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Abstract

A problem of reconstruction of the radiation field in a domain
Ω ⊂ R

3 from experimental data given on a part of boundary is con-
sidered. For the model problem described by a Cauchy problem for
the Helmholtz equation, an approximate method based on regulariza-
tion in the frequency space is analyzed. Convergence and stability are
proved under a suitable choice of regularization parameter. Numerical
implementation of the method is discussed.

1 Introduction

In optoelectronics, the determination of a radiation field surrounding a source
of radiation (e.g. a light emitting diode) is a problem of frequent occurrence.
As a rule, experimental determination of the whole radiation field is not
possible. Practically, we are able to measure the electromagnetic field only
on some subset of physical space (e.g. on some surfaces). So, the problem
arises how to reconstruct the radiation field from such experimental data (see
for instance [1], [13]).

In this article, we shall consider only stationary processes (for definitions
see [3]). In such a case, the vectors of electric induction D(r, t) and of
magnetic induction B(r, t) have the form

D(r, t) = eiωtD(r), B(r, t) = eiωtB(r),
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where ω is a constant frequency, and the Maxwell’s equations lead to the
Helmholtz equations for the vectors D(r) and B(r):

∆D(r) + k2D(r) = 0, ∆B(r) + k2B(r) = 0 for r ∈ Ω ⊂ R
3. (1.1)

Here

k2 =
(ω

c

)2

,

and the domain Ω depends on the considered problem [10].
In case when boundary conditions for the fields D(r) and B(r) are linear,

we can formulate boundary value problems for each component of electro-
magnetic field separately.

The physical problem considered in this paper is connected with the no-
tion of light beams. A good example of such a beam is a Gaussian beam.
In electrodynamics, a Gaussian beam is a beam of light whose electric field
intensity is a Gaussian function as a function of distance r from the axis of
the beam (see Figures 1.1 and 1.2):

D(r) = D0 exp

(−r2

ρ2

)
. (1.2)

Figure 1.1: Geometry of the Initial Problem. Shown is the typical shape of
a laser beam (here is presented the Gaussian beam as an example). ρ(z) is
the radius at which the electric field amplitude drops to (1/e)D0. Propor-
tions between the radius of beam and the dimensions of the cuboid are not
conserved. In reality, this radius should be much smaller.

The Gaussian beam is a good approximation of the real beam of light
generated by many lasers. So, formulating corresponding boundary prob-
lems, we can assume that the electric field (and, as a result, also a magnetic
field) practically vanishes far from the axis of the beam.
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Figure 1.2: Radial distribution of the electric field amplitude in the Gaussian
beam. The radius of beam should be much smaller than any of the edges a,
b, c.

When considering more general models of laser beams (not necessary
Gaussian beams), in analogy to the model presented above, we can formulate
the following

Initial Problem. Let us consider a physical system presented in Figure
1.1. Some sources of the electromagnetic field are situated outside a cuboid.
These sources generate the electromagnetic field in all the space R

3. However,
taking into account that fields practically vanish far from the axis, we may
take an assumption that the electromagnetic field vanishes on the side-faces
of the cuboid. Therefore, each component of this approximate field in the
bounded domain Ω = (0, a) × (0, b) × (0, c) is a solution of the Helmholtz
equation

∆u(r) + k2u(r) = 0 in Ω, (1.3)

and satisfies the boundary conditions

u(r) = 0 on side-faces of Ω. (1.4)

The related inverse problem consists in reconstruction of a solution u of (1.3),
(1.4) in Ω from values of u and its normal derivative on the boundary Γ

u(r) = g(r), ∂zu(r) = h(r) on Γ. (1.5)

In practice we have to solve the above problem with perturbed data gδ and
hδ.
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In this paper we consider the physical situation similar to that presented
above, but the mathematical model is slightly modified:

Model Problem. Let us consider a certain modification of Initial Prob-
lem. Let Γ0 and Γ be two parallel surfaces in the space R

3:

Γ0 = {r ∈ R
3 : z = 0}, Γ = {r ∈ R

3 : z = d}, (1.6)

for r = (x, y, z), and let Ω0 denote the half-a-space as shown in Figure 1.3.

GG0
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y

x

0

S

WW0

d

Figure 1.3: Geometry of Model Problem

Let Ω denote the part of the space R
3 contained between two planes Γ0

and Γ. The sources of the electromagnetic field are situated in Ω0. Each
component of electromagnetic field in Ω is a solution of the Helmholtz equa-
tion

∆u(r) + k2u(r) = 0 in Ω. (1.7)

We look for a solution satisfying the following conditions on a part of bound-
ary:

u(r) = g(r) ∂zu(r) = h(r) for r ∈ Γ, (1.8)

with the additional condition

∀z ∈ (0, d) u(·, ·, z) ∈ L2(R2), (1.9)

for given functions g and h. The inverse problem formulated above is in fact
a Cauchy problem for the Helmholtz equation. The problem is to reconstruct
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the field component u in Ω in the case when approximate values gδ and hδ

(instead of g and h) on the boundary Γ are known. The values gδ can be
got directly from measurements of the field on the surface Γ. Approximate
values of hδ can be found by performing additional measurements on some
surface slightly shifted with respect to Γ and by solving the relevant Dirichlet
problem (for details see Section 3).

For reference we present below the related problem, when, in contrast to
the Model Problem, the domain Ω is a bounded region.

Reference Problem. Let us consider a physical system presented in
Figure 1.4.

Figure 1.4: Geometry of Reference Problem

The sources of the electromagnetic field are situated in the domain Ω0.
These sources generate the electromagnetic field in all the space R

3. Each
component of the electromagnetic field satisfies the following boundary-value
problem for the Helmholtz equation

∆u(r) + k2u(r) = 0 in R
3 \ Ω0 (1.10)

with the boundary conditions

u(r) = g(r) on Γ (1.11)

and the Sommerfeld radiation condition

lim
r→∞

r

(
∂u

∂r
− iku

)
= 0 (1.12)
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where g is the exact value of the corresponding component of electromagnetic
field on the boundary Γ and r =

√
x2 + y2 + z2.

From measurements we get approximate values gδ of this field on the
boundary Γ with some measurement errors. The problem is to reconstruct
the field component from given measured data gδ.

The Reference Problem has been formulated only for comparison and will
not be considered in the sequel.

The aim of this paper is to present an approximate method for solving
in a stable way the Cauchy problem for Helmholtz equation in Ω (cf. Figure
1.3) with approximately given boundary values. Cauchy problems for elliptic
equations are ill-posed [9], i.e. the solution does not depend continuously on
the boundary data. Stability aspects of Cauchy problems were discussed for
instance in [7], [12], [14], [2]. For the Helmholtz equation, an influence of
the frequency k on the stability of Cauchy problems was described in [8].
Moreover, other ill-posed problems for the Helmholtz equation were exten-
sively studied in literature, among others: inverse problem of determining the
shape of a part of boundary [4], inverse problem of determination of sources
[11], [5].

In this paper we discuss the nature of the ill-posedness of the considered
problem and propose approximate method of solving, based on regularization
in the frequency space. A similar technique was used in [6] for sidewise heat
equation in the case of one dimensional space.

The paper is organized as follows. In Section 2 we consider the model
problem and discuss its ill-posedness. The regularization method based on
truncated Fourier transform is analyzed in Section 3 where its convergence
and stability are proved under the suitable choice of regularization parameter.
In Section 4 the numerical implementation of the method is discussed. Some
numerical examples illustrating the proposed method are included.

2 Ill-posedness

Let us consider the Model Problem (1.7), (1.8), (1.9) described in Section 1.
We have Ω = R

2 × (0, d) ⊂ R
3, d > 0. For simplicity, the first two variables

will be denoted by ρ = (x, y). According to this notation Γ0 := {(ρ, 0),ρ ∈
R

2} ⊂ ∂Ω, Γ := {(ρ, d),ρ ∈ R
2} ⊂ ∂Ω.
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The problem under consideration can be written as follows:




∆u + k2u = 0, in Ω
u(ρ, d) = g(ρ) ρ ∈ R

2,
∂zu(ρ, d) = h(ρ) ρ ∈ R

2,
u(·, z) ∈ L2(R2) z ∈ (0, d),

(2.1)

where g, h ∈ L2(R2) are given data. We assume that for these exact data
the unique solution exists in H2(Ω). We look for an approximate solution
inside Ω in the case when the data are given approximately, i.e. when gδ,
hδ ∈ L2(R2) are used as the data and

‖gδ − g‖L2(R2) ≤ δ ‖hδ − h‖L2(R2) ≤ δ. (2.2)

It will be shown that this Cauchy problem is ill-posed, i.e. the solution
does not depend continuously on the boundary data and small errors in
the data can destroy the numerical solution. For numerical solving such a
problem in a stable way, so-called regularization methods should be applied.

In order to simplify an analysis of the ill-posed Cauchy problem (2.1) we
can make the additional assumption that h = 0. Let us observe that the
solution of the general problem (2.1) is the sum u = v + ũ of the solution
v ∈ H2(Ω) of the problem





∆v + k2v = 0, in Ω
v|Γ0 = 0,
∂zv|Γ = h,
v(·, z) ∈ L2(R2) z ∈ (0, d),

(2.3)

and the solution ũ ∈ H2(Ω) of the problem




∆ũ + k2ũ = 0, in Ω
ũ|Γ = g − v|Γ,
∂zũ|Γ = 0,
ũ(·, z) ∈ L2(R2) z ∈ (0, d).

(2.4)

Lemma 2.1 If k < π
2d

, then the solution of the problem (2.3) is continuously
dependent in L2 norm on the data h

‖v‖L2(Ω) ≤ C‖h‖L2(R2).

Proof: Since v(·, z) ∈ H2(R2) for z ∈ (0, d) and h ∈ L2(R2), we can
apply to them the Fourier transform with respect to variables ρ ∈ R

2

v̂(ξ, z) =
1

2π

∫

R2

v(ρ, z)e−iξ·ρdρ,
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where ξ = (ξ1, ξ2) ∈ R
2 and ξ · ρ = ξ1x + ξ2y. We have

∂̂2v

∂x2
(ξ, z) = −ξ2

1 v̂(ξ, z),
∂̂2v

∂y2
(ξ, z) = −ξ2

2 v̂(ξ, z).

Thus, the problem (2.3) can now be formulated in the frequency space as
follows:





v̂zz(ξ, z) = (|ξ|2 − k2) v̂(ξ, z), ξ ∈ R
2, z ∈ (0, d)

v̂(ξ, 0) = 0 ξ ∈ R
2,

∂zv̂(ξ, d) = ĥ(ξ) ξ ∈ R
2.

(2.5)

Looking for the solution of the form

w(·, z) = α1(·)ez
√

η(·) + α2(·)e−z
√

η(·),

where αi ∈ L2(R2), i = 1, 2 and

η(ξ) = |ξ|2 − k2,

we find from the condition on Γ0 that α1 = −α2. Thus,

w(·, z) = 2α1(·) sinh(z
√

η(·)) (2.6)

and
∂w

∂z
= 2α1(·)

√
η(·) cosh(z

√
η(·)).

From the condition on Γ we get

w(·, z) = ĥ(·) sinh(z
√

η(·))√
η(·)cosh(d

√
η(·))

.

If |ξ| −→ k, then w(ξ, z) −→ ĥ(ξ)z. For |ξ| > k and z ∈ (0, d), sinh(z
√

η(ξ)) ≤
sinh(d

√
η(ξ)) and the function 1

x
tanh(x) is decreasing for x ≥ 0, thus

|w(·, z)| ≤ d|ĥ(·)|. (2.7)

For |ξ| < k, 0 < z
√

−η(ξ) = z
√

k2 − |ξ|2 ≤ dk < π
2
, thus

w(·, z) = ĥ(·) sin(z
√

−η(·))√
−η(·)cos(d

√
−η(·))

≤ ĥ(·)tan(d
√
−η(·))√

−η(·)
.

Since the function tan(x)
x

is increasing for 0 < x < π
2
, it follows that for |ξ| < k

|w(·, z)| ≤ |ĥ(·)|1
k

tan(dk). (2.8)
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Therefore, from (2.7) and (2.8) we have

|w(·, z)| ≤ C|ĥ(·)|,

for C := max{d, 1
k

tan(dk)}, and

‖v‖L2(Ω) =

(∫ d

0

‖w(·, z)‖2
L2(R2)dz

) 1
2

≤
√

dC‖h‖L2(R2),

which ends the proof.

Remark 2.2 The assumption dk < π
2

means that we consider the inverse
problem (2.1) in a domain Ω which depends on the parameter k appearing in
the Helmholtz equation.

From Lemma 2.1 it follows that for kd < π
2

the problem (2.1) can be
reduced to (2.4), which by the assumption about (2.1) has the unique solution
for the exact data g̃ = g − v|Γ, where v is the solution of well posed problem
(2.3) for the exact h. Therefore, for simplicity, we will assume later that in
the considered problem (2.1)

h(ρ) ≡ 0. (2.9)

Applying the Fourier transform with respect to variables ρ ∈ R
2, we trans-

form the problem (2.1),(2.9) to the following one in the frequency space:





ûzz(ξ, z) = (|ξ|2 − k2) û(ξ, z), ξ ∈ R
2, z ∈ (0, d)

û(ξ, d) = ĝ(ξ) ξ ∈ R
2,

∂zû(ξ, d) = 0 ξ ∈ R
2.

(2.10)

If u is the solution of (2.1), then its Fourier transform û is the solution of
(2.10) and has the following form:

û(ξ, z) = ĝ(ξ) cosh((d − z)
√
|ξ|2 − k2). (2.11)

If |ξ| > k, then |ξ|2 − k2 > 0 and

| cosh ((d − z)
√
|ξ|2 − k2)|2 >

1

4
e2(d−z)

√
|ξ|2−k2

>
e2|ξ|(d−z)

4e2k(d−z)
.

So, for any fixed z ∈ (0, d)

‖u(·, z)‖2
L2(R2) = ‖û(·, z)‖2

L2(R2) ≥ c

∫

|ξ|>k

|ĝ(ξ)|2e2|ξ|(d−z)dξ, (2.12)
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with c = 0, 25e−2kd. Hence the boundednes of the norm of u(·, z) in L2(R2)
implies the rapid decay of ĝ(ξ) when |ξ| → ∞. From this it follows that
in the L2-setting the considered problem is ill-posed in the Hadamard sense.
Namely, let us assume that in the place of the exact data we have some
measurements data gδ with a small measurement error. We cannot expect
the ĝδ to have the same decay in frequency as the exact data ĝ. So, the
solution uδ(·, z) of the problem (2.1) with the boundary condition u|Γ = gδ

does not in general exist and even if it exists, it is not continuously depending
on gδ in L2 norm.

One of the method to stabilize the considered Cauchy problem consists
in cutting off high frequencies.

3 Regularization in the frequency space

Let us introduce the following family of bounded subsets of R
2:

Sα = {ξ ∈ R
2 : |ξ|2 ≤ α},

parameterized by the parameter α ∈ R
+. Let for δ ≥ 0

ĝδ
α(ξ) :=

{
ĝδ(ξ) for ξ ∈ Sα,
0 for ξ ∈ R

2 \ Sα
(3.1)

and ĝα := ĝ0
α. Then ûδ

α given by the formula

ûδ
α(ξ, z) = ĝδ

α(ξ) cosh ((d − z)
√
|ξ|2 − k2) (3.2)

is the solution of the problem (2.10) with the condition ûδ
α(ξ, d) = ĝδ

α(ξ).
Let uδ

α(ρ, z) be the inverse Fourier transform (with respect to the first two
variables) of ûδ

α(ξ, z)

uδ
α(ρ, z) =

1

2π

∫

R2

ĝδ
α(ξ) cosh ((d − z)

√
|ξ|2 − k2)eiξ·ρdξ. (3.3)

This function will be considered as a regularized solution to the problem
(2.1) (with h ≡ 0) where α is the parameter of regularization which should
depend on the error bound δ. The regularized solution for the exact data
will be denoted by uα(ρ, z).

Lemma 3.1 If u is the exact solution of (2.1) for h ≡ 0 and uα is the
function defined above, then for z ∈ [0, d]

‖u(·, z) − uα(·, z)‖L2(R2) −→ 0 as α −→ ∞.
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Moreover, if α > k2 −
(

π
2d

)2
and M0 is a given constant such that

‖u(·, 0)‖L2(R2) ≤ M0,

then for z ∈ (0, d]

‖u(·, z) − uα(·, z)‖L2(R2) ≤ M0|e−zκα||1 + e−2(d−z)κα|, (3.4)

where
κα :=

√
α − k2. (3.5)

Proof: From (2.11) and (3.2) it follows that

‖u(·, z) − uα(·, z)‖2
L2(R2) =

∫

|ξ|2>α

|û(ξ, z)|2dξ −→ 0 as α → ∞. (3.6)

In order to obtain the estimation (3.4) let us observe that if |ξ|2 ≥ k2, then
ζ :=

√
|ξ|2 − k2 ∈ R and thus cosh ζd ≥ 1. Moreover, if |ξ|2 < k2, then

ζ = i
√

k2 − |ξ|2 and

cosh ζd = 0 ⇐⇒ |ξ|2 = k2 −
(

2l + 1

2

)2
π2

d2
.

Thus cosh(ζd) 6= 0 for |ξ|2 > k2 −
(

π
2d

)2
. So, taking into account (2.11)

and that ûα(ξ, z) = 0 for |ξ|2 > α, we can write the integral in (3.6) for

α > k2 −
(

π
2d

)2
as follows:

∫

|ξ|2>α

|û(ξ, z)−ûα(ξ, z)||ĝ(ξ) cosh(d)
√
|ξ|2 − k2)

cosh((d − z)
√

|ξ|2 − k2)

cosh(d
√
|ξ|2 − k2)

dξ,

which is bounded by

Cα(z, d)

∫

|ξ|2>α

|û(ξ, z) − ûα(ξ, z)||û(ξ, 0)|dξ,

where for z ∈ (0, d)

Cα(z, d) := sup
|ξ|2>α

∣∣∣∣∣
cosh((d − z)

√
|ξ|2 − k2)

cosh(d
√
|ξ|2 − k2)

∣∣∣∣∣ . (3.7)

Thus

‖u(·, z) − uα(·, z)‖L2(R2) ≤ Cα(z, d)‖u(·, 0)‖L2(R2) ≤ M0Cα(z, d) (3.8)
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due to the a-priori assumption on u. From (3.7) it follows that

Cα(z, d) = sup
|ξ|2>α

∣∣∣∣
e(d−z)ζ + e−(d−z)ζ

edζ + e−dζ

∣∣∣∣ = sup
|ξ|2>α

e−zζ

∣∣∣∣
1 + e−2(d−z)ζ

1 + e−2dζ

∣∣∣∣ .

Thus
Cα(z, d) ≤

∣∣e−zκα

∣∣ ∣∣1 + e−2(d−z)κα

∣∣ ,
which together with (3.8) gives (3.4).

Remark 3.2 Under the assumption of Lemma 2.1 the relation α > k2 −(
π
2d

)2
is fulfilled for any α ≥ 0.

Lemma 3.3 Let uα and uδ
α be regularized solutions defined by (3.3) with

data g and gδ, respectively. If ‖g − gδ‖ ≤ δ, then for z ∈ [0, d]

‖uα(·, z) − uδ
α(·, z)‖L2(R2) ≤

(
e(d−z)κα + e−(d−z)κα

) δ

2
, (3.9)

where κα is defined by (3.5).

Proof: Due to (3.2) we have

‖uα(·, z) − uδ
α(·, z)‖2

L2(R2) = ‖ûα(·, z) − ûδ
α(·, z)‖2

L2(R2) ≤

≤
∫

ξ∈Sα

|ĝ(ξ) − ĝδ(ξ)|2
∣∣∣cosh((d − z)

√
|ξ|2 − k2)

∣∣∣
2

dξ ≤

≤ δ2 sup
ξ∈Sα

∣∣∣cosh((d − z)
√
|ξ|2 − k2)

∣∣∣
2

.

Let us observe that for |ξ|2 < k2

∣∣∣cosh((d − z)
√
|ξ|2 − k2)

∣∣∣ =
∣∣∣cos((d − z)

√
k2 − |ξ|2)

∣∣∣ ≤ 1.

On the other hand, for |ξ|2 ≥ k2 the function cosh(
√
|ξ|2 − k2z) is real

and increasing, so its supremum is attained at |ξ|2 = α and is equal to
1
2
(e(d−z)κα + e−(d−z)κα) . Thus we get the desired result.

The main result of this section can be formulated as follows:
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Proposition 3.4 Let u be the exact solution of (2.1) with h ≡ 0 and let
uδ

α be the regularized solution (3.3) with noisy data gδ. Let us assume that
‖u(·, 0)‖L2(R2) ≤ M0 for a-priori known constant M0 and ‖g − gδ‖ ≤ δ for
δ ≤ 2M0. If α = α(δ) is such that

κα(δ) = −1

d
ln

δ

2M0

, (3.10)

then for z ∈ [0, d]

‖u(·, z) − uδ
α(·, z)‖L2(R2) −→ 0 as δ −→ 0 (3.11)

and for z ∈ (0, d]

‖u(·, z) − uδ
α(·, z)‖L2(R2) ≤ δ + 2M

d−z

d

0 δ
z

d . (3.12)

Proof: If α = α(δ) satisfies (3.10), then κα ∈ R
+ and, due to Lemmas

3.1 and 3.3, we have

‖u(·, z)−uδ
α(·, z)‖L2(R2) ≤ ‖u(·, z)−uα(·, z)‖L2(R2)+‖uα(·, z)−uδ

α(·, z)‖L2(R2) ≤

≤
(

M0e
−dκα +

δ

2

)(
e(d−z)κα + e−(d−z)κα

)
.

From (3.10) for α = α(δ)

e−dκα =
δ

2M0

,

thus
‖u(·, z) − uδ

α(·, z)‖L2(R2) ≤ δ(e(d−z)κα + e−(d−z)κα).

Since

e(d−z)κα =

(
δ

2M0

)− d−z

d

,

so, taking into account that δ < 2M0 and 0 ≤ (d−z)
d

≤ 1, we obtain

‖u(·, z) − uδ
α(·, z)‖L2(R2) ≤ δ

((
δ

2M0

)−
(d−z)

d

+

(
δ

2M0

) (d−z)
d

)
≤

≤ δ

(
1 + 2M

(d−z)
d

0 δ−
(d−z)

d

)
,

which completes the proof of Proposition 3.4.
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Remark 3.5 The assumption (3.10) gives an explicite formula for the reg-
ularization parameter α dependent on the data error δ:

α(δ) = k2 +
1

d2
(ln

δ

2M0

)2. (3.13)

Remark 3.6 From Proposition 3.4 it follows that the method gives conver-
gent approximation of u(ξ, z), and for z ∈ (0, d) the error estimation is of
the order O(δ

z

d ).

So far we have assumed that h = 0, i.e. that the normal derivative is zero
on the surface Γ. A general problem for k < π

2d
can always be reduced to this

case, as explained in Section 2. However, in such a case, for computation
we should take a new function g̃δ = gδ − vδ|Γ as a boundary conditions on
Γ, where vδ is the solution of the boundary value problem (2.3) with an
approximately given normal derivative hδ on Γ.

In practice, measurements of the field on the boundary Γ are available,
while those of the normal derivative ∂zu are not. Approximate values of
normal derivatives on Γ can be found by performing additional measurements
of the field on a surface Γ1 = {(ρ, d1),ρ ∈ R

2} for sufficiently small d1−d > 0,
and solving the following Dirichlet problem:





∆u(r) + k2u(r) = 0 in Ω1 = {(ρ, z) : ρ ∈ R
2, z ∈ (d, d1)},

u|Γ = g,
u|Γ1 = f,

(3.14)

in H2(Ω1) with approximately given boundary values g and f . The trace of
∂u
∂z

on Γ will be the desired approximation of h. The problem is well posed
in the following sense:

Lemma 3.7 Let (d1 − d)k < π
2
. If g ∈ H1(R2) and f ∈ L2(R2), then

‖∂u

∂z
(·, d)‖ ≤ C

(
‖g‖H1(R2) + ‖f‖L2(R2)

)
.

Proof: For simplicity let us put d = 0 and d1 = q and let us transform
the problem (3.14) to the following one in the frequency space (cf. the proof
of Lemma 2.1):





ŵzz(ξ, z) = η(ξ)ŵ(ξ, z), ξ ∈ R
2, z ∈ (0, q)

ŵ(ξ, 0) = ĝ ξ ∈ R
2,

ŵ(ξ, q) = f̂(ξ) ξ ∈ R
2,

(3.15)
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where η(ξ) := |ξ|2 − k2, w(ξ, z) = û(ξ, z) and u is the solution of (3.14). Let

φ(·, z) :=
sinh(z

√
η(·))

sinh(q
√

η(·))
.

Then
w(·, z) = ĝ(·)φ(·, q − z) + f̂(·)φ(·, z),

and
∂w(·, z)

∂z
= −ĝ(·)φ′

z(·, q − z) + f̂(·, q − z)φ′
z(·, z),

where

φ′
z(·, z) =

√
η(·)cosh(z

√
η(·))

sinh(q
√

η(·))
.

From this we have

∂w(·, 0)

∂z
=
√

η(·)
[
−ĝ(·) tanh(q

√
η(·)) + f̂(·) 1

sinh(q
√

η(·))

]
. (3.16)

For |ξ| > k the function η(ξ) is positive. Therefore, tanh(q
√

η(·)) < 1 and,
since the function x

sinh(x)
is decreasing for x ∈ (0,∞),

√
η(·)

sinh(q
√

η(·))
≤ 1

q
.

Thus
|w′

z(ξ, 0)| ≤ |ξ||ĝ(ξ)| + q−1|f̂(ξ)| for |ξ| > k. (3.17)

On the other hand, for |ξ| < k, the formula (3.16) takes the form

w′
z(·, 0) =

√
−η(·)

[
−ĝ(·) tan(q

√
−η(·)) + f̂(·) 1

sin(q
√
−η(·))

]
.

Taking into account that q
√
−η(ξ) ≤ qk < π

2
and x

sin x
is increasing for

x ∈ (0, π
2
), we get

|w′
z(ξ, 0)| ≤ k tan(qk)|ĝ(ξ)| + k

sin(qk)
|f̂(ξ)| for |ξ| < k. (3.18)

So, it is easily seen that for certain constants C1, C2

‖w′
z(·, 0‖2

L2(R2) ≤ C1

∫

R2

(1 + |ξ|)2|ĝ(ξ)|2dξ + C2

∫

R2

|f̂(ξ)|2dξ, (3.19)

which gives the desired conclusion.
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4 Numerical implementation

As it was mentioned in Section 1, in certain physical situations we can expect
that the data function is almost zero outside a certain small domain Γ2 ⊂ R

2.
For simplicity (but without lost of generality) let us assume that Γ2 = (0, 2π)2

and the support of the measured data gδ is contained in Γ2. In such a case
gδ|Γ2 ∈ L2(Γ2) and it has in this space the following representation in the
trigonometric orthonormal basis

{
1
2π

eim·ρ}
m∈Z2

gδ(ρ) =
1

2π

∑

m∈Z2

ĝδ,meim·ρ, for ρ ∈ Γ2, (4.1)

where Z denotes the integers and

ĝδ,m =
1

2π

∫

Γ2

gδ(ρ)e−im·ρdρ = ĝδ(m),

i.e. ĝδm is the Fourier transform of gδ at the point ξ = m and

ĝδ(ξ) =
∑

m∈Z2

δ(ξ − m)ĝδ,m,

where δ(ξ −m) is the Dirac δ-function at m. Let Z
2
α = Sα ∩ Z

2. According
to the definition (3.1), the function gδ

α is defined by its Fourier transform

ĝδ
α(ξ) =

∑

m∈Z2
α

δ(ξ − m)ĝδ,m.

Due to (3.2)

ûδ
α(ξ, z) = ĝδ

α(ξ) cosh ((d − z)
√

|ξ|2 − k2),

thus applying the inverse Fourier transform we easily get

uδ
α(ρ, z) =

1

2π

∑

m∈Z2
α

ĝδ,mcosh((d − z)
√

|m|2 − k2)eim·ρ. (4.2)

If the assumptions of Proposition 3.4 are satisfied and the parameter α is
chosen according to the relation (3.13), then the norm of difference between
the exact solution and the regularized solution given above is bounded by

δ + 2M
d−z

d

0 δ
z

d for any z ∈ (0, d).
The above result yields to a simple numerical application of this method

in the case when the data function g is almost 0 outside Γ2 and h ≡ 0.
Numerical experiments are presented in Section 4.1.
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4.1 Numerical experiments

In this section we give some numerical examples demonstrating how the
considered method works.

Figure 4.1: The exact data g (left) and the noisy data gδ with δ = 10−3

(right)

Figure 4.2: The solution u(·, 0.8) (left) and unregularized solution recon-
structed from gδ (right) for z = 0.8

In our test problem d = 1 and k = 4 and the function

g(x, y) = exp

(
− π2

π2 − x2

)
exp

(
− π2

π2 − y2

)

on Γ2 = (−π, π)2 is taken as an exact data function on Γ. A normally
distributed noise of variance 10−3 was added to g giving gδ (cf. Figure 4.1).
Given is a matrix Gδ containing samples from gδ on an equidistant grid
{ts,l}n

s,l=0 of Γ2 for n = 128. Using the fast Fourier transform (FFT) to the

matrix Gδ we compute n×n matrix Ĝδ approximating the Fourier transform
of gδ. Next, the frequency components corresponding to s >

√
α, l >

√
α

17



Figure 4.3: The regularized solutions at z = 0.8 for
√

α = 10 (left) and√
α = 2 (right).

are explicitly set to 0. Finally, to this new matrix Ĝδα multiplied by the
matrix [cosh((d − z)

√
|m|2 − k2)]m∈(0,n)×(0,n) the inverse FFT is applied.

As a result we obtain approximate values of regularized solution uδ
α(·, z) on

the grid {ts,l}n
s,l=0. In Figure 4.2 we display for the fixed point z = 0.8 and

(x, y) ∈ Γ2 the solution u(·, z) reconstructed from the exact q for
√

α =
40 and the reconstructed solution uδ(·, z) from the noisy data gδ without
regularization. We see that uδ does not approximate the solution and some
regularization procedure is necessary. In Figure 4.3 the regularized solutions
defined by the regularization parameter

√
α = 10 and

√
α = 2 are presented.

It can be observed, that for too small α the difference between the exact and
regularized solution again increases. In the next two figures we show how
the method works as the noise increases. The figures correspond to a noise
of variance 0.005 and 0.01, respectively. In order to compare regularization
results for several values of regularization parameter, we display the cross-
section of the function plots by the plane y = 0. In Figure 4.4 the regularized
solutions for

√
α = 20, 15, 10 and a noise of variance 0.005 and the solution

reconstructed from the exact g for
√

α = 40 are displayed. Similarly, in
Figure 4.5, for a noise of variance 0.01, regularized solutions for

√
α = 15, 7, 2

are compared with u(·, 0.8). We see that, if the greater δ, the smaller the
appropriate regularization parameter α.
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