

MSE of the minimum variance unbiased estimator Z ., (solid)
and the estimator Z,,sp minimizing M SFE (dots)
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For ¢ = j/(n+ 1), j = 1,2,...,n, the estimator that minimizes M SE is unbiased
and then MSE, (q) = V,,(q). At those values of ¢ both Mean Square Error and the

variance of the Minimum Variance Unbiased Estimator have their local minima.

3.3.3. Uniformly Minimum Absolute Deviation Estimator.

For a given estimator T' = T'(X1.n, ..., Xn.n) of the ¢g-th quantile from a sample of

size n, define its Mean Absolute Deviation as

MADn(q) — EF‘F(T(X1n7 . 7Xn:n)) - Q‘-

For estimators T' € T of the form T = X .,, we have
MADH(Q) - EF'F(XJn> - (I‘ - E‘UJITL - Q‘ — Z)‘juj:n(Q)a
j=1

where u;.,(¢) = E|Uj., — q|. The obvious estimator which minimizes M AD,,(q) is

Xj+.n, where j* minimizes u;.,(q). To construct j* explicitly, observe that

L(n+1) i 1 n—j
40 = TR / 2 — gla? (1 — 2)" T da
= Cln +1) x—q)z? ! )" dx
<>r<n—g+1>/( et {1~ 2y
I'(n+1) I i=1(1 — )i 4
T, e e
ZQ[B(q;j, j-l-l)—?B(QJ-f—ln—j-l—l)}—}-(%—q)

where

. (04+5) a—1¢1 _ p\B—1
B(z;a, ) = /Ot (1 —t)Pdt

is the incomplete Gamma function.
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Let Q(k;n,x) = 377 ()2’ (1—2)"~7 be the tail of the Binomial distribution; making

use of the equality

B(z;a, ) = Q(asa+ - 1,x)

we obtain
. J : '
ujin(q) =21¢-QUin,q) = =7 QU+ 1;,n+ 1>q)] + (— —q) :
To find the smallest u;.,(¢q) observe that

1
n—+1

and hence
uj—l—l:n(Q) Z uj:n(Q) iff Q(.] + 1; n + 17 Q> S

N |

By the definition of Q(j;n,z) we have

Q(lin+1,9) >Q(2n+1,9) >...>Q(n+1L;n+1,q)

and it follows that if w;11.,(q) > u;:n(¢) then wji2.,(q) > uj41.n(q) and consequently
Ukin (@) > ujin(q) for all k = j+ 1,7 +2,...,n. Similarly, if u;_1.,(q) > u;.,(q) then
Upin(q) > ujin(q) for all k =1,2,...,5 — 1. As a result, as the optimal j* we obtain

jgo=1, if Q(2;n+1,q9) <

Y

(8)

9

j*=mn, if Qnin+1,q) >

O = N

otherwise j* is any integer satisfying

QU*n+1,4) 25 > QU + Lin+1,0)
Q

or Qi in+1,q9) > - >QU"+1L;in+1,q).

N | =

As a result we obtain the following theorem.

59



Theorem 4. In the class T of estimators, the estimator X «.,, of the g-th quantile
with j* defined by (8) and (9) has uniformly minimal Mean Absolute Deviation. [ ]

The optimal j* can be easily calculated with standard statistical tables or computer
programs for the binomial distribution. In a sense, j* defined by (8) is a median
of the Binomial distribution with parameters (n + 1,¢) (Neumann 1963, 1965). The
estimator which minimizes Mean Absolute Deviation will be denoted by Z,,4p or by

Zarap(q) if needed.

The risk of the optimal estimator &, is given by the simple formula M AD,(q) =
uj+.n(q) and is exhibited in Fig. 3.3.5.

Fig.3.3.5.
M AD of the optimal estimator Z,,4p

If one is interested in unbiased estimation, the natural problem is to consider median-
unbiased estimators with minimum M AD. Recall (see Sec. 3.3.1) that, given n and
¢, a median unbiased estimator exists iff Q(1;n,q) > 1/2 > Q(n;n,q). Formally,
the minimum M AD median-unbiased estimator is a solution of the following linear

programming problem

n
minimize E Ajujn(q),
i=1

under the following conditions
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n , 1
Ej:l AJQ(j’ n, q) = 57

25N =1
/\17)\27"'7)\7120-

It is obvious that the median-unbiased minimum mean absolute deviation estimator

is of the form X ;.,, where the random index has the distribution

P{J =i Y =N+, P{J=i"+1} = Ais1, A + Aoy = 1,

where 7* is the index such that w;., is the smallest and w;= 1., is the second smallest
element of the set {uy.p, U2in, ..., Un:n }. To find i* we shall use the solution j* of the
problem of minimizing M AD without restriction on unbiasedness. We consider three
following cases: j* =1, 7" = n, and 1 < 7% < n. We will make use of the following

inequalities:

(10) Q(i—1n,q) > Qisn+1,q9) > Q(isn,q) > Qi+ 1in+1,q) > Qi+ 1;n,q)

. 1 . . 1
Case j* = 1. If Q(1;n,q) = 2 then obviously i* = 1. If Q(1;n,q) > 3 then by the
very construction of j* and (10) we have Q(2;n,q) < % Hence the optimal median

unbiased estimator is X j.,,, where
P{le}:)\l and P{J:2}:1—/\1

with
1

M= e QR ma)

If Q(1;n,q) < 1/2 then median-unbiased estimators of the gth quantile do not exist

("the sample size n is too small”).

1 1
Case j* = n. If Q(n;n,q) = 5 then i* = n. If Q(n;n,q) < 5 then the optimal

median unbiased estimator is X ., with

P{J=n—-1}=X,_1 and P{J=n}=1-X\,
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where )
. 5~ Qinq)
nel e Q(TL— 17n7q) —Q(TL : n?Q)

1
If Q(n;n,q) > o then median-unbiased estimators do not exist.

1
Case 1 < j* < n. Recall that the j* satisfies (10). If Q(j*;n,q) = 5 then obviously

1 1
i =7 Q> n,q) > 3 then Q(j*+1;n,q) < 3 and the median-unbiased minimum

Mean Square Error estimator is X j.,, for J such that

where ¢* = 5% and

% - QU + 1;n,q)
Q(i*;n,q) — Q(i* +1:n,q)°

Ajr =

1 1
Similarly, if Q(j*;n,q) < 3 then Q(j* — 1;n,q) > 3 and the optimal estimator is
XJ:n with
P{J = Z*—l} == )\i*—l and P{J = Z*} =1- )\i*—l

where

1
5 - Q(Z 7n;Q)

Air1 = Qi* —1;n,q) — Q(i* i n,q)

As a result we obtain the following theorem.

Theorem 5. The minimum Mean Absolute Deviation median-unbiased estimator
is X j.,, with
P{J=i"}=X+ and P{J=0"+1}=1- A\~

where 1* 1s the unique integer such that

Q(i*5n,q) > = > Q" +1;n,q)

[N

and .
Q(i*;n,q) — Q(i* +1:n,q)

Ajr =
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Fig.3.3.6.
M AD of the optimal median-unbiased estimator Zyap
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Fig.3.3.7.

M AD of the optimal estimator &,,,, (dots)
and that of the median-unbiased estimator Zy,.p (solid)
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The minimum Mean Absolute Deviation median-unbiased estimator will be denoted
by Zynap O Zuaap(q) if needed. Mean Absolute Deviations of @y for some n are
exhibited in Fig. 3.3.6

Mean Absolute Deviation of the unbiased estimator Zyy.p is obviously greater than

that of the estimator Z,,,, without restrictions to unbiasedness (Fig. 3.3.7.)

It is interesting to observe that the minimum M AD median-unbiased estimator Zyyp
is identical with the most concentrated median-unbiased estimator Z, constructed

in Sec. 3.3.1.

3.3.4. Optimal estimator in the sense of Pitman’s Measure of Closeness

According to Pitman’s Measure of Closeness, if T} and T, are two estimators of a real
parameter 6, then T} is better than Th if Py{|T1 — 0| < |1T» — 0|} > 1/2 for all 6. It
may however happen that while 77 is better than 75 and 75 is better than T3, T35 is
better than 77 (Keating et al. 1991, 1993). A rationale for the criterion is that Tj
is better than T if with probability at least one half the (absolute) error |1} — 6] is

smaller than the error |To — 6)|.

It may however happen that in a given statistical model and in a given class of
estimators there exists one which is better than any other. We define such estimator

as PMC-optimal or, for use in this Section, shortly optimal.

In full analogy to our considerations in previous sections, we shall measure the error
of the estimator T' = T(X;,Xs,...,X,,) of the ¢g-th quantile z,(F) in terms of
differences |F(T") — ¢| rather than in terms of differences |T'— z4(F')|. Then according

to the Pitman’s Measure of Closeness, an estimator 71" is better than S if
(11) Pp{|F(T)—q| <|F(S)—¢q|} >1/2 forall F € F

(for more fine definitions see Keating et al. 1993). Consequently, an estimator T

which satisfies
(12) Pp{|F(T*) —q| < |F(S)—q|} >1/2 for all F € F and for all S €T
is PMC-optimal.

We use < in the first inequality in the above definition because for T' = S we prefer

to have the left hand side of (11) to be equal to one rather than to zero; otherwise the

64



part "for all T'€ 77 in (12) would not be true. For example two different estimators

Xingl:n a0d X[(n41)q:n are identical for n = 7 when estimating qth quantile for ¢ = 0.2.

One can easily conclude from the results below that if there are exactly two different

optimal estimators T} and T3 (we will see that it may happen), then Pp{|F(T})—q| <
1 1
|F(T5)—q|}= 3 and Pr{|F(T}) — q| <|F(T) — q|} > 5 for all other estimators T' € 7.

Denote p(T,S) = Pr{|F(T) —q| < |F(S)—q|} and observe that to construct optimal
estimator T it is enough to find 7" such that

inp(7’, ) = inp(7T, S) for all F
min p(T", §) = maxmin p(T, ) for all F € F

1
and take T* = T" if minge7 p(T”,S) > 3 for all F' € F; if the inequality does not
hold then the optimal estimator T does not exist. In what follows we construct the
optimal estimator T™*. It would be convenient to formulate the results as a Theorem

proceeded by two Lemmas. The results come from Zielinski 2001.

For estimators T',S € T we have T' = X j())., and S = X j(,,):, Where
PN =j4t=2X, X>0, j=12...n Y \=1
j=1

and

P{J(,u):j}:,uj? p; =0, g=12,...,n, Zﬂjzl'
j=1

If the sample X, Xo,...,X,, comes from a distribution function F' then F(T) =
Usym and F(S) = Uy, respectively, where Ur.y,,Usip, ..., Uy are the order
statistics from a sample Uy, Us, ..., U, drawn from the uniform distribution U(0,1).
Denote

wali,7) = P{Usn —ql < (U —al}, 1<ij<n.

Then o
p(T,S) =pA\ ) =D D Nisjwg i, 5)
i=1 j=1
and T = X j(\«),, is optimal if
. « 1
minp(A*, ) > <.
[ 2

For a fixed 7, the sum Z?Zl piwg(%, j) is minimal for p;» =1, p; = 0,7 # j*, where
J* = j*(i) is such that wq(i,7*) < wq(4,7), 5 = 1,2,...,n. Then the optimal \*
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satisfies A\j» = 1, A\; = 0,7 # ¢*, where ¢* maximizes w,(¢,5*(¢)). It follows that the
optimal estimator T is of the form X;-.,, with a suitable i* and the problem reduces

to finding @*.

Denote v, (i) = wq(i,i—1), v/ (i) = wy(i,i+1), and define v, (1) = v, (n) = 1. Proofs

of all Lemmas and the Theorem below are postponed to the end of the Section.

Lemma 4. For a fixed i = 1,2,...,n, we have min; wy (i, j) = min{v, (3), v, (4)}.
By Lemma (4), the problem reduces to finding i* which maximizes min{v, (), v, (i)}.
Lemma 5. The sequence v; (4),i=1,2,...,n, is increasing and the sequence v, (i),
1 =1,2,...,n, is decreasing.

By Lemma (5), to get i* one should find i’ € {1,2,...,n — 1} such that

(13) v, (") > oS (") and v (i +1) <vf (i’ +1)

and then calculate

(14) oo {i', if v (i') > vg (i 4+ 1)

i’ +1, otherwise.
Eventually we obtain the following theorem.

Theorem 6. Let i* be defined by the formula

1
./ . + ./ > -
(15) =" ifo7 (@) 2 3
i+ 1, otherwise
where
1
16) ¥ the smallest integer i € {1,2,...,n — 2} such that Q(i + 1;n,q) < 3
16) ¢ =

1
n—1, ifQ(n—l,n,q)Zi.
For i* defined by (15) we have
1
(17) Pp{|F(Xin) —al < [F(T) —dl} 2 5

for all F € F and for all estimators T' € T of the qth quantile, which means that *
is optimal. L]
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Table 1

1

1 2 3 4 ) 6 7 8 9
3 [.3612
4 1.2800
5 |.2283 |.4086
6 [.1926 |.3450
7
8

1666 |.2984 |.4326
1467 |.2628 |.3811
9 |.1311 |.2348 |.3406 |.4468
10 |.1184 |.2122 |.3077 |.4038
11 |.1080 |.1936 |.2807 |.3683 |.4561
12 1.0993 |.1779 |.2580 |.3385 |.4192
13 1.0919 |.1646 |.2387 |.3132 |.3879 |.4626
14 [.0855 [.1532 |.2221 |.2914 |.3609 |.4304
15 1.0799 |.1432 |.2076 |.2724 |.3374 |.4024 |.4675
16 |.0750 |.1344 [.1949 |.2558 |.3168 |.3778 |.4389
17 1.0707 |.1267 |.1837 |.2411 |.2985 |.3560 |.4136 |.4712
18 1.0669 |.1198 |.1737 |.2279 |.2823 |.3367 |.3911 |.4455
19 1.0634 |.1136 |.1647 |.2162 |.2677 [.3193 |.3709 |.4225 |.4742
20 |.0603 |.1080 |.1567 |.2055 |.2545 |.3036 |.3527 |.4018 |.4509

As a conclusion we obtain that X;«., is PMC-optimal in the class of all equivariant
estimators T' € 7 of the gth quantile. PMC-optimal estimator will be denoted by

Tpae OF Tpac(q), respectively.

For practical applications, the index i’ can be easily found by tables or suitable
computer programs for Bernoulli or Beta distributions, but checking the condition in
(15) needs a comment. First of all observe that vd (i) = 1, v} (i) = 0, and the first

derivative of v (i) with respect to g is negative. It follows that v (i) > 3 iff ¢ < ¢,,(7)

1
where ¢, (i) is the unique solution (with respect to q) of the equation v (i) = 3" For
q € (0,1), v} (i) is a strictly decreasing function with known values at both ends of
the interval so that ¢, (7) can be easily found by a standard numerical routine. Table

1 gives us the values of ¢, (i) for n = 3,4,...,20. Due to the equality
vl (i) + vflq(n —i)=1

we have ¢ < ¢, (4) iff 1 — ¢ > ¢g,(n — i) so that in Table 1 only the values g, (i) for
i < [n/2] are presented. Sometimes the following fact may be useful: if i* is optimal
for estimating the gth quantile from sample of size n, then n —i* + 1 is optimal for

estimating the (1 — ¢)th quantile from the same sample.
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As an example suppose we want to estimate the gth quantile with ¢ = 0.3 from a
sample of size n = 10. For the Bernoulli tail Q(k,n;p) = Z;L:k (?)pj(l —p)"7 we
have

1
Q(4,1050.3) = 0.3504 < J < Q(3,10;0.3)
hence i’ = 3. Now, by Table (1), ¢10(3) = 0.3077 so that ¢ < g,(i'), hence i* = 3.

1
As another example, for n = 8 and ¢ = 0.75 we have Q(7,8;0.75) = 0.3671 < 3 <
Q(6,8;0.75) = 0.6785 and i’ = 6. By Table (1) we have ¢g(6) = 1 — ¢s(2) = 0.7372;
now ¢ > qg(6) so that i* =i +1=17.

It is interesting to observe that PMC-optimal estimator differs from that which min-
imizes Mean Absolute Deviation Er|F(T) — q|; the latter has been constructed in
the previous Section 3.3.3. For example, to estimate the quantile of order ¢ = 0.225
from a sample of size n = 10, X3.19 is PMC-optimal, while X5.19p minimizes Mean

Absolute Deviation.
To the end of the Section we present proofs of Lemmas and the Theorem.

PROOF OF LEMMA (4). Suppose first that ¢ < j and consider the following events

(18> Al — {Ui:n > (J}, AQ = {Ui:n < q< Uj:n}7 A3 = {Uj:n < q}
The events are pairwise disjoint and P(A4; U As U A3) = 1. Hence
3
wq(iaj) = ZP{|UZTL - Q| < |Uj:n - Q|7Aj}'

j=1

For the first summand we have

P{|Uzn - Q‘ S |Uj:n - q|7A1} = P{Uzn > q}
The second summand can be written in the form

= P{Uzn S q < Uj:ru Uj:n Z 2q - Ui:n}»

and the third one equals zero.

68



If 7/ > j then Ujr., > Uj.p, the event {U;., < ¢ < Ujin, Ujip > 2q — U,y } implies the
event {U;., < q < Ujr.p,Ujry > 2q — Uy, }, and hence
wq(i, j') > wq(i, 7).
In consequence
minwg (4, j) = wq(i, i+ 1) = vy (9).
1>

Similarly min;; w,(i, j) = v, (i), which ends the proof of Lemma (4). []

PROOF OF LEMMA (5). Similarly as in the proof of Lemma (4), considering events
(18) with j =i + 1, we obtain

U;—(Z) = P{Uzn > Q} + P{Uzn + UiJrl:n > 2q7 Ui:n < q< Ui+1:n}

and by standard calculations

1 q
|
+0 n: i—1(1 _ . \n—i i—1(1 _ n—i
v, (i) = = D=0 /x (1 —x)" "dx + / (1 —2q+x)" dx
q (2¢=1)+

where 2t = max{z,0}. For i = n — 1 we obviously have v, (n — 1) < v} (n) = 1. For

i €{1,2,...,n — 1} the inequality v} (i) < v} (i + 1) can be written in the form

1
i(/mil(l — )" dx + / 21— 29 + x)"*ida,) <
q

(2¢—1)*
1 q
<(n-— z)(/:z;z(l — )" e + / (1 —2q+ x)"_i_ldx>.
q (2¢=1)+

Integrating left hand side by parts we obtain an equivalent inequality

q
2(n —1) / (1 —2¢+2)" " tdx >0

(2¢—1)*
which is obviously always true.
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In full analogy to the calculation of v} (i), for i € {2,3,...,n} we obtain

' g min{1,2q}
— (s n: i— n—i i n—i
v, (1) = ] /x Y1 —2)"dew + / (2¢ — )71 — z)""ldx
0 q

and the inequality v, (i — 1) > v, (i) can be proved as above, which ends the proof
of Lemma (5). []

PROOF OF THEOREM (6). We shall use following facts

(19) vf (i) +vg (i+1) =1,

which follows from the obvious equality wy (%, j) + wq(j, i) = 1, and

(20) i (@) 4ol (i+1)=2(1-Q>i+1in,q), i=12,....,n—1.

Equality (20) follows from integrating by parts both integrals in v;(i) and then
calculating the sum v} (i) 4+ v, (i 4 1).

Let us consider condition (13) fori = 1,7 =n—1,and i € {2,3,...,n—2}, separately.

For i = 1 we have vy (1) = 1 > v} (1) hence ¢ = 1 iff v (2) < v} (2) which by (9)
1
amounts to 1 — v (1) < v} (2) and by (20) to 2(1 — Q(2,n,q)) > 1 or Q(2,n,q) < 5.

2
1
Now i* = 1 if vf (1) > v, (2) or v/ (1) > 1 — v (1) or vf(1) > 3 and * = 2 if
1

Due to the equality v, (n) < v} (n) =1, by (13) we have i = n — 1iff v (n —1) >
v (n —1) Whichlby (19) amounts to v/ (n —2) + v} (n —1) < 1, and by (20) to
Q(n—1;n,q) > 5 Now i* =n—1if v (n—1) > v (n

1 =n.

1
, (n)orvh(n—1)> 5 otherwise

For i € {2,3,...,n — 2}, by (19), condition (13) can be written in the form

_|_. +. _|_. _|_.
v (i —1)+wv, (1) <1 and v, (i) +v,(i+1)>1
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and by (20) in the form

Q(i;n,q) > and  Q(i+ 1;n,q) <

N —
N | —

Now by (14) and (19)

i if vl (i) >

-~
Il
DN | =

i+ 1, otherwise.

Summing up all above and taking into account that Q(i;n,q) decreases in i =

1,2,...,n— 1, we obtain

N | —

i = {ﬁrstie {1,2,...,n — 2} such that Q(i + 1;n,q) <

n — 1,if such 7 does not exist.

1
Then i* = ¢’ if v} (i) > 5 and i* = i’ + 1 otherwise, which gives us statements

(15)-(16) of the Theorem.

\)

1
To prove statement (17) of the Theorem observe that if i* = 1 then v (1) > 3 and if
1
i* =nthen v, (n) =1-v}(n—-1) > 3 For i* € {2,3,...,n—1} we have: 1) if i* = ¢
1 1
then by (15) v (i*) > 3 and by the first inequality in (13) v, (i*) > v} (i*) > 3
1 1
hence min{v, (i*), v} (i*)} > 3 and 2) if i* = 4’ 41 then by (15) v} (i* — 1) < 3

1 1
which amounts to 1 — v, (i*) < 5 °r vy (1) > 5 Then by the second inequality in

1 1
(13) we have v/ (i*) > v, (i*) > 57 80 that again min{v, (i), v} (i*)} > 5 which
ends the proof of the Theorem. ]

3.3.5. Comparison of estimators?

Each of estimators Tr,, Twu, Lamses Tarap, Luman, and T pye considered in this Chap-
ter is optimal with respect to a suitable criterion; if one chooses a criterion of opti-
mality, then the estimator is uniquely determined. However, in large nonparametric
model F that we consider, criterions which led to estimators T, = ZTyaup and Ty, ap,
seem to be more natural than those based on mean-unbiasedness and Mean Square
Error which gave us estimators &y, and &,,sz. An obvious reason is that F(T) is

a median-unbiased estimator of ¢ if and only if 7" is a median-unbiased estimator of
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the ¢-th quantile z,(F") when the sample comes from a parent distribution F' € F,
while the analogous statement for mean-unbiasedness is not true. What is more, if
F(T) is the most concentrated median-unbiased estimator of ¢ then 7" is the most
concentrated median-unbiased of z,(F") when the sample comes from the distribution

FeF.

Estimator Z,,,- also needs a comment. Recall that Z,,,- is optimal in the sense that

it satisfies

(21)  Pp{|F(Zppc) —q| < |F(T)—q|} >1/2for all F € F and for all T € 7.

However the following statement, which is more interesting for practical applications,

Pr{|Zpme —2q(F)| < |T'—2q(F)|} > 1/2 for all F € F and forall T € T,

is not true. To see that consider the following numerical example. For n = 10 and

g = 0.225 the optimal, in the sense of (21), estimator is X3.1¢:

Pr{|F(X3.10) —q| < |F(T)—¢q|} > 1/2 for all F € F and for all T € 7.

However, for estimating the quantile of order ¢ = 0.225 of the parent distribution

F(z) = 2/* we have

Pp{|X2:10) — 2¢(F)| < [X3:10) — 2(F)[} = 0.5234

which means that Xs.1g is PM C-better than Xs5.19.

Similar property share M AD-optimal estimators: they are optimal when the error
is measured in terms of |F'(T) — ¢| and not in terms of |T" — z4(F')|. For example,
to estimate the quantile of order ¢ = 0.3 from a sample of size n = 10, the estima-
tor which minimizes Er|F(T) — q| is X3.10 with Mean Absolute Deviation equal to
0.1083 while for F(z) = 2%, 0 < z < 1 we have Er|X3.10 — F~1(0.3)] = 0.1069
and Er|Xy4.10 — F~1(0.3)] = 0.1033.

As a conclusion we see that the only property preserved under monotonic transforma-
tions of an estimator 7', and especially under the transformation F'(T'), is the property

of being the most concentrated (in the sense of (4)) median-unbiased estimator.
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4

Applications to parametric models

Typically specificity of a given parametric model allow us to construct effective statis-
tical estimators. There are however some difficult problems (for example, constructing
median-unbiased estimators) which may be solved through embedding the parametric
model into a larger nonparametric model. Embedding parametric model in a larger
(parametric or nonparametric) model is also typical in situation if our knowledge
on the parametric model on hand is not exact and we wish to safeguard ourselves
against ”possible violations” of the specific parametric model under consideration:
taking into account possible violations amounts embedding the model into a larger

one and constructing suitable robust estimators.

4.1. Median-unbiased estimators

In this Section we consider the following problem: given a parametric model with a
real (unknown) parameter 6 € ©, we are interested in constructing an exactly median-
unbiased estimator of the parameter, i.e. an estimator 6 such that a median of the
estimator equals 6, uniformly over all § € ©. Though the metod that we present
below is general, effective constructions are available for some specific families of
distributions only. We consider families of distributions L = {Kjy : § € ©}, where ©
is an (finite or not) interval on the real line. The family /I is assumed to be a family
of distributions with continuous and strictly increasing distribution functions and
stochastically ordered by 6 so that for every z € supp K = [y supp Ko and for every
q € (0,1), the equation Ky(x) = g has exactly one solution in 6§ € ©; here supp K
denotes the support of the distribution K, which is a finite or infinite interval on the
real line. It is obvious that the solution depends monotonically both on x and ¢. As
we will see further on, the model represents a wide range of one-parameter families of
distributions. Generally: every family of distributions { Ky : Kg(z) = K(z —6)} with
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continuous and strictly increasing distribution function K and the location parameter
6 satisfies the model assumptions. Similarly, every family {Ky : Ko(x) = K(z/6)}
with a continuous and strictly increasing distributions K on (0, 4+00) with the scale

parameter 6 fits the model.
The method consists in

1) for a given ¢ € (0, 1), estimating the ¢g-th quantile of the underlying distribution
by a median-unbiased nonparametric estimator Z, . A restriction is that for a fixed n
a median-unbiased estimator of the ¢-th quantile exists iff 1—(1/2)1/" < ¢ < (1/2)Y/"
(cf Section 3.3.1); in our approach the restriction does not play any role because g

may be chosen optionally;

2) solving the equation Ky(Z,) = ¢ with respect to 6; the solution éq = 0, (&) is

considered as an estimator of 6.

If z, is a median-unbiased estimator of x, then, due to monotonicity of éq (z) with
respect to x, éq is a median-unbiased estimator of 6. What is more, if Z, is the median-
unbiased estimator of z, the most concentrated around z, in the class of all median-
unbiased estimators which are equivariant with respect to monotone transformations
of data (briefly: the best estimator) then, due to monotonicity again, éq is the most
concentrated around 6 median-unbiased estimator of € in the class of all median-
unbiased estimators which are equivariant with respect to monotone transformations
of data (briefly: the best estimator).

As the best median-unbiased nonparametric estimator of the ¢g-th quantile we take

the estimator Z, from Sec. 3.3.1

A

Trz(q) = X
where the random index J has distribution
P{i=k}=X\ {J=k+}=1-A
with
k= k(q)

= the unique integer such that Q(k;n,q) > = > Q(k + 1;n,q),

N | =

%—Q(er;nyq)
Q(kin,q) — Q(k+1;n,q)
Here Q(k;n,q) = 37—, (7))@’ (1 — )" 7.
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The construction works for every 1 — (1/2)'/" < ¢ < (1/2)"/™ and the problem
arises how to choose an ”optimal” g. To define a criterion of optimality let us recall
(e.g. Lehmann 1983, Sec. 3.1) that a median-unbiased estimator § of a parameter 6

satisfies
(1) Eol0 — 0| < Epld— 0| forall 6,0 € ©

(the estimator is closer to the ”true” value § € © than to any other value ¢’ € © of
the parameter). According to the property, we shall choose g, as that with minimal

risk under the loss function | — 6], i.e. such that

Bylf,,,, — 0] < Balf, — 6, 1—(1/2)"/" < q < (1/2)/

dopt

for all § € O, if possible.

Using the fact that # € © generates the stochastic ordering of the K, we shall restrict
our attention to finding g, which satisfies criterion (1) for a fixed 6, for example
6 =1 (if 0 is a scale or a shape parameter) or § = 0 if 0 is a location parameter; then

the problem reduces to minimizing
R(q) = El, —1| or R(q) = E|f,|

with respect to ¢ € (0,1), where E = F; or E = Ej, respectively. Formulas below

are given for the case 6 = 1; the case of § = 0 can be treated in full analogy.

We obtain

R(q) = M) El0g(Xk(q)n) = 1 + (1 = M) ElOg(Xr(qy41:n) — 1]-

By the fact that R(q) is a convex combination of two quantities, it is obvious that

Qopt satisfies

)\(QOpt) =1

and

Elfq,. (Xnigoporm) — 1 < Bl (Xiggyn) — 1], 1—(1/2)Y™ < q < (1/2)Y™
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By the very definition of A\, A(q) = 1 iff ¢ € {q1,42,...,¢,} where ¢; satisfies
Q(i;n,q;) = 1/2, and the problem reduces to finding the smallest element of the
finite set

(B, (Xin)— 1|, i=1,2,...,n}.

If Xi.,, is the k-th order statistic from the sample X, X,,..., X,, from a distribu-
tion function F', then Uy., = F(X.,) is the k-th order statistic from the sample

Ui, Us,. .., U, from the uniform distribution on (0, 1) which gives us

E|fq, (Xin) — 1| = Elfg,(F~ (Uin)) — 1]

(2) F(n) 1
T D) (n—i+1) /0

The latter can be easily calculated numerically.

A~

Og (F1(t)) -1t 1 (1—t)""dt.

As an example consider constructing a median-unbiased estimator for the shape pa-

rameter o of the Weibull random variable Y with distribution function of the form
Wa(y) =1 —e V", y>0, a>0.

The family of Weibull distributions {W,(z),a > 0} does not fit our model assump-
tions concerning stochastic ordering but we may consider transformed observations
X = max{Y,1/Y}; those have a distribution of the form

Folx)=e™ " —e™", z>1, a>0.

The family of distributions {F, (z),« > 0} is stochastically ordered by the parame-
ter a (Fig.4.1).

1 -
0.8 0.8 —
0.6 — 0.6 —
0.4 — 04
0.2 — 0.2 —
I I I I e I I I I I I re
1 2 3 4 5 1 2 3 4 5 6 7
a) Distributions Go,a = 0.5, 1, 2 b) Distributions Fn,a = 0.5, 1, 2
Fig. 4.1.
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For the sample size n = 10 and for F' = Fj in (2), by numerical calculations we
obtain miniE|HAqi(Xi;n) — 1| = 0.2976 for i = 8 and gopr = gs = 0.7414. Hence the
median-unbiased estimator of the parameter « of the distribution W, is given as the
(unique) solution with respect to a of the equation F,(Xs.19) = 0.7417 which can be
explicitly written as 0.302/log(Xs.10)-

Similarly we can obtain the following results (Zielinski 2003) (all numerical results
for n = 10):

Uniform U(0,60 + 1) distribution. Two equivalent median-unbiased estimators are
X1;10 — 0.067 and XlO:lO —0.933.

Power distribution Fp(z) = 2,0 < < 1,6 > 0. A median-unbiased estimator is
—181854/ IOg(X2:10>.

Cauchy distribution. If Y has a Cauchy distribution with the scale parameter A and
probability distribution function (1/X) (1 + (y/\)?) ~! then the family of distributions
of the random variable X = |Y| is stochastically ordered by the parameter A. A

median-unbiased estimator is 1.16456 - X5.1¢.

Symmetric stable distribution. Symmetric stable distributions are defined by their
characteristic functions of the form exp{—|t|*},a € (0,2]. Typically explicite formu-
las neither for distribution functions nor for probability density functions for stable
distributions are known, but distribution functions for the one-parameter family of

symmetric stable distributions may by written in the form

1 1 [Tsi o
Fu(x) = ——|——/ Smyexp{— (Q) }dy
2 7w/ Y x

A high accuracy algorithm for calculation of F, is available in Zielinski 2000b and

Zielinski 2001a. The construction of the estimator was presented in (Zieliniski 2000a).
In another context a method of estimating parameters of stable distributions through

estimating appropriate quantiles was presented in Fama et al. (1971).
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4.2. Robustness

4.2.1. Estimating location parameter under e-contamination

Let Fp(z) = F(x—0),0 € R, be a location statistical model with a known continuous
and strictly increasing unimodal distribution function F'; the problem is to estimate
6, but what we observe is a random variable X with distribution G(z) = (1—¢)F(z)+
eH(x), where H is any unknown distribution function. Let T'= T'(Xy,...,X,,) be a
location equivariant estimator. i.e. T(X;+c¢, Xo+c¢,..., Xp+¢) =T(Xq,..., X)) +c
for all c € R'. We confine ourselves to the location invariant estimators. Let M (G, T)
denote a median of the distribution of T if X,...,X,, have the distribution G. A
statistic 7" is a median-unbiased estimator of 0, if M (F,T) = 0 (or equivalently. if
M(Fy,T) = 0 for all € R'. Given ¢ € (0,1/2), let 7.(F) = {G = (1 — ¢)F(x) +
eH(z) : H any distribution} be the e-contamination neighborhood of F', and let
B.(T) = sup{M(G1,T) — M(G2,T) : G1,G2 € 7.(F)} be the oscillation of the
bias of T when the ”true” distribution G of observations runs over 7. (F). Given
two median-unbiased estimators 77 and T5, we call 77 more stable (or more robust)
than Ty if B.(Th) < B:(T2). We call T' the most stable (or most robust) median-
unbiased estimator of 6 under e-contamination if B.(T) < B.(T") for all median-
unbiased estimators 7”. It appears that the most concentrated (See Sec. 3.3.1)
most stable median-unbiased estimator of  under e-contamination is of the form
T* = %4,(q*) — F~1(q*) for a suitable ¢*, where Z,,(q) is the most concentrated

median-unbiased estimator constructed in Sec. 3.3.1.

Let us formulate the result formally.

1) By unimodality of F, for every § > 0 there exists x = x(J) such that F(z) —

F(z — A*) <e/(1 —¢) is nondecreasing for < z(d) and nonincreasing for = > x(J).

(2) The function

A =F (=) -1 (2= 1 -
(2) (1_8) (1_5 , €<z< €

is continuous on (g,1—¢). Let z* be a point that minimizes A(z) and let A* = A(z*).

We assume that z* € (g,1 — ¢); the condition ensures the uniqueness of the quantile
of order z* of each distribution G € 7. (F).
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z z—¢
(3) For z € (e,1 —¢), define z = F~! (1_8). Then F~! (1_8) =z —A(z) <

z

r—A* and F(x)— F(x—A*) <¢/(1—¢). Denote z* = F~1 ) Then F(z*)—
F(z* — A*) =¢/(1 —¢). By (1) it follows that F(x) — F(x — A*) is nondecreasing

for x < * and nonincreasing for x > z*.

(4) Let gg(2),z € (¢,1 — ), be the unique quantile of G € 7.(F). Let ¢(z) be
a distribution-free median-unbiased estimator of gg(z), i.e. an estimator such that
M(G,{§(2)) = qa(z) for every G € m.(F') (such as constructed in Sect. 3.3.1).

Theorem 1. T* = §(z*) — qp(z*) is the most stable median-unbiased estimator of

the location parameter 6.

Proof. The first part of the proof consists in demonstrating that B.(7%*) < A*. In

the second part we show that B.(T) > A* for all median-unbiased estimators 7.
For G € m.(F) we have (1 —¢)F < G < (1 —¢)F + ¢ and in consequence

(1—e)F +&)7' (z") <qa(z") < (1 —e)F) ™ (2%)
or ¥ — A* < gg(z*) < x* and consequently z* — qp(2*) — A* < qg(2*) — qr(2*) <
x* — qp(z*). Now, qa(2*) — qr(2*) is the median of 7%, so that B.(T*) < A*.

To show that B.(T) > A* for all median-unbiased estimators 7" it is enough to find
two distributions G and G% such that M(G5,T) = M(G7) — A* whenever T is a

median-unbiased estimator. To this end we define

0, if x < x*
Hi(2) = 1
(@) {1— S (F(z) — F(z — AY)), ifz>a*

€

and

l—¢ * : * *

Hy@:{ — (Fle+A") = F(), ife<a”—A

1 if @ > z* — A*
and take Gf = (1 —e)F +eH},i =1,2. Then G},G5 € n.(F), G3(x) = G5 (z + A*)
and the result follows. Il

Y

As an obvious result we obtain that for /' symmetric around zero and unimodal the
most stable median-unbiased estimator of location is sample median. The asymptotic
result was given by Huber (1981). The asymptotic result without restriction to sym-
metric distributions was given in Rychlik et al. (1985). The fixed sample size results

presented above come from Zielinski (1988).
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4.2.2. Estimating location parameter under e-contamination with re-
strictions on contaminants

Consider as above the well know problem of estimating the location 6 of the dis-
tribution Fy(z) = F(xz — 0), where F' is assumed to be symmetric around zero (i.e.
F(x) =1 - F(—z), x € R!) and unimodal (mode = 0). As in the previous Sec-
tion assume that the observations are e—contaminated and their true distribution is
Go(x) = G(xz — 0) such that G = (1 — ¢)F + ¢H, where H is any distribution. We
consider as estimators the statistics T,, = T(G,,) derived from a translation equiv-
ariant functional T'; here G, is the empirical distribution function. Suppose that
we are interested in finding such a 7" which minimizes the maximum asymptotic bias
sup |T(G) —T(F)|, where the supremum is taken over all H (Huber 1981, p. 11). The
well known solution is the sample median (Huber 1981, Section 4.2). Generally, the
commonly accepted opinion is that the sample median is the most robust estimator
of location if contaminants may spoil the sample (e.g. Borovkov 1998, Browm 1985,
Shervish 1995).

It appears that if the class ‘H of contaminating distributions is smaller than the class
of all distributions, the result may be quite different. Suppose that H is the class of
distributions H such that

i) support of each distribution H € H is in the interval [ F~1 ; +00
(i) supp 212 ) ,
—¢

(ii) contaminating distribution H has the finite expectation p which satisfies the

1
condition ep < 1 (m)

Theorem 2. (Zielinski 1987). For every ¢ € (0,1/2) and for every contaminating
distribution H € H, the bias of the sample mean, denoted by T (G), is smaller than
that of the sample median, denoted by T5(G).

Proof is trivial: T1(G) = ep and T5(G) = F~1 (2(11_ 5)) -

Conditions (i) and (II) are realistic. Condition (i) says that a ”very small outlier is no
outlier”. For example, if F' is normal distribution N(0,0?) and € = 0.05 than X may
be considered as outlier (or contaminating observations) only if X > 0.06600; appro-
priate lower limits for outlier for ¢ = 0.1 and € = 0.01 are 0.1397¢ and 0.0127¢. If F
is exponential distribution 1 —exp{—=z/0} with mean # than for ¢ = 0.1, 0.05, 0.01 an
observation may be considered as outlier if it is greater than 0.8116, 0.7476, 0.7030,

respectively. Condition (ii) ensures that large outliers can occur with small probabil-

ity.
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Let us now relax the above conditions (i) and (ii) and suppose that H is the class
of all contaminants which have a finite first moment (finite expectation). It appears
that if we know that expectations of contaminants is absolutely not greater than a

given C' > 0, we are able to improve the functional T' for our estimator 7,, = T'(G,,).

1
We assume that C > Cy = F~! <2(1 —5

G = (1 —e)F + eH if H is so far to the right that the half of the mass of the

distribution G comes from the distribution F.

); observe that Cy is the median of

For a given H, if 0< H(0) <1, define

H(x)— H(0)
fox>
Hf @) ={ 1-H©) = =7
0, otherwise
and H(x)
x
_ , ifx <0
H™(z) = (0)
1, otherwise.

If H(0) =0 then define H~ (z) = 0 for < 0 and if H(0) = 1 then define H*(0) =1
for z > 0. If a contaminant X has a distribution H, then H7T is the distribution of
Xt =X,if X > 0and = 0, otherwise. Similarly, H~ is the distribution of X~ = —X
if X <0 and = 0 otherwise. We assume that EXT < C and EX~ < C.

By the well known inequality for a positive random variable £ with finite expecta-

tion E¢
123

we obtain c
HY(z)>1- =, x>0,
x
(3) C
H (z) <——, <0
T
Let
0, ife<C
L(z)=(1—-¢)F
(@)= =e)f(z) +e 1-=, ifz>C
T
(4)
c .
Uw)= (1 —e)F(z)+ed 7 12=7C
1, ifx >-C
and define

N C)={G=(1—-¢e)F+eH,L <G <U}.
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According to the definition, N (e,C) is a "neighborhood” of the model distribu-
tion F' that contains all distributions which can be obtained in the result of e-
contaminating F' by any distribution with finite moment bounded by C. The appro-
priate e-neighborhood of F' without restrictions on contaminants is {G : (1 —¢)F <
G<(1—¢e)F+¢e} (Fig. 4.2 with F = N(0,1)).

For T € T, let

B.c(T) = sup |T(G1) — T(Gs)|.
G1,G2€N (¢,0)

For ¢ € (0,1) define

and suppose that there exists ¢* € (0, 1) such that
6(q") < d(q), q€(0,1).

1
Let A(z) = §(L(x)), —oo0 < x < oo, and denote A* = §A(L_1(q*)). For ¢ = 0.5
we have §(q) = 2C so that A* < Cy.  As an estimator of location 6 we consider
0+ = T,- — F~1(q*). Due to the fact that |f,« (G1) — 04+ (G2)| = |Ty- (G1) — Ty« (Go)],

to demonstrate the optimality of éq* it is enough to prove the following Theorem.
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Theorem 3. B, (1) < Beo(T) forall T € 7.

Proof. Define

GV () = {L(aj—i— 2A%), %f:z: < —AF,
U(CII), if x> —A*,
By (4)
1_ *k . *
GY () = (1—-e)F(x) +e- - [F(z +2A%) — F(z)], ifz < —A*,
(1—¢)F(x)+e, if £ > —A*.
The function

has the following properties:
1) Hy(x) > 0;

2) by symmetry and unimodality, f(x+2A*) — f(x) >0 for x <—A*,

so that Hf,(x) is increasing;

1-— 1-—
3) HYy(~A") = — S 2F(A*) - 1] < - S [2F(Cy) —1] = 1.
It follows that .
H if v < —A*
HU(x):{ U(x)v Hr= A )
1, if x > —A*,

is a distribution function and in consequence GY () is a distribution function of the
form (1 — €)F(z) + eHy(z) and belongs to N (e, C).

Define the function

L(x), if © < A*,

G (z) =
(=) {U(x—QA*), if . > A*.

By similar arguments to those concerning GY (x) we conclude that GX(z) € N (e, C).
It is easy to check that GY(x) = GL(z + 2A*) so that for T € T we have T(GY) =
T(GT) + 2A* and in consequence B. o(T) > 2A* for all T € 7.

For G € N(g,C) we have

Ty-(U) < T (G) < Ty (L).

By the definition of ¢* we have Ty« (L) — Ty=(U) = 2A* so that B o(Ty+) < 2A*. []
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1.0 7 A(z)

0.5

Fig. 4.3

2.0

1.0 +

Fig. 4.4

If x € (=C,C) then L(z) = (1 —¢)F(x) and U(x) = (1 — ¢)F(x) + ¢, so that

min i(q) = min F! L) —F! (E>}
U(-C)<q<L(C) U(-C)<q<L(C) l1—e l—e
1
(2(1 - a>) "

. It follows that without a moment condition, i.e. for C' = 400, we have

N =

for ¢ =

1
q = 5: then the best estimator is the median T 5.
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If C < +o00 then, given F and €, it may happen that A(x) has some other minima
in {r:2z—A(x) < —C} or {z : © > C}, and the minima are smaller than A(Cj)

for ¢* = —. These minima give us more stable estimators. No general results for any

1
class of Fg are known.

As an example we have chosen the case of normal N (0, 1) parent distribution F' with
€ = 0.2 and restriction on contaminants with C' = 0.7. Now Cy = 0.3186, so that for
the optimal estimator, i.e. for the median, say M, in the model without restrictions
we have By o(M) = 2Cy = 0.6372. In the model with restrictions, due to symmetry
we may confine ourselves to considering the function A(x) on the interval (Cp, +00)
and to study its minimum on the interval (C,+o00). For ¢ = 0.2 and C' = 0.7, the
function is presented in Fig. 4.3. Numerical calculations give us ¢* = 0.7824 with

By.2,0.7(To.7824) = 0.5589 which significantly improves the estimator.

Functions A(x) for some other values of C' are exhibited in Fig. 4.4. Numerical
calculations give us the conclusion: if Cy < C' < 0.8245 then the optimal estimator is
T~ with some ¢* # 3 and the median is not the best choice. If the expected value
of the contaminant is large enough (C' > 0.8245), then the median is the most stable

estimator.

4.3. Distribution-free quantile estimator in parametric models; how
much do we lose?

Suppose we wish to estimate a quantile of an unknown distribution from a para-
metric family. Typically we construct a (best in a sense) estimator of the quantile.
But if the parent distribution is heavily contaminated the estimator may be highly
unsatisfactory. We may always estimate the quantile by a (best in a sense) nonpara-
metric estimator. We gain in stability (robustness) of the estimator, but we lose in
the effect of resigning from the information about the specific parametric family of

distributions.
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In what follows we present the problem for estimating quantiles of the one parameter
exponential distribution with distribution function Wy(z) = 1 — e % 2 > 0,0 > 0
similar problem, with an excursion to asymptotics, was considered in Wieczorkowski
et al (1991). Let Xy,...,X,, be a sample from the distribution Wy(z) and let S,, =
2?21 X;. It is well known that S,, is a random variable distributed according to
Gamma distribution I'(n, #) with the shape parameter n and the scale parameter 6.
All statistics we consider below are equivariant with respect to the scale parameter
so that in consequence we consider the case of § = 1 only. Let Qr(n, P) denote the
P-th quantile of the distribution I'(n, 1).

The most concentrated median-unbiased estimator of the ¢g-th quantile of the dis-
tribution Wy(x) is given by ¢S, where ¢, = —log(1l — ¢q)/Q@r(n,1/2) (cf. Lehmann
(1986), Ch.3.5). As a measure of accuracy of the estimator we take its interquartile

range which is given by the formula

Ry =c, (Qp(n, 3/4) — Qr(n, 1 /4)).

In practical applications, the exponential distribution is usually an approximation
only. But if the random variable under consideration is not exactly exponentially
distributed, then the estimator c¢;S,, is not more median-unbiased. If we still insist
to have a median-unbiased estimator, we may use the most concentrated median
unbiased estimator Z, from Sec. 3.1.1. One may expect that the interquartile
range of Z,, denoted by T;E), in the exponential model with the parent distribution
E = Wy, would be greater than R,,. A natural question arises: how large should be
sample size N for £, to get the accuracy R,, of the estimator c,S,, from a sample
of size n. To say that formally: given the order q of the quantile to be estimated and
a sample size n for the estimator ¢,S,, find the smallest sample size N = N(¢,n) for
the estimator Zz, such that rg\?) <R,.

Asin Sec. 3.1.1, for the most concentrated median-unbiased nonparametric estimator

Zrz(q) we have
PF{QA;RZ(Q) S .TP(F)} = )\kP{Uk:n S P} + (1 - )\k)P{Uk—i—l:n S P}a Pe (07 1)7

where k is an integer satisfying

and




with

mi(q) = zi:k (T;) ¢ (1—q)" .

J
It follows that

T7(1E) = Tp(3/4,n) (E) — LP(1/4,n) (E)

where, given n and ¢, P(7,n) is the unique solution, with respect to P, of the equation

MNeP{Up:, < P} + (1 = X)) P{U41.n < P} =1.

Values of R,, and rﬁLE) for some g and n are presented in Tab. 4.1 and N(n) together

with N(n)/n in Tab. 4.2.

Tab. 4.1. R, and TT(LE)

n qg = 0.1 q = 0.25 q = 0.5 qg = 0.75 qg = 0.9
Ry Tv(zE) Ry Tq(zE) Ry T%E) Ry T’SLE) Ry T'ng)

5 0.065 0.219 0.179 0.374 0.431 0.577 0.862 1.139 1.432  2.200
10 0.046 0.156 0.125 0.246 0.300 0.439 0.600 0.738 0.997 1.411
15 0.037 0.119 0.101 0.203 0.244 0.343 0.488 0.608 0.810 1.078
20 0.032 0.105 0.087 0.178 0.211 0.306 0.421 0.534 0.670 0.950
25 0.029 0.091 0.078 0.158 0.188 0.268 0.376 0.474 0.625 0.823
30 0.026 0.085 0.071 0.142 0.172 0.249 0.343 0.426 0.570 0.763
35 0.024 0.077 0.066 0.132 0.159 0.227 0.317 0.396 0.527 0.691
40 0.023 0.073 0.062 0.124 0.148 0.215 0.297 0.373 0.493 0.656
45 0.021 0.068 0.058 0.117 0.140 0.200 0.280 0.351 0.465 0.608
50 0.020 0.065 0.055 0.110 0.133 0.192 0.265 0.330 0.441 0.584

Tab. 4.2. N(n) and N(n)/n

q n =5 n = 10 n = 20 n = 50
0.1 - - 98 9.8 199 9.95 499 9.98
0.2 25 5.0 50 5.0 100 5.0 251 5.02
0.3 17 3.4 34 3.4 68 3.4 168 3.36
0.4 13 2.6 26 2.6 51 2.55 128 2.56
0.5 11 2.2 21 2.1 41 2.05 105 2.10
0.6 9 1.8 18 1.8 36 1.8 89 1.78
0.7 8 1.6 16 1.6 32 1.6 81 1.62
0.8 8 1.6 17 1.7 32 1.6 78 1.56
0.9 - - 17 1.7 35 1.75 86 1.72
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Though the ratios N(n)/n seem not to depend of n, no general result to this end
is known. What is more, the results highly depend on the parametric family of
distributions at hand: analogous results for the family {N(u,1),n € R} of normal

distribution are presented in Tab. 4.3 and Tab. 4.4.

Tab. 4.3. Ry, and r§")
n qg = 0.1 qg = 0.25 qg = 0.5 qg = 0.75 qg = 0.9
R, T’SLN) Ry TﬁLN) Ry Tv(mN) Ry, T’S'LN) Ry, r7(7,N)
5 0.603 1.194 0.603 0.883 0.603 0.720 0.603 0.883 0.603 1.194
10 0.427 0.795 0.427 0.578 0.427 0.548 0.427 0.578 0.427 0.795
15 0.348 0.609 0.348 0.477 0.348 0.429 0.348 0.477 0.348 0.609
20 0.302 0.539 0.301 0.419 0.302 0.383 0.302 0.419 0.302 0.539
25 0.270 0.467 0.270 0.372 0.270 0.335 0.270 0.372 0.270 0.467
30 0.246 0.434 0.246 0.335 0.246 0.311 0.246 0.335 0.246 0.434
35 0.228 0.393 0.228 0.311 0.228 0.284 0.228 0.311 0.228 0.393
40 0.214 0.373 0.213 0.293 0.213 0.269 0.213 0.293 0.213 0.373
45 0.201 0.346 0.201 0.276 0.201 0.251 0.201 0.276 0.201 0.346
50 0.191 0.332 0.191 0.260 0.191 0.240 0.191 0.260 0.191 0.332
Tab. 4.4. N(n) and N(n)/n for the normal distribution
q n = 5 n = 10 n = 20 n = 50
0.1 - - 32 3.2 61 3.05 146 2.92
0.2 12 2.4 22 2.2 42 2.1 103 2.06
0.3 9 1.8 18 1.8 35 1.75 88 1.76
0.4 9 1.8 17 1.7 33 1.65 81 1.62
0.5 9 1.8 17 1.7 31 1.55 79 1.58
0.6 9 1.8 17 1.7 33 1.65 81 1.62
0.7 9 1.8 18 1.8 35 1.75 88 1.76
0.8 12 2.4 22 2.2 42 2.1 103 2.06
0.9 - - 32 3.2 61 3.05 146 2.92

From the examples above it follows that one can hardly expect to state a general
rule concerning the loss in efficiency when using the simple universal nonparametric
estimator of a quantile instead of a specific quantile estimator for a given family of
distributions. In computer simulations we usually do not need be very restrictive with
respect to the size of samples generated and then the simple nonparametric estimator

may be preferred.
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5!

Optimal interval estimation

In this Chapter we present results from Zielinski at al (2004).

Nonparametric confidence intervals for quantiles are of the form (Xj.,, X;.,) with
suitably chosen order statistics X;., and Xj;.,,. The problem we consider in this
Section is to construct optimal confidence interval for a ¢-th quantile with exact

predetermined confidence level v € (0, 1).

Given n and ¢ € (0, 1), it is well known that
PF{Xil’ﬂqu(F)Slen}:p(ivj;n7Q)v 1§Z<]§?’L,

where

s=1t
does not depend on F'. Then (Xj.,, X;.,) with ¢ and j such that
p(i,jin,q) =
provides a nonparametric (distribution-free) confidence interval for the gth quantile
z4(F') at the confidence level 7 (see, for example, David 1981).
If F' is the uniform distribution U(0,1) we shall write P instead of Pp. By the
“distribution-free property”

PF{Xi:n < xq(F) < Xj:n} — P{Uzn < q < Uj:n}a

all our considerations concerning confidence intervals (X;.,, Xj.n), (Xpin,+00), or
(—00, Xk:n) may be performed in terms of confidence intervals (U, Uj.p), (Ugin, 1),
or (0,Uj.,), respectively, where Uiy, U;.,, are order statistics from the uniform distri-
bution U(0, 1).
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First of all observe that for a given v two-sided confidence intervals exist if and only if
P{Uin < q < Unin} 2.

The condition is equivalent to the condition

(1) "+ (1—g" <1-7.

For example, to get a two-sided confidence interval at the confidence level v = 0.95

for the gth quantile with ¢ = 0.01 the sample size n has to be not smaller than 299.

If condition (1) is satisfied than the possible exact levels of confidence intervals of the
form (Xj.n,, X;.nn) are determined by a discrete binomial distribution and typically the
coverage probability cannot be rendered equal to a preselected value 7. To overcome
the difficulty, or at least to construct confidence intervals with coverage probability as
close as possible to the prescribed value, many different constructions have been pro-
posed. The most recent ones can be find in Beran and Hall (1993) or in Hutson (1999),
some others in references cited in those papers. The problem however is that under
constructions proposed coverage probability is not exactly equal to the prescribed
confidence level or/and does depend on the (unknown) distribution F. Our idea is
to take two integer-valued random variables I and J, independent of the observed
random variable X, such that P{I =4, J = j} = \;;, and consider (randomized) con-
fidence intervals of the form (X1.,, Xj.). Now again Pp{Xy., < z,(F) < Xy} =
P{Ur, < q < Ujp}t = Z;:ll Z?:Hl Ai;jp(i, j;n, q) does not depend on F. It is
obvious that under condition (1) there exist infinitely many \;;,1 <14 < j < n, such
that P{Ur., < q < Uj.,} = 7, which gives us infinitely many exact nonparametric
(randomized) confidence intervals for a given quantile at a given confidence level. The
problem is to choose the best one. Similarly one-sided confidence intervals can be

considered.

5.1. Optimal two-sided exact confidence intervals

In this Section we assume that condition (1) holds. For a confidence interval
(Ur.n,Uy.p) with random indices I and J such that

P{I=iJ=j}=Xj, 1<i<j<n,

n—1 n
)\ijZO, ZZ)\ijzl

i=1 j=i+1
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we define (according to a suggestion by David (1981), p. 16) the length of the interval

as

1 n

E(J—-1)= (7 = )X

i=1 j=i+1

To find the best random indices I and J we may proceed as follows.

Making use of unimodality of the binomial distribution, take k£ which maximizes
b(k;n,q) = (Z)qk(l — q)"%; then (Uk.n,Uky1.n) is our first approximation to the
confidence interval. Now take (Ux_1.n, Ugt1.) if 0(k — 1;m,q9) > b(k + 1;n,q) and
(Uk:n, Ukt2.,) otherwise as the next approximation to the confidence interval. Pro-

ceed until
P{U;sy <q<Ujyn} <y and P{Up, <q<Ujp}t >~

for some (i’ =i —1and j' = j) or (¢’ =i and j' = j+ 1). Now calculate X\ such that
AP{Uin <q<Ujin} + (1= ANP{Upy <q<Ujrn} =7

and as the confidence interval to be constructed take (Ui.,, Uj.,) with probability A
or (Ui, Ujs.y,) with probability 1 — .
If P{Ui., < q¢ < Uj.p} =y for some 1 < i < j < n then the confidence interval to be

constructed is (Uj.p,, Ujn).

It is obvious that by the very construction the resulting confidence interval is the
shortest one (in the nonparametric sense: minimum E(J — I)) at exactly the prede-

termined level .

For example, if n = 10 and the proposed confidence level is ¢ = 0.9, then for the

quantile of order ¢ = 0.3 we have

Pr{Xi.10 < 24(F) < X510} = 0.8216, Pp{Xi.10 < 2¢(F) < X610} = 0.9245

and hence A = 0.2381. To get the optimal confidence interval for the g-th quantile
$q(F) with q = 0.3 take (X1;107X5;10) with probability A = 0.2381 or (X1:10,X6:10)
with probability 1 — A.
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3. Optimal one-sided confidence interval

The discussion of lower and upper bounds for confidence intervals is completely par-

allel; we confine ourselves to confidence intervals of the form (Ug.p, 1).

First of all observe that if P{U;., < q} < = then the maximal nontrivial confidence
interval (Uj.,,1) has confidence level smaller than the prescribed value v and no
nontrivial confidence interval at that level is available (nontrivial means other than
(0,1)). In what follows we assume that P{U;.,, < ¢} =1—(1—¢q)" > 7.

Let I be a random index with distribution P{I =i} = \;,i = 1,2,...,n. Following
Lehmann (1986, Sec. 3.5) we define a confidence interval (Ur.,,,1) as the uniformly

most accurate confidence interval for the gth quantile at the confidence level ~ if
P{UI:n S Q} =7

and

P{U];n < q/} < p{UJ:n < q/}

for all ¢’ < ¢ and for all random indices .J. For rationale for the choice of the criterion,
also in terms of an appropriate loss function, see Lehmann (1986): the idea is that
the best lower confidence bound should underestimate the gth quantile by as little as

possible.

Write pg(n, q) =p(k,n+1;n,¢) =", (7)¢*(1—q)" * = P{Uy.n <q} and consider the
following construction. If py(n,q) = ~y for some k, then take (Uk.,, 1) as the confidence
interval to be constructed. Otherwise, let k be an integer such that px(n,q) > v >
pr+1(n,q) and define

\ = Y- pk—|—1(n7 C_I)
Pk(n,q) — Prt1(n, q)

Then (Uy.p, 1) with the random index I such that
P{I=kl=\ P{I=k+1}=1-\

is the uniformly most accurate confidence interval for the gth quantile at the confi-

dence level 7.
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A detailed proof with solving an appropriate linear programming problem is presented
in Zielinski at al (2004). The proof may also be deduced from a construction of the
most powerful test for testing H : z4(F) < u against K : 24(F) > u (cf Reiss 1989).

It is interesting to note that the above confidence interval has an additional advantage:
the lower confidence bound Uy.,, overestimates the gth quantile by as little as possible.
To see that, it is enough to consider the linear programming problem maximizing
P{Uj., <{'} for ¢’ > q under the restrictions (2).
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6

Asymptotics

Asymptotic theorems in statistical models differ from those in probability theory in
that they should hold uniformly in the family of distributions specified by the model:
all what statistician knows about the distribution that generates his observations is
that it belongs to a specified family of distributions. An asymptotic theorem to be
useful for statistician must be expressed in terms of the family of model distributions
and not to use any specific information on the parent distribution at hand. An

example of statistical asymptotic theorems is the limit law for Kolmogorov statistic

Dnp=sup [Fu(z) - F(z)]
—oo<r<+0o0
where F;, is empirical distribution function from a sample of size n which comes from
the parent distribution F. Theorems like that enable statisticians to do practical
inference (tests, confidence intervals, etc) without going into details concerning the

parent distribution at hand.

On the other hand, an example of a theorem of a rather moderate statistical appli-

cability is the Berry-Esséen inequality (Serfling 1980)

33E|X — EX|?
su F.(r)— o)< ——F7—7——
—OO<QJI:<)—|-OO| n( ) ( )’ — 4 O_3n1/2
To make use of the inequality a statistician has to know first three moments of the
distribution of observations, or he has to confine himself to a rather artificial class of
distribution with a know upper bound on the ratios E|X — EX|3/03.

Another example of an incorrect application of an asymptotic result is the well known
Central Limit Law for Bernoulli trials: if .5, is the number of successes in n Bernoulli
trials with probability of success in each trial § then (S,, —n6)/y/nf(1 — ) is asymp-
totically normally N(0,1) distributed. However, for every n and for every n > 0

n — nb 1
Sn 1 <z} —®(z)| > = —n (non-uniform

one can find 0 and = such that | Py{ ——=
nf(1 —0) 2
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Central Limit Theorem - Zielinski 2004). One may conclude that typical difficulties
in constructing confidence intervals for 6 (e.g. Brown et al. 2001), based on normal

approximation, arise from the fact that C' LT does not hold uniformly.

6.1. Uniform strong consistency of Xj.,

Concerning the problem of quantile estimation, it is well known that if x,(F') is the
unique g-th quantile of a distribution function F, then Xy ()., with k(n)/n — ¢ is
a strongly consistent estimator of x,(F) (Serfling 1980). However, for every >0
and for every, even very large n, suppc r Pr{|Ximn)m — 24(F)| > €} = 1. This is a
consequence of the fact that in the family of all distribution functions with uniquely
defined ¢-th quantile the almost sure convergence Xj ()., — #4(F') is not uniform

in F (see Corollary 1 below).
A simple necessary and sufficient condition for the uniform strong consistency of

Xk(n)m 1s given in the following Theorem.

Theorem 1. (Zielinski 1998) The sample quantile Xy, )., such that k(n)/n — q
as n — oo is an uniformly strongly consistent in F estimator of the q-th quantile

xq = xq(F) if and only if

(1) (Ve > 0) I;relfj‘__min{q—F(:L'q—e),F(xq-i-s)—q} > 0.

Proof. (Sufficiency) Fix ¢ > 0 and let § = infpcr min{q—F(z,—¢), F(xq+¢)—q}.

In the proof we shall use the following result of Hoeffding (1963): if &1,&o, ..., &, are
independent random variables such that, for some finite a and b, P{a<§{; <b}=1,
j=1,2,...,n, then for t > 0,

1 — 1 —
Pl = —E|= ] >t) < —ont? /(b — a)?).
n;fj n;@ = _exp{ n /( a)}

Take N such that ¢ — /2 < k(n)/n < ¢+ 0/2 if n > N. Denote by F), the empirical
distribution function generated by the sample X, X»,..., X, and by V; the random

variable equal to 1 if X; > x4, + ¢ and equal to 0 otherwise.
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Then for n > N,
nd?
PF{Xk(n)n > Lq + 5} < exp{—T}
and
nd?
Pr{Xy(nym < g —€} < exp{—T}

Hence for each n > N and for each F € F,
né?
Pr{|X(nyn — gl > €} < 2exp{——-}.

It follows that for every n > N and for each F € F,

2"
PF{Sup |Xk(m)m - xq| > 5} S 1 y
m>n - T

where 7 = exp{—62/2}. Now, the right-hand side tends to 0 as n— oo, independently
of F'€ F, and hence Xj(,)., — 24(F) a.s. uniformly in F.

(Necessity) Suppose that the condition (1) does not hold so that the following con-

dition is true:
@) (Je > 0)(V6 > 0)(IF € F)
min{q — F(z, —¢), F(zqy+¢) —q} <0.

We shall demonstrate that if the condition (2) holds then (Je > 0) (In > 0) (VN)
(3n > N) (IF) such that

PF{Slip | X5 (myem — q(F)| > €} > n.
It is enough to prove that (3¢ > 0)(In > 0)(VN)(In > N)(IF) such that
Pr{| Xknyn — 2q(F)| > €} > .

We shall prove a somewhat stronger statement:

(Je > 0)(¥n > 0)(YN)(3n > N)(3F)
(3)

1
PF{|Xk(n):n - xq(F)| > 5} > 5 — 1.

To this end, take ¢ as determined by (2). Fix any n > 0 and any Ny. We shall verify
that (3n > Np) and (3F) such that (3) holds.

Consider the incomplete beta-function
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1
It is well known that B(q;k,n—k+1) — Zam k — oo in such a way that k/n — q.
It follows that for every fixed n there exists N(n) such that for all n > N(n),

1 1 1 1
- — = B(g;k,n—k+1) < =+ =n.
Fix any n > max{Ny, N(n)}. From the continuity of B(¢;k,n — k + 1) for ¢ € (0,1)
it follows that for the given 7 there exists § > 0 suchthat 0 < ¢—d0d <g<qg+d <1
and
1

1
B(q—é;k,n—k+1)>B(q;k,n—k+1)—§n>5—77,

1 1
B(g+d;k,n—k+1) <B(q;k‘,n—k+l)+§n< 54—77.
Given 0 > 0, by (2) there exists F' such that

F(zg—e)>q—90 or F(zg+¢e)<q+0.
Hence
1 1
B(F(xq—e);k,n—k+1)>§—n or B(F(mq+5);k7n—k+1)<§+n.

Taking into account that

B(F(t);k,n —k + 1) = PF{Xk:n S t}

we obtain .
PF{Xk(n)n < mq(F) - 5} > 5 -1
or .
Pp{Ximyn < 2q(F) +e} < 547
and finally (3). []

Corollary 1. In the nonparametric family F of all distributions with strictly
increasing distribution functions, for every q € (0,1), for each € > 0, for each n > 0,

and for every sufficiently large n there exists a distribution F' such that

Pe{|Xknym — 2q(F)| > e} > 1—n.

In other words: for every positive € and for every sufficiently large n,

(4) sup PF{]Xk(n):n —zq(F)| >e} =1
FeF
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Observe that ”sufficiently large n” is needed for k(n)/n to be close to ¢. As a dis-
tribution F' one can take any strictly increasing continuous distribution such that,
under fixed € > 0, both F(z,(F) —¢) and F(z,(F) + ¢) are sufficiently close to

F(zy(F)) = q.

The next Corollary demonstrates that (4) may hold even in ”small parametric families

of distributions.
Corollary 2. (Boratynska et al. 1997). In the family of distributions

1
Fa(x):§(1+a:a—(1—x)0‘), 0<z<l, a>1

the result (4) holds for ¢ = 0.5, for each ¢ € (0,0.5) and for every sufficiently large n.

[

Corollary 3. (e-contamination). Let F' be a continuous and strictly increasing
distribution function and, for a fixed ¢ € (0, %), let G={G=(1—c)F+H,H € H},
where 'H is the family of all distribution functions. Then for every G € G and for
every q € (0,1), if k(n)/n — q, then Xy (,)., is a strongly consistent estimator of the
unique g-th quantile x4(G). The convergence is uniform in G iff g € (¢,1—c). In the
Tukey model with the distribution function ® of the standard normal distribution
N(0,1) as F and the family {N(0,0),0 > 1} as H, the convergence is uniform iff
c c
q€e (5, 1-— 5). 1
Corollary 4. If F is a strictly increasing distribution function and G = {Gy(x) =
F(x —0),—00 < 0 < oo} is the shift-family generated by F, then Xy y).,, where
k(n)/n — q, is uniformly strong consistent estimator of the g-th quantile. If F is
a strictly increasing distribution function and G = {G,(x) = F(x/o),0 > 0} is the
scale-family generated by F', then Xy, (y)., is not uniformly strong consistent estimator
of the g-th quantile. O

The result enables us to effective application of the strong convergence of sample
quantiles in a smaller class of distribution functions. For a fixed g € (0, 1), consider the
class F(q,?) of all locally (at the gth quantile x,) continuous and strictly increasing
distributions F' such that the densities f at the ¢th quantile x, satisfy f(z,) > ¥ > 0.

Theorem 2. (Zielinski 2004). For each € > 0 and for each n > 0, there exists
N = N(e,n) such that

Pr {sup ‘Xk(n):n — $q| > 5} <n forall F e F(q,9)
n>N
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and . .
8log (5(1 —exp{ — §ﬁ252})n)

N(T97€,77)Z_ 92e2

Proof. If
§ = Firelgimin{q —F(zy—e¢),Flxg+e)—q}
for a class ‘H of distributions, then for every F' € 'H

9 N
PF{Sup ‘Xk(n):n - xq} > 8} < T
n>N

1—17

with 7 = exp{—4%/2} (Serfling 1980). In the class F(q, 1) we have

F t) — - F —t

lim (zq +1) —q — lm q (z4 )
0<t—0 t 0<t—0

so that there exists tg > 0 such that for all ¢t < ¢y

>

Flzg+t)—q> %1% and q— F(z,—1t) > %1%
and in consequence, for all sufficiently small ¢ (for € < #)
d =min{qg — F(zqg—¢),F(zg+¢c)—q} > %196.
Now
7 = exp{—9?/2} < exp{—%ﬁ2e2}.
Solving, with respect to N, the equation
2V

1—71
we obtain the result. ]

=1

Table 1 below gives us an insight in how large samples are needed to get the prescribed

accuracy of the asymptotic.

Table 1. N(¥,¢,n)

g
n i 0.05 0.10
0.1 0.5 159,398 35,414
1.0 35,414 7,745
2.0 7,745 1,660
0.01 0.5 188,871 42,782
1.0 42,782 9,587
2.0 9,587 2,120
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6.2. Asymptotics of the most concentrated median-unbiased estimator

In Sec. 3.3.1 we constructed the most concentrated median-unbiased estimator of the

form

R Xion, with probability A,
€T =
" | Xpp1m, with probability 1 — A,

where k satisfies m;(q) > 1/2 > mpu(q), A\p = (1/2—m41(q))/ (7 (q) — 7 (¢)), and
r(q) = Z?:k (;L) ¢’ (1 — ¢)" 7. In this Section we consider the estimator for a fixed
q € (0,1) and to avoid too tedious notation we shall denote shortly T' = Z,. The

concentration function

Cn(B) = PriT < xp(F)}

of the estimator does not depend of F' but obviously depends on the size of the

sample n (Fig. 6.1); we are interested in the asymptotic behavior of C,, as n — +o0

Cn(‘])
1 =
s
S
0.8 — 7
/
o/
0.6 — il
0.4 — )
/i
0.2 /
/
/L
P
0 [ [ [ [ q
0.2 0.4 0.6 0.8 1

Fig. 6.1. Concentration function of the estimator Zrz, ¢ = 0.3
n = 5 - solid, n = 20 - dashes, n = 100 - dots
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Theorem 3 (Wieczorkowski et al. 1991). For every 8 € (0,q)

Cn(B) — 0, asn— +oo

and for every 3 € (q,1)

Cn(B)—1, asn— +oo

Proof. By the Berry-Esséen inequality we have

= k—1-ng M
mi(4) (I)(\/nq(l—Q)>‘§\/ﬁ

where ®(t) = 1 — ®(t), ® is the distribution function of the standard normal distri-

bution N(0,1), b(q) = ¢[q®> + (1 — ¢)?]/+/q(1 — q), and ¢ is a Berry-Esséen constant.
By the definition of £ it follows that

i)( k —ng )_b(Q) <7rk+1(Q)<%ka(q)SCI)(k_l_nq)+b(q)

ng(1—q) n - ngl—q)) Vn

The inequalities hold for all n which is possible only if k—1—nqg<0<k—nq and hence
k = ng+ 9§ for some § € (0,1). The concentration function C, () can be written in

the form

Cn(B) = Ami(B) + (1 = N)mr11(8)

and by the above estimates we obtain

W(n,q,3) — &\/ﬁ) < Cn(B) <W(n,q,B) + (1 + 2A)%)
where
v lafnlg=B)+d-1\ - (n(g—B)+3d = [nlg—p)+3d
W(n,q,ﬁ)—)\[@< nq(1 —q) ) (I)< nq(l—Q)> +(I)< nq(l—q))

To end the proof it is enough to observe that
W(n,q,B) =1, asn—oo if B<yq

and
W(n,q,) =0, asn—oo if 8>¢q
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