INSTITUTE OF MATHEMATICS of the Polish Academy of Sciences

ul. Śniadeckich 8, P.O.B. 21, 00-956 Warszawa 10, Poland

http://www.impan.gov.pl

IM PAN Preprint 667 (2006)

Anna Rusinek

Invariant measures for a class of stochastic evolution equations

Presented by Jerzy Zabczy

 $Published\ as\ manuscript$

Invariant measures for a class of stochastic evolution equations *

Anna Rusinek
Institute of Mathematics
Polish Academy of Sciences
ul. Sniadeckich 8
00-956 Warszawa, Poland

Abstract

We give a sufficient condition for the existence of an invariant measure for a stochastic evolution equation with noise driven by a Lévy process.

1 Introduction

We consider a stochastic evolution equation on a separable Hilbert space H given by

$$dX = (AX + F(X))dt + B(X)dZ(t),$$

$$X(0) = \eta,$$
(*)

where $\eta \in H$, A is a linear operator, F is a bounded mapping from H into H, Z takes values in a separable Hilbert space U and B is a bounded mapping from H into space of linear continuos operators from U into H.

We extend Theorem 6.3.2 from [1] which gives a sufficient condition for the existence of an invariant measure for (*) in the case that Z is a Wiener process. We use methods used in the proof of Theorem 6.3.2 and derive a sufficient condition for the existence of an invariant measure in the general case when Z is a Lévy process. We also show that this condition in a form involving Lipschitz constants is weaker than an analogous condition given by Gaans in [3].

2 Preliminaries

We will consider processes on a complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let Z(t) be a Lévy process (i.e. a process with independent and stationary increments) taking values in a separable Hilbert space $(U, \|\cdot\|_U)$. Associated with Z(t) are two measures on U: the measure of jumps of Z, denoted μ , and the so-called Lévy measure of Z, denoted ν , given by

^{*}This work was supported by EC FP6 MC-ToK programme SPADE2, MTKD-CT-2004-014508.

$$\mu\left([0,t],\Gamma\right) = \sum_{0 < s \leqslant t} \mathbf{1}_{\Gamma} \left(Z(s) - Z\left(s^{-}\right)\right),$$
$$t\nu\left(\Gamma\right) = \mathbb{E}\left(\mu\left([0,t],\Gamma\right)\right),$$

where Γ is a Borel subset of U such that $\overline{\Gamma} \subset U \setminus \{0\}$. It turns out that $\nu(\{0\}) = 0$ and $\int_U \min(\|y\|_U^2, 1) \nu(dy) < \infty$. Z(t) can be represented as

$$Z(t) = at + W(t) + \int_{0}^{t} \int_{\|y\|_{U} \le 1} y(\mu(dy, ds) - \nu(dy) ds) + \int_{0}^{t} \int_{\|y\|_{U} > 1} y\mu(dy, ds),$$

where $a \in U$, W is a Wiener process taking values in U, with covariance operator Q. We consider another separable Hilbert space $(H, \|\cdot\|)$. Let L(H) denote the space of linear continuous operators from H into H, and let L(U, H) denote the space of linear continuous operators from U into H. We consider a stochastic equation on H of the form

$$dX = (AX + F(X))dt + B(X)dZ(t),$$

$$X(0) = \eta,$$
(*)

where $\eta \in H$, A is a linear operator, with dense domain, which in general may be unbounded, F is a bounded mapping from H into H and H is a bounded mapping from H into L(U,H). We introduce the following conditions:

- (i) $c := \int_{U} \|y\|_{U}^{2} \nu(dy) < \infty$,
- (ii) A is the infinitesimal generator of a strongly continuous semigroup on H,
- (iii) there exists $L_F > 0$ such that

$$||F(x) - F(y)|| \le L_F ||x - y||,$$

(iv) there exists $L_B > 0$ such that

$$||B(x) - B(y)||_{L(U,H)} \le L_B ||x - y||.$$

Condition (i) implies the existence of $\int\limits_{\|y\|_U>1} y\nu(dy)$. Indeed, we have

$$\int_{\|y\|_{U}>1} \|y\|_{U} \nu(dy) \leqslant \int_{\|y\|_{U}>1}^{\|y\|_{U}^{2}} \|y\|_{U}^{2} \nu(dy) \leqslant \int_{U} \|y\|_{U}^{2} \nu(dy) < \infty.$$

So there exists $b := \int_{\|y\|_U > 1} y \nu(dy) \in U$. Then

$$Z(t) = at + W(t) + \int_{0}^{t} \int_{\|y\|_{U} \le 1} y \left(\mu \left(dy, ds\right) - \nu \left(dy\right) ds\right) + \int_{0}^{t} \int_{\|y\|_{U} > 1} y \mu \left(dy, ds\right)$$
$$- \int_{0}^{t} \int_{\|y\|_{U} > 1} y \nu(dy) ds + bt$$
$$= (a + b)t + W(t) + \int_{0}^{t} y \left(\mu \left(dy, ds\right) - \nu \left(dy\right) ds\right).$$

So
$$\mathbb{E} Z(1) = a + b$$
, and $\text{Var } Z(1) = \text{Var } W(1) + \int_{0}^{1} \|y\|^2 \nu(dy) \, ds = \text{Tr} Q + c$.

For process $Z(t), t \ge 0$, let $\overline{Z}(t), t \in \mathbb{R}$, denote process defined by

$$\overline{Z}(t) = \begin{cases} Z(t) & t \geqslant 0, \\ Z_2(-t) & t < 0, \end{cases}$$
 (2.1)

where $(Z_2(t))_{t\geqslant 0}$ is a Lévy process with the same distribution as $(Z(t))_{t\geqslant 0}$ and independent of $(Z(t))_{t\geqslant 0}$.

3 Sufficient condition for the existence of an invariant measure

Theorem 3.1. Assume that Z, A, F and B satisfy conditions (i), (ii), (iii), (iv) and let $A_n = nA(n-A)^{-1}$, $n \in \mathbb{N}$, be the sequence of Yosida approximations of A. If there exists $N, \omega > 0$ such that for every x, y in H and n > N

$$2 \langle A_n(x - y) + F(x) - F(y) + (B(x) - B(y)) \mathbb{E} Z(1), x - y \rangle +$$

$$\operatorname{Var} Z(1) \|B(x) - B(y)\|_{L(U,H)}^2 \le -\omega \|x - y\|^2, \quad (A)$$

then there exists an invariant measure for the equation

$$dX = (AX + F(X))dt + B(X)dZ(t),$$

$$X(0) = \eta.$$
(*)

First we prove two lemmas.

Lemma 3.2. Assume that Z satisfies condition (i) and $\mathbb{E} Z(1) = 0$. Let $\overline{Z}(t), t \in \mathbb{R}$, be defined by (2.1). If $dY(t) = \alpha(t)dt + \beta(t)d\overline{Z}(t)$, where $\alpha(t) \in H$ and $\beta(t) \in L(U, H)$ for $t \in \mathbb{R}$, then

$$\frac{d}{dt} \mathbb{E} \|Y(t)\|^2 \leqslant \mathbb{E} \left(2 \langle Y(t), \alpha(t) \rangle + \operatorname{Var} Z(1) \|\beta(t)\|_{L(U,H)}^2 \right).$$

Proof of Lemma 3.2. Applying Itô's lemma to the function $\varphi(x) = ||x||^2$, we obtain

$$||Y(t)||^{2} = ||Y(t_{0})||^{2} + \int_{t_{0}}^{t} 2\langle Y(s^{-}), dY(s) \rangle + \int_{t_{0}}^{t} \operatorname{Tr}(\beta(s)Q(\beta(s))^{*}) ds + \int_{t_{0}U}^{t} \psi(s, y)\mu_{Y}(dy, ds),$$

where $\psi(s,y) = \varphi(Y(s^{-}) + y) - \varphi(Y(s^{-})) - D\varphi(Y(s^{-})) y = ||y||^{2}$ and μ_{Y} denotes the measure of jumps of Y. Hence

$$||Y(t)||^{2} = ||Y(t_{0})||^{2} + \int_{t_{0}}^{t} 2\langle Y(s^{-}), dY(s)\rangle$$

$$+ \int_{t_{0}}^{t} \operatorname{Tr}(\beta(s)Q(\beta(s))^{*}) ds + \int_{t_{0}U}^{t} ||\beta(s)y||^{2} \mu(dy, ds),$$
(3.1)

as
$$\int_{t_0U}^t \psi(s,y)\mu_Y(dy,ds) = \int_{t_0U}^t \psi(s,\beta(s)y)\mu(dy,ds)$$
. We have

$$\begin{split} \left\langle Y\left(s^{-}\right),dY(s)\right\rangle &=\left\langle Y\left(s^{-}\right),\alpha(s)\right\rangle ds + \left\langle Y\left(s^{-}\right),\beta(s)dW(s)\right\rangle \\ &+\left\langle Y\left(s^{-}\right),\beta(s)\int\limits_{U}y\left(\mu\left(dy,ds\right)-\nu\left(dy\right)ds\right)\right\rangle, \end{split}$$

SO

$$\mathbb{E}\int\limits_{t_{0}}^{t}2\left\langle Y\left(s^{-}\right),dY(s)\right\rangle =\mathbb{E}\int\limits_{t_{0}}^{t}2\left\langle Y\left(s^{-}\right),\alpha(s)\right\rangle ds.$$

Let $B_s := \{ Y(s) \neq Y(s^-) \}$. Then

$$\mathbb{E}\left\langle Y(s) - Y\left(s^{-}\right), \alpha(s)\right\rangle = \mathbb{E}\left(\mathbf{1}_{B_{s}}\left\langle Y(s) - Y\left(s^{-}\right), \alpha(s)\right\rangle\right) = 0,$$

since $\mathbb{P}(B_s) = 0$. Hence

$$\mathbb{E} \int_{t_0}^t 2\left\langle Y\left(s^-\right), dY(s)\right\rangle = \mathbb{E} \int_{t_0}^t 2\left\langle Y(s), \alpha(s)\right\rangle ds. \tag{3.2}$$

Given that $\operatorname{Tr}(\beta(s)Q(\beta(s))^*) \leq \|\beta(s)\|_{L(U,H)}^2 \operatorname{Tr} Q$, we have

$$\mathbb{E} \int_{t_0}^t \operatorname{Tr} \left(\beta(s)Q\left(\beta(s)\right)^*\right) ds \leqslant \operatorname{Tr} Q \mathbb{E} \int_{t_0}^t \|\beta(s)\|_{L(U,H)}^2 ds. \tag{3.3}$$

On the other hand,

$$\mathbb{E} \iint_{t_0 U} \|\beta(s)y\|^2 \, \mu \, (dy, ds) = \mathbb{E} \iint_{t_0 U} \|\beta(s)y\|^2 \, \nu \, (dy) \, ds$$

$$\leq \mathbb{E} \iint_{t_0 U} \|\beta(s)\|_{L(U, H)}^2 \, \|y\|^2 \, \nu \, (dy) \, ds$$

$$= \int_{U} \|y\|_{U}^2 \, \nu \, (dy) \, \mathbb{E} \int_{t_0}^{t} \|\beta(s)\|_{L(U, H)}^2 \, ds.$$

So,

$$\mathbb{E} \int_{t_0 U}^{t} \|\beta(s)y\|^2 \, \mu(dy, ds) \leqslant c \, \mathbb{E} \int_{t_0}^{t} \|\beta(s)\|_{L(U, H)}^2 \, ds. \tag{3.4}$$

Combining (3.1), (3.2), (3.3) and (3.4), we obtain

$$\mathbb{E} \|Y(t)\|^{2} \leq \mathbb{E} \|Y(t_{0})\|^{2} + \mathbb{E} \int_{t_{0}}^{t} \left(2 \langle Y(s), \alpha(s) \rangle + (\text{Tr}Q + c) \|\beta(s)\|^{2}\right) ds,$$

from which, since $\operatorname{Var} Z(1) = \operatorname{Tr} Q + c$, we finally get

$$\frac{d}{dt} \mathbb{E} \|Y(t)\|^2 \leq \mathbb{E} \left(2 \langle Y(t), \alpha(t) \rangle + \operatorname{Var} Z(1) \|\beta(t)\|^2 \right).$$

Lemma 3.3. If B satisfies condition (iv) and there exist $N, \omega > 0$ such that for every x, y in H and n > N

$$2 \langle A_n(x-y) + F(x) - F(y), x-y \rangle + \text{Var } Z(1) \|B(x) - B(y)\|_{L(U,H)}^2 \le -\omega \|x-y\|^2$$
, (A0) then for some $C_1 > 0$

$$2\langle A_n x + F(x), x \rangle + \text{Var } Z(1) \|B(x)\|_{L(U,H)}^2 \le -\frac{\omega}{2} \|x\|^2 + C_1$$

for every x in H and n > N.

Proof of Lemma 3.3. Let $\lambda := \text{Var } Z(1)$. By (A0) with y = 0, we have

$$-\omega \|x\|^{2} \geqslant 2 \langle A_{n}x + F(x) - F(0), x \rangle + \lambda \|B(x) - B(0)\|_{L(U,H)}^{2}$$

$$\geqslant 2 \langle A_{n}x + F(x), x \rangle - 2 \|F(0)\| \|x\| + \lambda \left(\|B(x)\|_{L(U,H)} - \|B(0)\|_{L(U,H)} \right)^{2}$$

$$= 2 \langle A_{n}x + F(x), x \rangle - 2 \|F(0)\| \|x\|$$

$$+ \lambda \left(\|B(x)\|_{L(U,H)}^{2} - \|B(0)\|_{L(U,H)}^{2} - 2 \|B(0)\|_{L(U,H)} (\|B(x)\|_{L(U,H)} - \|B(0)\|_{L(U,H)}) \right),$$

SO

$$2\langle A_{n}x + F(x), x \rangle + \lambda \|B(x)\|_{L(U,H)}^{2} \leq -\omega \|x\|^{2} + 2 \|F(0)\| \|x\| + \lambda \|B(0)\|_{L(U,H)}^{2} + 2\lambda \|B(0)\|_{L(U,H)} (\|B(x)\|_{L(U,H)} - \|B(0)\|_{L(U,H)})$$

$$\leq -\omega \|x\|^{2} + 2 \|F(0)\| \|x\| + \lambda \|B(0)\|_{L(U,H)}^{2} + 2\lambda \|B(0)\|_{L(U,H)} L_{B} \|x\|$$

$$= -\frac{\omega}{2} \|x\|^{2} - \frac{\omega}{2} \|x\|^{2} + \lambda \|B(0)\|_{L(U,H)}^{2} + 2 (\|F(0)\| + \lambda \|B(0)\|_{L(U,H)} L_{B}) \|x\|.$$

Since $ar^2 + br + c \leqslant -\frac{b^2 - 4ac}{4a} = c - \frac{1}{a} \frac{b^2}{4}$, we have

$$2\langle A_n x + F(x), x \rangle + \lambda \|B(x)\|_{L(U,H)}^2 \le -\frac{\omega}{2} \|x\|^2 + C_1,$$

where

$$C_1 = \lambda \|B(0)\|_{L(U,H)}^2 + \frac{2}{\omega} (\|F(0)\| + \lambda \|B(0)\|_{L(U,H)} L_B)^2.$$

Proof of Theorem 3.1. I. First assume that $\mathbb{E} Z(1) = 0$.

Let $\overline{Z}(t), t \in \mathbb{R}$, be defined by (2.1) and let $A_n = nA(n-A)^{-1}, n \in \mathbb{N}$, be the sequence of Yosida approximations of A. Denote by $X_n(t, s, \eta)$ the solution of the equation

$$dX_n = (A_n X_n + F(X_n))dt + B(X_n)d\overline{Z}(t),$$

$$X_n(s) = \eta,$$

and by $X(t, s, \eta)$ the solution of the equation

$$dX = (AX + F(X))dt + B(X)d\overline{Z}(t),$$

$$X(s) = \eta.$$
(*)

 $X_n(t, s, \eta)$ converges in $L_2(\Omega)$ to $X(t, s, \eta)$. Fix $s \in \mathbb{R}$ and let $X_n(t) = X_n(t, s, \eta)$. Then $dX_n = (A_n X_n + F(X_n)) dt + B(X_n) d\overline{Z}(t)$. We apply Lemma 3.2 with

$$Y(t) = X_n(t),$$

$$\alpha(t) = A_n X_n(t) + F(X_n(t)),$$

$$\beta(t) = B(X_n(t)).$$

By Lemma 3.3,

$$2\langle Y(t), \alpha(t) \rangle + \text{Var } Z(1) \|\beta(t)\|_{L(U,H)}^{2} \le -\frac{\omega}{2} \|X_{n}(t)\|^{2} + C_{1},$$

from which

$$\frac{d}{dt} \mathbb{E} \|X_n(t)\|^2 \leq \mathbb{E} \left(2 \langle Y(t), \alpha(t) \rangle + \operatorname{Var} Z(1) \|\beta(t)\|_{L(U,H)}^2 \right)$$
$$\leq -\frac{\omega}{2} \mathbb{E} \|X_n(t)\|^2 + C_1.$$

By Gronwall's lemma,

$$\mathbb{E} \|X_n(t)\|^2 \leqslant \frac{2C_1}{\omega} + \mathbb{E} \|X_n(s)\|^2,$$

so for every $s \in \mathbb{R}$ and every $t \ge s$

$$\mathbb{E} \|X_n(t, s, \eta)\|^2 \leqslant \frac{2C_1}{\omega} + \|\eta\|^2.$$
 (3.5)

Now fix $\delta > \gamma > 0$ and let $U_n(t) = X_n(t, -\gamma, \eta), V_n(t) = X_n(t, -\delta, \eta)$. Then

$$d(U_n - V_n) = (A(U_n - V_n) + F(U_n) - F(V_n)) dt + (B(U_n) - B(V_n)) d\overline{Z}(t).$$

We apply Lemma 3.2 with

$$Y(t) = U_n(t) - V_n(t),$$

$$\alpha(t) = A_n (U_n(t) - V_n(t)) + F (U_n(t)) - F (V_n(t)),$$

$$\beta(t) = B (U_n(t)) - B (V_n(t)).$$

By (A),

$$2 \langle Y(t), \alpha(t) \rangle + \operatorname{Var} Z(1) \|\beta(t)\|_{L(U,H)}^{2} \leq -\omega \|U_{n}(t) - V_{n}(t)\|^{2},$$

from which

$$\frac{d}{dt} \mathbb{E} \|U_n(t) - V_n(t)\|^2 \leq \mathbb{E} \left(2 \langle Y(t), \alpha(t) \rangle + \operatorname{Var} Z(1) \|\beta(t)\|_{L(U,H)}^2 \right)$$
$$\leq -\omega \mathbb{E} \|U_n(t) - V_n(t)\|^2.$$

By Gronwall's lemma, for every $t \ge s$

$$\mathbb{E} \|U_n(t) - V_n(t)\|^2 \leqslant e^{-\omega(t-s)} \mathbb{E} \|U_n(s) - V_n(s)\|^2.$$

Letting t = 0 and $s = -\gamma$, we obtain

$$\mathbb{E} \|X_n(0, -\gamma, \eta) - X_n(0, -\delta, \eta)\|^2 \leq e^{-\omega \gamma} \mathbb{E} \|\eta - X_n(-\gamma, -\delta, \eta)\|^2$$
$$\leq e^{-\omega \gamma} \left(2 \|\eta\|^2 + 2 \mathbb{E} \|X_n(-\gamma, -\delta, \eta)\|^2\right).$$

Now, recalling (3.5),

$$\mathbb{E} \|X_n(0, -\gamma, \eta) - X_n(0, -\delta, \eta)\|^2 \le e^{-\omega \gamma} \left(4 \|\eta\|^2 + \frac{4C_1}{\omega} \right).$$

Since $X_n(t, s, \eta)$ converges in $L_2(\Omega)$ to $X(t, s, \eta)$,

$$\mathbb{E} \|X(0, -\gamma, \eta) - X(0, -\delta, \eta)\|^{2} \leq e^{-\omega \gamma} \left(4 \|\eta\|^{2} + \frac{4C_{1}}{\omega} \right).$$

It follows that $(X(0, -\gamma, \eta))_{\gamma}$ is a Cauchy sequence in $L_2(\Omega)$, so there exists random variable $\mathcal{X} \in L_2(\Omega)$ such that $X(0, -\gamma, \eta)$ converges to \mathcal{X} in $L_2(\Omega)$, which implies that $X(0, -\gamma, \eta)$ converges to \mathcal{X} also in law

$$\mathcal{L}\left(X(0,-\gamma,\eta)\right) \longrightarrow_{\gamma\to\infty} \mathcal{L}\left(\mathcal{X}\right)$$
.

Since $\mathcal{L}(X(0,-\gamma,\eta)) = \mathcal{L}(X(\gamma,0,\eta))$, we also have

$$\mathcal{L}\left(X(\gamma,0,\eta)\right) \longrightarrow_{\gamma \to \infty} \mathcal{L}\left(\mathcal{X}\right)$$
.

Therefore $\mathcal{L}(\mathcal{X})$ is an invariant measure for equation (*).

II. Now let $m := \mathbb{E} Z(1)$ be any in U. Equation (*) can be written as

$$dX = (AX + \tilde{F}(X))dt + B(X)d\tilde{Z}(t),$$

$$X(0) = \eta,$$
(**)

where

$$\tilde{Z}(t) = Z(t) - mt,$$

$$\tilde{F}(x) = F(x) + B(x)m.$$

It suffices to prove that there exists an invariant measure for (**). We have $\mathbb{E}\tilde{Z}(1) = 0$, $\operatorname{Var}\tilde{Z}(1) = \operatorname{Var}Z(1)$, hence

$$2 \langle A(x-y) + \tilde{F}(x) - \tilde{F}(y), x - y \rangle + \operatorname{Var} \tilde{Z}(1) \|B(x) - B(y)\|_{L(U,H)}^{2}$$

$$= 2 \langle A(x-y) + F(x) - F(y) + (B(x) - B(y)) m, x - y \rangle$$

$$+ \operatorname{Var} Z(1) \|B(x) - B(y)\|_{L(U,H)}^{2},$$

so the existence of an invariant measure for (**) follows from step I.

4 Sufficient condition in terms of Lipschitz constants

Theorem 4.1. Assume that Z, A, F and B satisfy conditions (i), (ii), (iii), (iv). Let $S(t)_{t\geqslant 0}$ be the semigroup generated by A and assume that there exists $\alpha>0$ such that for every $t\geqslant 0$

$$||S(t)||_{L(H)} \leqslant e^{-\alpha t}$$
.

If

$$-2\alpha + 2L_F + 2L_B \|\mathbb{E} Z(1)\|_U + \text{Var } Z(1)L_B^2 < 0, \tag{B}$$

then there exists an invariant measure for the equation

$$dX = (AX + F(X))dt + B(X)dZ(t),$$

$$X(0) = \eta.$$
(*)

Proof of Theorem 4.1. We shall prove that condition (B) implies condition (A) so the result will follow from the previous theorem. If (B) is fullfilled, then there exists N > 0 such that for n > N

$$-\frac{2\alpha n}{n+\alpha} + 2L_F + 2L_B \|\mathbb{E} Z(1)\|_U + \text{Var } Z(1)L_B^2 < 0.$$

For the Yosida approximations A_n we have $\langle A_n x, x \rangle \leqslant -\frac{\alpha n}{n+\alpha} \|x\|^2$, since $\|S(t)\|_{L(H)}^2 \leqslant e^{-\alpha t}$. Thus

$$2 \langle A_n(x-y), x-y \rangle \leqslant -2 \frac{\alpha n}{n+\alpha} \|x-y\|^2,$$

$$2 \langle F(x) - F(y), x-y \rangle \leqslant 2L_F \|x-y\|^2,$$

$$2 \langle (B(x) - B(y)) \mathbb{E} Z(1), x-y \rangle \leqslant 2L_B \|\mathbb{E} Z(1)\|_U \|x-y\|^2,$$

$$\operatorname{Var} Z(1) \|B(x) - B(y)\|_{L(U,H)}^2 \leqslant \operatorname{Var} Z(1)L_B^2 \|x-y\|^2,$$

whence

$$2 \langle A_{n}(x-y) + F(x) - F(y) + (B(x) - B(y)) \mathbb{E} Z(1), x - y \rangle + \operatorname{Var} Z(1) \|B(x) - B(y)\|_{L(U,H)}^{2} \leq \left(-\frac{2\alpha n}{n+\alpha} + 2L_{F} + 2L_{B} \|\mathbb{E} Z(1)\|_{U} + \operatorname{Var} Z(1)L_{B}^{2} \right) \|x - y\|^{2}.$$

And condition (A) is fullfilled, since $-\frac{2\alpha n}{n+\alpha} + 2L_F + 2L_B \|\mathbb{E} Z(1)\|_U + \text{Var } Z(1)L_B^2 < -\omega$, for some $\omega > 0$ and n > N.

Remark

Gaans [3] proves the existence of an invariant measure for (*) under the asymption that $||S(t)||_{L(H)}^2 \leq Me^{-\alpha t}$ for some $\alpha, M > 0$, which is less restrictive condition than the condition $||S(t)||_{L(H)}^2 \leq e^{-\alpha t}$. His sufficient condition for the existence of an invariant measure is

$$6M^2 \left(\frac{L_F^2}{\alpha} + \operatorname{Var} Z(1)L_B^2\right) < \alpha, \tag{GM}$$

8

under the assumption that $\mathbb{E} Z(1) = 0$. In the case M = 1, we get

$$6\left(\frac{L_F^2}{\alpha} + \operatorname{Var} Z(1)L_B^2\right) < \alpha. \tag{G1}$$

Condition (B) in the case $\mathbb{E} Z(1) = 0$ is

$$-2\alpha + 2L_F + \text{Var } Z(1)L_B^2 < 0.$$
 (B0)

If (G1) is fullfilled, then so is (B0). Indeed, (G1) is equivalent to

$$\frac{L_F^2}{\alpha} - \frac{\alpha}{6} + \text{Var } Z(1)L_B^2 < 0.$$
 (G'1)

So it is enough to prove that

$$-2\alpha + 2L_F + \text{Var } Z(1)L_B^2 < \frac{{L_F}^2}{\alpha} - \frac{\alpha}{6} + \text{Var } Z(1)L_B^2.$$

We have

$$0 < 5\alpha^2 + 6(\alpha - L_F)^2 = 5\alpha^2 + 6\alpha^2 + 6L_F^2 - 12\alpha L_F = 6L_F^2 - \alpha^2 + 12\alpha^2 - 12\alpha L_F,$$

SO

$$0 < \frac{L_F^2}{\alpha} - \frac{\alpha}{6} + 2\alpha - 2L_F.$$

References

- [1] G. Da Prato & J. Zabczyk, Ergodicity for infinite dimensional systems, Cambridge University Press 1996.
- [2] G. Da Prato & J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge University Press 1992.
- [3] O. van Gaans, Invariant measures for stochastic evolution equations with Hilbert space valued Lévy noise, Technical Report 05-08, Faculty of Mathematics and Computer Science, Friedrich Schiller University, Jena 2005.
- [4] J. Jakubowski & J. Zabczyk, Exponential moments for HJM models with jumps, Institute of Mathematics, Polish Academy of Sciences, Preprint 651 (2004), 1-11
- [5] W. Rudin, Functional Analysis, McGraw-Hill, New York 1973.
- [6] M. Tehranchi, A note on invariant measures for HJM models, Finance and Stochastics 9 (2005), 389-398