ESTIMATING QUANTILES WITH LINEX LOSS FUNCTION.
APPLICATIONS TO VAR ESTIMATION.
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Abstract. Sometimes, e.g. in the context of estimating VaR
(Value at Risk), underestimating a quantile is less desirable than
overestimating it which suggest to measure the error of estimation
by an asymmetric loss function. As a loss function when estimat-
ing a parameter 6 by an estimator 7" we take the well known Linex
Function exp{a(T — 0)} — a(T — 0) — 1. To estimate the quan-
tile of order ¢ € (0,1) of a normal distribution N(u,o), we con-
struct the optimal estimator in the class of all estimators of the form
T+ ko, —o0o < k < oo, if o is known, or of the form Z + As, if both
parameters 4 and o are unknown; here r and s are standard estima-
tors of 1 and o, respectively. To estimate a quantile of an unknown
distribution F' from the family F of all continuous and strictly in-
creasing distribution functions we construct the optimal estimator
in the class 7 of all estimators which are equivariant with respect to

monotone transformations of data.
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1. The problem. In some applications underestimating a quantile
is less desirable than overestimating it. That is the case, though not
commonly recognized, in the problem of estimating VaR (Value at Risk)
Khindarova at al (2000), Yi-Ping Chang at al (2003). Consequences of
fixing VaR too low are essentially more serious that consequences of fixing
that at a too higher level. Formally the problem of estimation of VaR may
be stated as the problem of constructing the estimator which minimizes
the risk of estimation under a Linex Loss function which for an estimator
T and and an estimand 6 takes on the form exp{a(T —0)} — (T —0) — 1

(Fig. 1).
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In what follows we construct the optimal estimator in the normal
model and in a nonparametric model on the basis of a random sam-
ple x1,x9,...,2, (i.i.d. observations) with a fixed sample size n (non-

asymptotic solution).

2. Estimating quantiles of a normal distribution. Given a
sample z1,x9,...,x, from a normal distribution N(u, o), the problem is
to estimate the gth quantile z,(u, o) = pu+ 2,0, where z, = ®71(g) and ®
is the distribution function of N(0,1).

As a class of estimators we take the class of all estimators of the form
T+ ko, —o0o < k < o0, if 0 is known, or of the form z 4+ As, if both
parameters p and o are unknown. Here

ixj and %= %Z(x] —z)?
j=1
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are standard estimators of y and o with probability distribution functions

o= el 52 )
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and

respectively.

3. Optimal estimator if ¢ is known. As a measure of discrepancy
between the gth quantile z, (1, o) to be estimated and the estimator Z+ ko

we take the Linex loss function in the form (Fig.1):

—1.

(Z + ko) —mq(,u,a)}_a(a_c—f—ka) — 2q(p, 0)

Lo(Z,k,q,n,a) = exp {a

Theorem 1. Assuming the loss function Lo(Z,k,q,n,«), the optimal

estimator of the gth quantile z,(p, o), if o is known, is of the form

Z+ (zg — a/2n)0.
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Proof. The risk function of the estimator z + ko under the Linex loss
Lo(Z, k,q,n,a) is given by the formula

“+o00
Ro(k.gon,0) = [ Lof@. k. n,0)f(2)da
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042

2n} — ok —z4) — 1.

= eajp{a(k —zq) +
Minimization of the risk with respect to k gives us the optimal estimator
T+ ko with k = k(g,n, o) = z4 — a/2n. ]

4. Optimal estimator if both p and o are unknown. As a
measure of discrepancy between the gth quantile x,(p, o) to be estimated

and the estimator T + ks we take the Linex loss function in the form

—1.

L(z,s,q,\,n,a) = exp {a(x +As)—q(p, 0) } —oz(j + As)—wq(p, 0)

o g

Theorem 2. Assuming the loss function L(Z,a, A, q,n,«), the optimal
estimator of the gth quantile z,(p, o), if both p and ¢ are unknown, is of
the form

T+ Ao,

where A = A(g, n, ) is the unique solution of the equation

/ooo t"exp{at - %ﬂ}dt = % (%>n/2 s (g) “rp {_O‘ (% - Zq) }

Comment. The left hand side of the above equation is well known as the
Parabolic Cylinder Function or Weber function which is related to con-
fluent hypergeometric functions or Whittaker functions (e.g. Abramowitz
and Stegun (1972) or Gradshteyn and Ryzhik (2000)). These unable us to

use standard tables or computer packages for calculating A.

Proof. The risk function of the estimator Z + As under the Linex loss

L(z,s,q,\,n,«) is given by the formula

R\, ¢,n,a) = /+°° dzx /000 ds L(z,s,q,\,n,a) f(Z)g(s)



Now
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and hence
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The first summand of the risk R(\, ¢, n,«) is a strictly decreasing

function in argument A and the second summand is a strictly increasing
function so there exists exactly one A which minimizes the risk and that
is the solution of the equation OR(\, ¢, n,a/OX = 0. ]

Some numerical values of optimal k for the case of known o and
optimal X for the case of both parameters of the parent distribution N (0, 1)

unknown are presented in Table 1.



Table 1. Optimal values of k (first row) and A (second row)

q n
—0.5 -1 -2 -5
0.5 10 0.025 0.05 0.1 0.25
0.02564 0.05133 0.10306 0.26487
20 0.0125 0.025 0.05 0.125
0.01266 0.02532 0.05069 0.12758
20 0.005 0.01 0.02 0.05
0.00503 0.01005 0.02010 0.05031
100 0.0025 0.005 0.01 0.025
0.00251 0.00501 0.01003 0.02507
0.9 10 1.30655 1.33155 1.38155 1.53155
1.36246 1.41387 1.52668 1.97887
20 1.29405 1.30655 1.33155 1.40655
1.32117 1.34533 1.39582 1.56758
20 1.28655 1.29155 1.30155 1.33155
1.29720 1.30652 1.32549 1.38507
100 1.28405 1.28655 1.29155 1.30655
1.28934 1.29395 1.30324 1.33174

It is obvious that k(n,q,a) — 2z, as n — oo. Though numerically
easily confirmed, no analytic proof of the convergence A(n,q,a) — z, as

n — oo is known to the author.

5. Estimating quantiles of an unknown distribution F' from
a large nonparametric family F. Let F be the family of all continuous
and strictly increasing (on their supports) distribution functions and let
z,(F) = F~1(q) be the (unique) ¢-th quantile (quantile of order ¢) of the
distribution F' € F. Let X1., Xomy -y Xnn (X1n < Xogp <000, < X))
be an ordered sample from an unknown distribution F' € F. The sample

size n is assumed to be fixed. The problem is to estimate z,(F').

As a class 7 of estimators to be considered we take the class of all es-
timators which are equivariant with respect to monotonic transformations
of data and we measure the error of estimation of z,(F') by an estimator

T € T in terms of differences F(T') — ¢; rationale for the choice are to
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be found, for example, in Zielinski (1999, 2001, 2004). The Linex loss
function takes on the form exp{a (F(T)—¢q)} —a(F(T)—q)—1, a <0

(Fig. 2).

100

100

] z 0 T T
0.8 1 00 02 04 06 08 1

q=20.9
Figure 2. Ezp{a(z — q) — a(z —q) — 1}

An estimator T belongs to the class 7 iff it is of the form T =
X j(2)m, where J = J()) is a random integer, independent of the sam-
ple Xi.n, Xoum, ..., Xnwm, such that P{J = j} = X;, DA, =1, \; >0
(Uhlmann (1963) for j fixed, Zielinski (2004) for J random). Observe that
if the sample comes from a distribution F' € F then F(T) = F(X j\):n) =
Uj(x):n» where Uj., is the j-th order statistic from the uniform distribution
U(0,1). It follows that the risk of the estimator 7" = X ()., under the

Linex loss is given by the sum

Z )‘jR(jv n;dq, Oé)
j=1

where



R(j,n;q,a) =

= #('n—j)'/ol (exp {a(z—q) }—oz(ac—q)—l)mjﬁl(l—x)"*jdx
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Here

I'(n+1)

Fi(y 1) =
) = S 11

1
/e“ttf—l(l—t)”—jdt
) Jo

is the confluent hypergeometric function (e.g. Weisstein 1999, Luke 1975).

Using the recurrence relation

. . o .
Fi(j,n+10) -1 B(G—1,n+1;0) = —— Fi(j,n+2;a)
n—+ 1 1
and taking into account that 1Fi(j,n + 1;a) > 0 we conclude that the
first term in R(j,n; q, ) is decreasing in j, the term j/(n+ 1) is obviously
increasing and in a consequence as a result we obtain that the optimal

estimator is of the form Xj-., with j* such that

R(j*,n;q, ) = min R(j,n; q, a)
J

It follows that for j € {1,2,...,n} there exists a unique j* such that
R(j",n;a,q) < R(j,msa,q), j#J°
or

R(j" ;0. q) = R+ 1,n;¢,0) < R(jynsq, ), § E457,57 +1}

The optimal j* can be easily found numerically. Some values of j* =

j*(n,a, q) are presented in Table 2.



Table 2. Optimal j*(n, a, q)

q = 0.5 - first row, ¢ = 0.9 - second row

n Q@
-1 —10 -20 -50 -100
10 6 7 10 10 10
10 10 10 10 10
20 11 12 13 16 20
19 20 20 20 20
50 26 27 28 32 37
46 47 47 49 50
100 51 52 53 57 63
91 92 92 94 97
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