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Abstract

We give a sufficient condition for the existence of an invariant measure for a
stochastic evolution equation with noise driven by a Lévy process.

1 Introduction

We consider a stochastic evolution equation on a separable Hilbert space H given by

dX = (AX + F(X))dt + B(X)dZ(t), ()

X(0) =,
where 7 € H, A is a linear operator, F' is a bounded mapping from H into H, Z takes
values in a separable Hilbert space U and B is a bounded mapping from H into space of
linear continuos operators from U into H.

We extend Theorem 6.3.2 from [1] which gives a sufficient condition for the existence
of an invariant measure for (x) in the case that Z is a Wiener process. We use methods
used in the proof of Theorem 6.3.2 and derive a sufficient condition for the existence of an
invariant measure in the general case when Z is a Lévy process. We also show that this
condition in a form involving Lipschitz constants is weaker than an analogous condition
given by Gaans in [3].

2 Preliminaries

We will consider processes on a complete probability space (2, F,IP). Let Z(t) be a
Lévy process (i.e. a process with independent and stationary increments) taking values
in a separable Hilbert space (U, ||-||;;). Associated with Z(t) are two measures on U: the
measure of jumps of Z, denoted p, and the so-called Lévy measure of Z, denoted v, given
by
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= > 1 (2s)-2(s7)).

0<s<t

tv (I') = E (u ([0, 2], 1)),

where T is a Borel subset of U such that T' C U \ {0}. It turns out that v ({0}) = 0 and
J min (||y||2U : 1) v (dy) < 0o. Z(t) can be represented as
U

Z(t) =at+ W (t) +/ / p(dy, ds) — v (dy) ds) +/ / yu (dy, ds) ,

0 flylly<t 0 llylly>1

where a € U, W is a Wiener process taking values in U, with covariance operator (). We
consider another separable Hilbert space (H, ||-||). Let L(H) denote the space of linear
continuous operators from H into H, and let L(U, H) denote the space of linear continuos
operators from U into H. We consider a stochastic equation on H of the form

dX = (AX + F(X))dt + B(X)dZ(¢), (%)
X(0) =n,

where n € H, A is a linear operator, with dense domain, which in general may be unbo-
unded, F is a bounded mapping from H into H and B is a bounded mapping from H
into L(U, H). We introduce the following conditions:

() o= [ Iyl v(dy) < o0,
(ii) A is the infinitesimal generator of a strongly continuous semigroup on H,
(iii) there exists Ly > 0 such that
[1F(z) = Fy)ll < Lr llz = yll,
(iv) there exists Lg > 0 such that
1B(x) = Bl pwmy < Lalle =yl

Condition (i) implies the existence of [ yv(dy). Indeed, we have

lylly>1
lllo vidy) < [yl vidy) < [yl vidy) < oo
lylly>1 lylly>1 U
So there exists b:= [ yv(dy) € U. Then
lylly>1
Z(t)=at+W(t +/ / w(dy,ds) — v (dy) ds) —I—/ / yu (dy, ds)
0 flylly<t 0 [lylly>1
t
—/ / yv(dy)ds + bt
0 Jlylly>1

=(a+b)t+W(t)+ //y(u (dy,ds) — v (dy) ds) .



1
SoEZ(1) = a+b, and Var Z(1) = Var W (1) + [[ |ly|* v (dy) ds = TrQ + c.
0ur

For process Z(t),t > 0, let Z(t),t € IR, denote process defined by

(1) :{ Zf(@t) " <Ob, (2.1)

where (Z5(t)), is a Lévy process with the same distribution as (Z(t)),, and independent
of (Z<t>)t20'

3 Sufficient condition for the existence of an inva-
riant measure

Theorem 3.1. Assume that Z, A, F and B satisfy conditions (i), (ii), (iii), (iv) and let
A, =nA(n—A)"!,n € IN, be the sequence of Yosida approzimations of A. If there exists
N,w > 0 such that for every x,y in H andn > N

2(An(z —y) + F(z) — F(y) + (B(x) — B(y)) EZ(1),2 —y) +
Var Z(1) | B(z) = B) 1w < —wllz —yl*, (A)

then there exists an invariant measure for the equation

= (AX + F(X))dt + B(X)dZ(t),

X(0) = 1. ()

First we prove two lemmas.

Lemma 3.2. Assume that Z satisfies condition (i) and EZ(1) = 0. Let Z(t),t € IR, be
defined by (2.1). If dY (t) = «a(t)dt + B(t)dZ(t), where a(t) € H and B(t) € L(U, H) for
t € R, then

LRIV <E(2(0(1), () + Var Z0) [180)] ) -

Proof of Lemma 3.2. Applying It6’s lemma to the function o(z) = ||z|*, we obtain

YOI = 1Y @)+ [ 2(Y (s7) .Y (s))+ [ T (B()Q (B(s))") ds+ [ [ (s, )y (dy, d)

toU

where (s,y) = ¢ (Y (s7) + ) — ¢ (¥ (s7)) = D (v (s7))y = [lyll* and py- denotes the
measure of jumps of Y. Hence

YOI = 1Y (I + [2(v (s7) ,av(s))

(3.1)

t

+ [ T BEQBE) ) ds + [ [ 1805}yl u(dy. ds)

to toU



as [ [ 4(s, )y (dy, ds) = [0 (s, 8 (3)y) p (dy, ds). We have

(Y (s7),dv(s)) = (¥ (s7) ,a(s)) ds+ (Y (s7) , B(s)dW (s) )
+ <Y (7). 8(s) [ (s (dy,ds) — v (dy) d8)>,

SO

Let B :={Y(s) # Y(()s*)}. Then

E(Y(s) =Y (s7),a(s)) =E (15, (Y(s) = Y (s7) ,a(s))) =0,
since IP (Bs) = 0. Hence

E/2<Y (s7).dY(s)) = E/Q (Y (s), a(s)) ds. (3.2)

Given that Tr (3(s)Q (8(s))") < [18(s)|I 7.y TrQ, we have

E/Tr Y ds < TrQ]E/Hﬁ I gy ds (3.3)

On the other hand,

E / J18)y) 1 (dy. ds) = E / [ 18yl v (dy) ds

toU toU

<E [[185) 3 0, I v (dy) s

toU
t
= [l v @) E [ IS g s
U to

So,

E // 18}yl o (dy, ds) < cE / 187 wany s (3.4)

toU
Combining (3.1), (3.2), (3.3) and (3.4), we obtain

EIY (O <EIY @) +E [ (2(/(s),a(s) + (TrQ + ) 13(s)|1”) ds

from which, since Var Z(1) = Tr@ + ¢, we finally get

LEIV ) < B (2((0), () + Var Z() [ 80)]).



Lemma 3.3. If B satisfies condition (iv) and there exist N,w > 0 such that for every
x,y in H andn > N

2 (An(x —y) + F(x) = Fy),x —y) + Var Z(1) | B(x) — BW)l|3 . < —wllz — yl|*,(A0)
then for some Cy > 0

w
2 (Apx + F(x),x) + Var Z(1) | B(x)|| 7. < -5 z||” + C4

for every x in H and n > N.

Proof of Lemma 3.3. Let A := Var Z(1). By (A0) with y = 0, we have

—wl2l* > 2(Auz + F(z) — F(0),z) + X[ B(x) — BO)|[} .,
> 2 (Ayz + F(2),) = 2| FO) |+ (1B@) 0 — IBO) )
=2 Az + F(z),2) — 2| F(0)] |1z
+ A IB@) ) = IBOY 7.1
—2 ||B(0)||L(U,H) (HB(*I)HL(U,H) - HB(O)HL(U,H)))a
SO
2(Anz + F(z),2) + M B@) 30 < —w l2l* + 21 FO)| ]l + A BOwm
+ 20 | BO .y (1B .y = 1BO ) )
< —wllz® + 2 FO) 2] + M IBO)I} .,
+ 2X [ BO) 1y L |17
= =2 ll2l* = 5 l2ll® + MBO) 0.1
+2 (1FO)] + MBO)| .y L) N1l

) 2
Since ar? + br + ¢ < —¥=4ec — o we have

b2
4a 40

SHL

w
2 (Az + F(2),2) + A B@)| 70 < 3 l])* + C,

where

2 2
Cr = M BO) g0 + - (IFON +MBO 000y L)

Proof of Theorem 3.1. 1. First assume that E Z(1) = 0.

Let Z(t),t € IR, be defined by (2.1) and let A, = nA(n — A)~!,n € IN, be the sequence
of Yosida approximations of A. Denote by X, (¢, s,n) the solution of the equation

dX, = (A, X, + F(X,))dt + B(X,)dZ(t),
Xo(s) =mn,



and by X(t, s,n) the solution of the equation
dX = (AX + F(X))dt + B(X)dZ(t),
X(s)=n.

Xn(t,s,n) converges in Ls(2) to X (t,s,n). Fix s € IR and let X,,(t) = X,,(¢,s,7). Then
dX, = (A, X, + F(X,))dt + B(X,)dZ(t). We apply Lemma 3.2 with

(*)

Y(t) = X, (1),
alt) = A, X, (8) + F(X, (1),
B(t) = B(X(1)).
By Lemma 3.3,
2 (¥ (1), (1)) + Var Z(1) [ 0) 2 .y <~ XD +
from which
CEIX 0 < E(2(0(0), () + Var Z() 801 1)

W
< =S EIX.(0))° + O

By Gronwall’s lemma,

E X, (0[P < 22+ E X,

so for every s € IR and every t > s
2C
2 1 2
E[|Xa(t5,m)F < =L+ ) (35)

Now fix 6 > v > 0 and let U, (t) = X, (t, —v,n), V,.(t) = X,(t,—6,n). Then
dU, —V,) = (AU, = V,,) + F(U,) — F(V,,)) dt + (B(U,) — B(V,,))dZ(t).
We apply Lemma 3.2 with

Y (t) = Un(t) — Valt),
a(t) = A (Un(t) = Va(t)) + F (Un(t)) = F (Vi)
B(t) = B (Un(t)) = B (Va(t)) .

By (A),
2(Y (1), a(t)) + Var Z(1) 1B .y < —w 1Un(t) = Val(®)]1?,

from which

4 g o) - E(2< )) + Var ZO) 18(0) [ 0.1))

—wE|[U, ( ) V()]
By Gronwall’s lemma, for every ¢t > s

E |Un(t) = Va(O)I* < eI E||Un(s) = Va(s)|*.
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Letting ¢ = 0 and s = —, we obtain

e E ||n — Xo(—, —6,m)|°

E || X,,(0, =, 1) — Xn(0, =6, 7)||* <
< e~ (2 HT]H2 + 2E ”Xn<_77 _57 77)"2> .

Now, recalling (3.5),
E HXn(Oa _777]) - Xn(07 _57 T])”Q < e (4 H77||2 + 7

Since X, (t, s,n) converges in Ly(Q2) to X(¢,s,7),

4C
E X (0, —y,m) = XO, 6> < e (4]l + =)

It follows that (X(0,—7,7)), is a Cauchy sequence in Ly(£2), so there exists random
variable X € Lo () such that X (0, —~,n) converges to X' in Ly (2), which implies that
X (0, —v,n) converges to X also in law

L(X(0, =7,1m) =700 L£(X).
Since £ (X (0,—7,7n)) = L(X(7,0,n)), we also have

L(X(7,0,1) =700 £(X)
Therefore £ (X)) is an invariant measure for equation (x).
II. Now let m :=E Z(1) be any in U. Equation (x) can be written as

dX = (AX + F(X))dt + B(X)dZ(t), (%)
X(0) =mn,

where

Z(t) = Z(t) — mt,
F(z) = F(z) + B(z)m

It suffices to prove that there exists an invariant measure for (+x). We have E Z (1) =0,
Var Z(1) = Var Z(1), hence

2(A(x —y) + F(z) = F(y),z —y ) + Var Z(1) | B(z) = BW)|I 70y
=2(A(z —y) + F(z) — F(y) + (B(z) — B(y)) m,x — y)
+ Var Z(1) || B(z) — B(Q)HL U,H)

so the existence of an invariant measure for (xx) follows from step I.



4 Sufficient condition in terms of Lipschitz constants

Theorem 4.1. Assume that Z, A, F' and B satisfy conditions (i), (ii), (iii), (iv). Let
S(t)i=0 be the semigroup generated by A and assume that there exists o > 0 such that for
everyt = 0
ISy < e
If
—2a+ 2Lp +2Lg ||E Z(1)||,; 4+ Var Z(1)Lg* < 0, (B)

then there exists an invariant measure for the equation

dX = (AX + F(X))dt + B(X)dZ(t),

(%)

X(0) =n.
Proof of Theorem 4.1. We shall prove that condition (B) implies condition (A) so the
result will follow from the previous theorem. If (B) is fullfilled, then there exists N > 0
such that for n > N

2
—ni" +2Lp + 2L |E Z(1)||, + Var Z(1)Lg2 < 0.
For the Yosida approximations A, we have (A,z,7) < —;%% |z||”, since HS(t)Hi(H) <
e~ Thus
an 2
—9 _
2(Anle —y), 7 — 9 < -2 a7,
2(F(z) = F(y),x —y) <2Lp o =y,
2((B(z) = B(y))EZ(1),x —y) < 2Lp [EZ(1)|y Iz — yl*,
Var Z(1) || B(z) — B(y)HL(U,H) < Var Z(1)Lg® ||z — y||2,
whence

2(An(z —y)+F(x) = F(y) +(B(z) - By)EZ(1),x —y )
+ Var Z(1) || B(x) — Bl w.x)
< (— 2?_” +2Lr + 2L |EZ(1)|, +VarZ(1)L32> [

n

And condition (A) is fullfilled, since — 2% + 2L +2Lp ||E Z(1)||, + Var Z(1)Lg* < —w,
for some w > 0 and n > N.
O

Remark
Gaans [3] proves the existence of an invariant measure for (x) under the asumption
that ||.S (t)||2L(H) < Me ™ for some o, M > 0, which is less restrictive condition than

the condition ||.S (t)||i( my < e~ His sufficient condition for the existence of an invariant
measure 1s

2
6M* <LF + Var Z(l)LBQ> < a, (GM)

(0%



under the assumption that E Z(1) = 0. In the case M = 1, we get

6 (LSQ + Var Z(l)LB2) < a. (G1)
Condition (B) in the case E Z(1) =0 is

—2a 4+ 2Lp + Var Z(1)Lp? < 0. (BO)
If (G1) is fullfilled, then so is (B0). Indeed, (G1) is equivalent to

L « 9

~ % + Var Z(1)Lp* < 0. (G'1)

So it is enough to prove that

L 2
20+ 2Ly + Var Z(1)Lg* < =2 — % + Var Z(1)Lg*.
o

We have
0 <502 +6(a— Lp)* =5a%+6a%+6Lp> — 12aLp = 6Lp° — o + 12a% — 12aLp,

SO 9
L
0< 28 _ % L on—2Lp
1o 6
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