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MANIFOLDS WITH A UNIQUE EMBEDDING

ZBIGNIEW JELONEK

Abstract. Let X be a smooth, compact manifold of dimension k. We show that any
two smooth embeddings X → Rn are tamely equivalent provided n ≥ 2k + 2. Moreover,
if additionally X is a real analytic manifold, then we show that any two real analytic
embeddings X → Rn are real analytically equivalent.

We extend this result to some interesting sub-categories of the category of real smooth
manifold. In particular we will prove that if X, Y are Nash k−dimensional submanifolds
of Rn (where n ≥ 2k + 2) and φ : X → Y is a diffeomorphism (Nash isomorphism, real
analytic isomorphism), then φ can be extended to a tame diffeomorphism (tame Nash
isomorphism, tame real analytic isomorphism) Φ : Rn → Rn.

We prove also that if X, Y are k−dimensional smooth algebraic subvarieties of Cn

(where n ≥ 2k + 2), and φ : X → Y is a biholomorphism (or polynomial isomorphism),
then φ can be extended to a global tame biholomorphism (polynomial automorphism)
Φ : Cn → Cn.

Finally we prove: if X, Y are k−dimensional closed semi-algebraic subsets of Rn

(where n ≥ 2k + 2), and φ : X → Y is a semi-algebraic homeomorphism, that φ can be
extended to a global tame semi-algebraic homeomorphism Φ : Rn → Rn. This last result
is a semi-algebraic counterpart of a classical result of Herman Gluck [6], on extension of
homeomorphisms of compact polyhedrons.

1. Introduction

Let us recall that diffeomorphism is said to be a triangle diffeomorphism, if it is of the
form

Φ : Rn 3 (x1, ..., xn) → (x1, ..., xn−1, xn + pn(x1, ..., xn−1)) ∈ Rn,

when pn(x1, ..., xn−1) is a smooth function. A diffeomorphism F , which can be obtained
as a composition of triangle diffeomorphisms and linear automorphisms with determinants
equal to 1 is called tame. Of course a tame diffeomorphism is diffeotopic to the identity
and it preserves the volume.

Let X be a smooth manifold. We say that two embeddings f, g : X → Rn are equivalent,
if there is a diffeomorphism Φ : Rn → Rn such that g = Φ ◦ f. If additionally Φ is a tame
diffeomorphism, we say that f, g are tamely equivalent. If every two embeddings of X
into Rn are equivalent (tamely equivalent) we say that X has a unique (tamely unique)
embedding into Rn.

For example if X = S1 is a circle, then X has infinitely many non-equivalent embeddings
into R3 (every knot gives a one non-standard embedding). It is interesting to find sufficient
conditions for a manifold X to have a unique or tamely unique embedding into Rn. It can
be deduced from the Whitney paper [13] that if X is a compact k−dimensional smooth
manifold, then any two smooth embeddings f, g : X → Rn, where n ≥ 2k+2 are equivalent.
In this note we improve this result and we show that in fact in this case any two smooth
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2 ZBIGNIEW JELONEK

embeddings f, g : X → Rn are tamely equivalent. Moreover, we show (which seems to be
a quite new result), that if X is a compact real analytic manifold and f, g are real analytic
embeddings, then we can find Φ as a tame real analytic isomorphism Φ : Rn → Rn.

Of course the same question can be posed for a larger class of categories. In particular
in [7], [8] and [10] this problem was solved for category of smooth complex algebraic affine
varieties (where morphisms are polynomial mappings). The second aim of this paper
is to generalize (and simplify) these results to the case of some other interesting cate-
gories: pseudo-algebraic categories (see Definition 4.3 and Definition 4.11). The examples
of pseudo-algebraic categories are e.g.: the category of Nash (i.e. analytic and semi-
algebraic) submanifolds of Rn with Nash (i.e., analytic and semi-algebraic) mappings as
morphisms, the category of Nash submanifolds of Rn with smooth mappings as morphisms,
the category of Nash submanifolds of Rn with real analytic mappings as morphisms, the
category of smooth complex affine subvarieties of Cn with holomorphic (or polynomial, or
smooth) mappings as morphisms.

In particular we prove that if X, Y are Nash k−dimensional submanifolds of Rn (where
n ≥ 2k + 2) and φ : X → Y is a diffeomorphism (Nash isomorphism, real-analytic
isomorphism), then φ can be extended to a tame diffeomorphism (Nash isomorphism,
real-analytic isomorphism) Φ : Rn → Rn.

We also prove that if X, Y are k−dimensional smooth algebraic subvarieties of Cn

(where n ≥ 2k + 2), and φ : X → Y is a biholomorphism, then φ can be extended to a
global tame biholomorphism Φ : Cn → Cn.

Finally we show this theorem for a category of closed semi-algebraic sets with con-
tinuous semi-algebraic mappings as morphisms. More precisely, we show: if X, Y are
k−dimensional closed semi-algebraic subsets of Rn (where n ≥ 2k + 2), and φ : X → Y is
a semi-algebraic homeomorphism, then φ can be extended to a global tame semi-algebraic
homeomorphism Φ : Rn → Rn (in particular X and Y are homeotopic). This theorem
is a semi-algebraic counterpart of the classical paper of Herman Gluck on extension of
homeomorphisms of polyhedrons (see [6]).

We give also examples of k = n + 1 dimensional Nash manifolds Xk ⊂ R2n, (where n
is any even number different from 2, 4, 8) which has at least two different embedding into
R2n. This shows that our results can not be much improved for large n. Note also that
for k = 1 and n = 3 our result (about Nash manifolds) is optimal.

Acknowledgment. I am grateful to Professor WiesÃlaw PawÃlucki from Jagiellonian Uni-
versity, Professor Wojciech Kucharz from University of New Mexico and Professor Henryk
Toruńczyk from Polish Academy of Science for helpful discussions and valuable remarks
on the paper.

2. Preliminaries

We start with the following basic definition:

Definition 2.1. Let X, Y be smooth manifolds and let f : X → Y be a smooth morphism.
We say that the mapping f is an embedding if

1) f(X) is a closed submanifold of Y ,
2) the mapping f : X → f(X) is a diffeomorphism.
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Let Y be a smooth manifold. We will denote by C(Y ) the algebra of all smooth functions
on Y. If f : X → Y is a smooth morphism of smooth manifolds, then we have the natural
homomorphism f∗ : C(Y ) 3 h → h ◦ f ∈ C(X).

If X is a closed submanifold of Y, then we consider the ideal I(X) = {f ∈ C(Y ) : f |X =
0}. Using a partition of unity it is easy to see that every function on X is a restriction of
some smooth function on Y, and consequently we have

C(X) ∼= C(Y )/I(X).

In particular the mapping i∗ induced by the inclusion i : X → Y is an epimorphism. In
fact we have the following more general fact:

Proposition 2.2. Let X, Y be smooth manifolds and f : X → Y be a smooth morphism.
The following conditions are equivalent:

1) f is an embedding,
2) the induced mapping f∗ : C(Y ) → C(X) is an epimorphism,
3) the mapping f is proper, injective and for every x ∈ X the mapping dxf : TxX →

Tf(x)Y is a monomorphism.

Proof. 1) =⇒ 2) It follows from remarks above.

2) =⇒ 3) We can assume that X is embedded in some RN (as a closed submanifold).
Let x1, ..., xN be coordinates on RN . By the assumption we can find smooth functions
Hi ∈ C(Y ) such that xi = Hi◦f (on X). Put H = (H1, ...,HN ). We have identity = H ◦f.
This easily implies that the mapping f is injective and proper. Moreover, after computing
derivatives of both sides we have

identity = df(x)H ◦ dxf,

which easily implies that dxf is a monomorphism.
3) =⇒ 1) It is well known from differential geometry. ¤

3. Smooth and analytic compact case

In this section we will prove our first main result. To do this we need a series of lemmas:

Lemma 3.1. Let X be a submanifold of Rn. of dimension k. Assume that the projection
π : X 3 (x1, ..., xn) → (x1, ..., xl, 0, ..., 0) ∈ Rl × {0} is an embedding. Then, there exists a
tame diffeomorphism Π : Rn → Rn such that Π|X = π.

Proof. Let X ′ := π(X), it is a closed submanifold of Rn. Consider the mapping π : X →
X ′ ⊂ Rn. It is an embedding, so the mapping π∗ : C(Rn) → C(X) is an epimorphism. In
particular for every k > l there exists a function pk ∈ C(Rn) such that xk = pk(x1, ..., xl)
(on X). Consider the mapping

Π(x1, ..., xn) = (x1, ..., xl, xl+1 − pl+1(x1, ..., xl), ..., xn − pn(x1, ..., xl)).

The mapping Π is a tame diffeomorphism of Rn and

Π|X = π.

¤

The next Lemma is a smooth variant of a Bertini Theorem:
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Lemma 3.2. Let X be a smooth manifold. Let f : X → Pm be a smooth morphism. Then
there is a subset E ⊂ Pm∗ of measure 0 such that: if π is a projective hyperplane and
π 6∈ E, then f−1(π) is a smooth submanifold of X.

Proof. First assume that f : X → Rm. Hence f = (f1, ..., fm) and fi are smooth functions.
Consider the mapping

Ψ : X × Rm 3 (x, (λ1, ..., λm)) → (
n∑

i=1

λifi(x), (λ1, ..., λm)) ∈ R× Rm.

Now our conclusion follows from the Sard Theorem (see [12]).
To prove the general case let H1, ..., Hm+1 ⊂ Pm be hyperplanes in general position.

By the previous result a preimage of a general hyperplane is smooth in each open subset
Ui = X \ f−1(Hi). Since sets {Ui} cover X the Lemma follows. ¤

Next Lemma is a variant of the Whitney Embedding Theorem:

Lemma 3.3. Let X be compact submanifold of Rn of dimension k. If n > 2k + 1, then
there exists a system of coordinates (x1, ..., x2k+1, x2k+2, ..., xn) such that the projection π :
X 3 (x1, ..., x2k+1, x2k+2, ..., xn) → (x1, ..., x2k+1, 0, ..., 0) ∈ R2k+1 × {0} is an embedding.

Proof. Let us denote by π∞ the hyperplane at infinity of Rn. Thus π∞ ∼= Pn−1 is a real
projective space of dimension n− 1 > 2k. For a non-zero vector v ∈ Rn let [v] denote an
appropriate point in Pn−1.

Let ∆ = {(x, y) ∈ X × X : x = y} and let TX denote a tangent bundle of X. Set
TX ′ = TX \X × {0}. Consider two mappings

A : X ×X \∆ 3 (x, y) → [x− y] ∈ π∞

and
B : TX ′ 3 (x, v) → [v] ∈ π∞.

Since A,B are smooth mappings and manifolds X ×X \∆ and TX are of dimension
2k, we have by the Sard Theorem (see [12]) that π∞ \ (A(X ×X \∆)∪B(TX ′)) 6= ∅. Let
P ∈ π∞ \ (A(X ×X \∆) ∪ B(TX ′)) and let H ⊂ Rn−1 be a hyperplane, which does not
contain the point P (at infinity). Thus the projection S : X 3 x → Px ∩H ∈ H ∼= Rn−1

is an embedding. Now we can apply the mathematical induction. ¤

Lemma 3.4. Let X be a compact manifold of dimension k. Assume that X ⊂ R2n, where
n ≥ 2k + 1. If mappings

π1 : X 3 (x1, ..., xn, y1, ..., yn) → (y1, ..., yn) ∈ Rn

and
π2 : X 3 (x1, ..., xn, y1, ..., yn) → (x1, ..., xn) ∈ Rn

are embeddings, then there are affine coordinates (X1, ..., Xn) in Rn × {0} and affine co-
ordinates (Y1, ..., Yn) in {0} × Rn such that all projection

qr : X 3 (X1, ..., Xn, Y1, ..., Yn) → (X1, ..., Xr, Yr+1, ..., Yn) ∈ Rn, r = 0, ..., n

are embeddings.

Proof. Let us denote by π∞ the hyperplane at infinity of Rn ×Rn. Thus π∞ ∼= P2n−1 is a
real projective space of dimension 2n− 1.
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Again let ∆ = {(x, y) ∈ X ×X : x = y} be the diagonal and let TX denote a tangent
bundle of X. Set TX ′ = TX \X × {0}. Consider two mappings

A : X ×X \∆ 3 (x, y) → [x− y] ∈ π∞

and
B : TX ′ 3 (x, v) → [v] ∈ π∞.

Denote Λ := (A(X × X \ ∆) ∪ B(TX ′)) ⊂ π∞. Let L = (L1, ..., Ln) : R2n → Rn be a
linear mapping. Set S(L) := {x ∈ π∞ : Li(x) = 0 , i = 1, ..., n}. It is easy to see that the
mapping L|X is an injective immersion if and only if Λ ∩ S = ∅.

Now we show that there are affine coordinates (X1, ..., Xn) in Rn × {0} and affine
coordinates (Y1, ..., Yn) in {0} × Rn such that all projection

qi : X 3 (X1, ..., Xn, Y1, ..., Yn) → (X1, ..., Xn−i, Yn−i+1, ..., Yn) ∈ Rn, i = 0, ..., n

are embeddings. On π∞ we have coordinates (x : y). Since the projection π1|X is an
embedding we have {(x : y) ∈ π∞ : x1 = 0, ..., xn = 0} ∩ Λ = ∅. Consequently, if we set
ψ : π∞ 3 (x : y)− → x ∈ Pn−1, then the mappings g := ψ ◦ A : X ×X \∆ → Pn−1 and
k := ψ ◦B : TX → Pn−1 are well defined and smooth.

By Lemma 3.2 this means that if H = {x ∈ Pn−1 :
∑n

i=1 cixi = 0} is a generic
hyperplane, then g−1(H) and k−1(H) are smooth submanifolds of X ×X \∆ and TX ′,
of dimension at most 2k − 1. Set X1 =

∑n
i=1 cixi.

Continuing in this fashion we see that we can choose n generic hyperplanes given by
equations: Xi =

∑n
k=1 ai,kxk, i = 1, ..., n, such that A−1({X1 = 0, ..., Xr = 0}) and

B−1({X1 = 0, ..., Xr = 0}) are smooth submanifolds of X ×X \∆ and TX ′, of dimension
at most 2k − r. In particular we have dim A−1({X1 = 0, ..., Xn−1 = 0}) ≤ 0 and dim
B−1({X1 = 0, ..., Xn−1 = 0}) ≤ 0.

Now in the same way we can choose a generic hyperplane given by the equation
Yn =

∑n
k=1 bn,kyk, i = 1, ..., n, such that A−1({X1 = 0, ..., Xn−1 = 0, Yn = 0}) = ∅

and B−1({X1 = 0, ..., Xn−1 = 0, Yn = 0}) = ∅ and additionally for every 0 ≤ r ≤ n− 1 we
have dim A−1({X1 = 0, ..., Xr = 0, Yn = 0}) ≤ 2k − r− 1 and dim B−1({X1 = 0, ..., Xr =
0, Yn = 0}) ≤ 2k − r − 1. Further we can construct Yn−1 =

∑n
k=1 bn−1,kyk, i = 1, ..., n,

such that A−1({X1 = 0, ..., Xn−2 = 0, Yn−1 = 0, Yn = 0, }) = ∅ and B−1({X1 =
0, ..., Xn−2 = 0, Yn−1 = 0, Yn = 0}) = ∅ and additionally for every 0 ≤ r ≤ n − 2
we have dim A−1({X1 = 0, ..., Xr = 0, Yn−1 = 0, Yn = 0}) ≤ 2k − r − 2 and dim
B−1({X1 = 0, ..., Xr = 0, Yn−1 = 0, Yn = 0}) ≤ 2k − r − 2. Continuing in this manner we
find a system of coordinates (X1, ..., Xn, Y1, ..., Yn) we are looking for: for all 0 ≤ r ≤ n
we have

Λ ∩ {X1 = 0, ..., Xr = 0, Yr+1 = 0, ..., Yn = 0} = ∅,
which implies that the mapping

qr : X 3 (X1, ..., Xn, Y1, ..., Yn) → (X1, ..., Xr, Yr+1, ..., Yn) ∈ Rn, r = 0, ..., n

is an immersion. Since X is compact the mapping qr is an embedding. ¤

Now we are in a position to prove the first main result of this section:

Theorem 3.5. Let X be a compact smooth (not necessarily connected) submanifold of Rn

of dimension (not necessarily pure) k. Let f : X → Rn be an embedding. If n ≥ 2k + 2,
then there exists a tame diffeomorphism F : Rn → Rn such that

F |X = f.
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Proof. Apply Lemma 3.3 to X and f(X). Then in virtue of Lemma 3.1 we can assume
that there exists tame diffeomorphisms A,B : Rn → Rn such that A(X) ⊂ R2k+1 × {0}
and B(f(X)) ⊂ {0} × R2k+1 (if necessary we compose A and B with suitable affine
transformations with determinants equal to 1). Consider f ′ = B ◦ f ◦ A−1, of course
we can assume that f = f ′. In particular we can assume that X ⊂ R2k+1 × {0} and
f(X) ⊂ {0} × R2k+1and that n = 2k + 2. Thus f = (0, f1, ..., fn−1).

Applying Lemma 3.4 to the set X ′ = graph(f) ⊂ R2k+1 × R2k+1 we see that (after
suitable change of coordinates) all mappings

q′r : X 3 (x1, ..., x2k+1, 0) → (x1, ..., xr, fr+1, ..., fn−1) ∈ R2k+1

are embeddings (as a composition of a diffeomorphism X → graph(f) with qr-notation as
in Lemma 3.4). Since X ⊂ R2k+1 × {0} there exists a smooth function Pn−1 such that

fn−1 = Pn−1(x1, ..., xn−1).

Consider a tame diffeomorphism

An−1 : Rn 3 (x1, ..., xn) → (x1, ..., xn−1, xn + Pn−1(x1, ..., xn−1)) ∈ Rn.

Thus for x ∈ X we have
An−1(x) = (x1, ..., xn−1, fn−1).

Now by Lemma 3.4 we have (see remarks above) that the mapping (x1, ..., xn−2, fn−1)
restricted to X is also an embedding. Hence there exists a smooth function Qn−1 such
that we have on X:

xn−1 = Qn−1(x1, ..., xn−2, fn−1).

Consider a tame diffeomorphism

Bn−1 : Rn 3 (x1, ..., xn) → (x1, ..., xn−2, xn−1 −Qn−1(x1, ..., xn−2, xn), xn) ∈ Rn.

Again for x ∈ X we have

Bn−1 ◦An−1 = (x1, ..., xn−2, 0, fn−1).

In a similar way we can construct tame diffeomorphisms An−2 and Bn−2 such that

An−2(x1, ..., xn−2, 0, fn−1) = (x1, ..., xn−2, fn−2, fn−1)

and
Bn−2(x1, ..., xn−2, fn−2, fn−1) = (x1, ..., xn−3, 0, fn−2, fn−1).

Continuing in this manner, we get a sequence of tame diffeomorphisms An−1, An−2, ..., A1

and Bn−1, Bn−2, ..., B1 such that for x ∈ X we have

B1 ◦A1 ◦ ... ◦Bn−1 ◦An−1(x) = (0, f1(x), ..., fn−1(x)) = f(x).

¤

Corollary 3.6. With the preceding notation there is a smooth family of tame diffeomor-
phisms Ft : Rn × R→ Rn, such that F0 = identity and F1|X = f.

Proof. Indeed, every triangle diffeomorphism G = (x1, ..., xn−1, xn + Pn(x1, ..., xn−1)) is
diffeotopic to the identity by t → Gt = (x1, ..., xn−1, xn + tPn(x1, ..., xn−1)) and the same
is true for linear mapping with determinant equal to 1. ¤

Corollary 3.7. Let X be a compact smooth manifold of dimension k. In n ≥ 2k +2, then
X has a (tamely) unique embedding into Rn.
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Now note that we can repeat this proof for real analytic submanifolds of Rn nearly
word by word, with one exception - we need a fact that if f : X → R is a real analytic
function on a real analytic manifold X, then we can extend f to a real analytic function
F : Rn → R. This follows from a result of Cartan (see [4], p. 89). In this way we have the
following interesting:

Theorem 3.8. Let X ⊂ Rn be a compact (not necessarily connected) real analytic sub-
manifold of dimension (not necessarily pure) k. Let f : X → Rn be a real-analytic em-
bedding. If n ≥ 2k + 2, then f can be extended to a tame real analytic isomorphism
F : Rn → Rn.

Corollary 3.9. With the preceding notation there is an analytic family of tame analytic
isomorphisms Ft : Rn × R→ Rn, such that F0 = identity and F1|X = f.

Corollary 3.10. Let X be a compact real analytic manifold of dimension k. In n ≥ 2k+2,
then X has a (tamely) unique analytic embedding into Rn.

Example 3.11. As shows the example of a non-trivial knot f : S1 → R3 (note that we
can take f as a real analytic mapping!) the assumption n ≥ 2k + 2 in Theorem 3.5 and
Theorem 3.8 is essential.

4. Real pseudo-algebraic categories

In this section we apply our results to other categories of manifolds. First we assume
that our field is a real field. By S0 we mean the category of all pairs (X,Rn(X)), where
X ⊂ Rn(X) is a smooth closed submanifold of Rn(X) and morphisms are smooth mappings.
Let S be a sub-category of S0. Every object of S is the pair (X,Rn(X)), in further we will
identify such object simply with X. In particular we will identify (Rn,Rn) with Rn. We
start with:

Definition 4.1. Let S be as above and let X,Y ∈ S. We say that a mapping f : X → Y
is an S−embedding, iff

1) (f(X),Rn(Y )) ∈ S

2) f as well as f−1 : f(X) → X ⊂ Rn(X) are S−morphisms.

Remark 4.2. In particular an S−embedding is always a smooth embbeding, see Definition
2.1.

Definition 4.3. We say that S is a fine category iff:
1) for every n ∈ N : Rn ∈ S,

2) if f : X → R is in S, then f can be extended to a mapping F : Rn(X) → R, which is
also in S,

3) linear mappings are in S, moreover, if X ∈ S, then the restriction of mappings from
S to X are in S,

4) if X ∈ S, then the set CS(X) = {f : X → R; f ∈ S} is an R−algebra,
5) if X ∈ S and π : X → Rn is a projection, which is a smooth embedding, then f is an

S−embedding,
6) if X ∈ S and f : X → Rn and g : X → Rm are S−morphisms, then (f, g) : X →

Rn × Rm is also an S−morphism.

In the sequel the following definition will be crucial (see e.g., [3]):
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Definition 4.4. We say that a submanifold X ⊂ Rn is a Nash manifold if X is a real
analytic manifold and a closed semi-algebraic subset of Rn. Moreover, if X,Y are Nash
manifolds and f : X → Y is a mapping, then f is a Nash mapping if f is a real analytic
and semi-algebraic mapping.

Example 4.5. The examples of fine categories are: the category S0 itself, the category
RA of smooth real analytic submanifolds with real analytic mappings as morphisms (the
category RA satisfies (2) by [4]) and the category NA of Nash submanifolds with Nash
mappings as morphisms (the category NA satisfies (2) by [3], Corollary 8.9.13).

A simple but important consequence of Definition 4.3 is:

Proposition 4.6. Let S be a fine category and let X ∈ S. If f : X → Rn is an
S−embedding, then the induced mapping f∗ : CS(Rn) → CS(X) is an epimorphism.

Proof. Indeed, let Y = f(X). By definition we have that Y ∈ S and the mapping

a : CS(Y ) 3 α → α ◦ f ∈ CS(X)

is an isomorphism. Now let i : Y → Rn be the inclusion. Since every S−function
σ : Y → R can be extended to a global S−function Σ : Rn → R we have that the
mapping i∗ : CS(Rn) → CS(Y ) is an epimorphism. But f∗ = a ◦ i∗. ¤

Now we generalize results from Section 3:

Lemma 4.7. Let S be a fine category and let (X,Rn) ∈ S be a submanifold of dimension
k. Assume that the projection π : X 3 (x1, ..., xn) → (x1, ..., xl, 0, ..., 0) ∈ Rl × {0} is an
embedding. Then, there exists a tame S−diffeomorphism Π : Rn → Rn such that Π|X = π.

Proof. Let X ′ := p(X), it is a closed submanidfold of Rn. Consider the mapping π :
X → X ′ ⊂ Rn. It is an embedding, so the mapping π∗ : CS(Rn) → CS(X) is an
epimorphism. In particular for every k > l there exists a function pk ∈ CS(Rn) such that
xk = pk(x1, ..., xl) (on X). Consider the mapping

Π(x1, ..., xn) = (x1, ..., xl, xl+1 − pl+1(x1, ..., xl), ..., xn − pn(x1, ..., xl)).

The mapping Π is a tame S−diffeomorphism of Rn and

Π|X = π.

¤

In the sequel we need the following:

Definition 4.8. For a hyperplane H ⊂ Pn let us consider the Zariski open affine set
UH = Pn \ H. We will say that UH is a standard open affine subset of Pn. Now let X
be a semi-algebraic set and let f : X → Pn be a mapping. We say that the mapping f
is projectively semi-algebraic if for every standard affine set UH ⊂ Pn the set f−1(UH) is
semi-algebraic and the mapping

f |f−1(UH) : f−1(UH) → UH
∼= Rn

is a semi-algebraic mapping.

Next Lemma is a semi-algebraic variant of Lemma 3.3:

Lemma 4.9. Let X be a semi-algebraic submanifold of Rn of dimension k. If n > 2k + 1,
then there exists a system of coordinates (x1, ..., x2k+1, x2k+2, ..., xn) such that the projec-
tion π : X 3 (x1, ..., x2k+1, x2k+2, ..., xn) → (x1, ..., x2k+1, 0, ..., 0) ∈ R2k+1 × {0} is an
embedding.
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Proof. We follow closely the proof of Lemma 3.3. Let us denote by π∞ the hyperplane at
infinity of Rn. Thus π∞ ∼= Pn−1 is a real projective space of dimension n− 1 > 2k. For a
non-zero vector v ∈ Rn let [v] denote an appropriate point in Pn−1.

Let ∆ = {(x, y) ∈ X × X : x = y} and let TX denote a tangent bundle of X. Set
TX ′ = TX \X × {0}. Consider two mappings

A : X ×X \∆ 3 (x, y) → [x− y] ∈ π∞
and

B : TX ′ 3 (x, v) → [v] ∈ π∞.

Since A,B are semi-algebraic mappings and manifolds X×X\∆ and TX ′ are of dimension
2k, we have that the set Λ := (A(X × X \ ∆) ∪ B(TX)) is a projective semi-algebraic
set (i.e., it is semi-algebraic in every standard affine open subset of Pn−1) of dimension at
most 2k. This means that also the set Σ = closure of Λ is (projectively) semi-algebraic
of dimension at most 2k (for details see e.g., [2]). Consequently we have π∞ \ Σ 6= ∅.

Let P ∈ π∞ \Σ and let H ⊂ Rn−1 be a hyperplane, which does not contain the point P
(at infinity). Since P 6∈ Λ we have that the projection S : X 3 x → Px ∩H ∈ H ∼= Rn−1

is an immersion. Moreover, since P 6∈ Σ we get that the S is also proper, hence it is an
embedding.

Now we can apply the mathematical induction. ¤
Lemma 4.10. Let S be a fine category. Let (X,R2n) ∈ S, where n ≥ 2k + 1. Consider
mappings

π1 : X 3 (x1, ..., xn, y1, ..., yn) → (y1, ..., yn) ∈ Rn

and
π2 : X 3 (x1, ..., xn, y1, ..., yn) → (x1, ..., xn) ∈ Rn.

If π1, π2 are (closed) embeddings and submanifolds π1(X) = X1, π2(X) = X2 are semi-
algebraic, then there are affine coordinates (X1, ..., Xn) in Rn×{0} and affine coordinates
(Y1, ..., Yn) in {0} × Rn such that all projection

qr : X 3 (X1, ..., Xn, Y1, ..., Yn) → (X1, ..., Xr, Yr+1, ..., Yn) ∈ Rn, i = 0, ..., n

are S−embeddings.

Proof. Exactly in the same way as in the proof of Lemma 3.4 we can show that if
(X1, ..., Xn) in Rn × {0} and (Y1, ..., Yn) in {0} × Rn are sufficiently generic affine co-
ordinates, then all projection

qi : X 3 (X1, ..., Xn, Y1, ..., Yn) → (X1, ..., Xn−i, Yn−i+1, ..., Yn) ∈ Rn, i = 0, ..., n

are immersions. The key point now is to prove that they are also proper. Let X ′
1 be

a Zariski projective closure of X1 in (the first copy of) Pn and take W1 = X ′
1 \ X1. In

analogous way we define W2. Of course W1,W2 are algebraic sets of dimension k − 1.

We can choose coordinates (X1, ..., Xn) and (Y1, ..., Yn) in so generic way, that addition-
ally

dim W1 ∩ {X1 = 0, ..., Xt = 0} ≤ k − 1− t, for t = 1, ..., k,

and
dim W2 ∩ {Yn = 0, ..., Yn−t = 0} ≤ k − t− 2, for t = 0, 1, ..., k − 1.

This gives that mappings

T : X1 3 (X1, ..., Xn) → (X1, ..., Xk) ∈ Rk

and
R : X2 3 (Y1, ..., Yn) → (Yn−k+1, ..., Yn) ∈ Rk
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are proper. Consequently we obtain that the projection

P1 = T ◦ π1 : X 3 (X1, ..., Xn, Y1, ..., Yn) → (X1, ..., Xk) ∈ Rk

is proper. Similarly the projection

P2 = R ◦ π1 : X 3 (X1, ..., Xn, Y1, ..., Yn) → (Yn−k+1, ..., Yn) ∈ Rk

is proper. Set

Tr : Rn 3 (X1, ..., Xr, Yr+1, ..., Yn) → (X1, ..., Xr) ∈ Rr

and
Rr : Rn 3 (X1, ..., Xr, Yr+1, ..., Yn) → (Yr+1, ..., Yn) ∈ Rn−r.

It is easy to see that for every r either the map Tr ◦ qr is proper (if r ≥ k) or the map
Rr ◦ qr is proper (if r ≤ n − k + 1). In both cases this implies that the mapping qr is
proper. This finishes the proof. ¤

Definition 4.11. Let S be a fine category and let S′ ⊂ S be a subcategory. We say that
S′ is pseudo-algebraic sub-category in S (or shortly a pseudo-algebraic category) iff

1) if X ∈ S′, then X is a Nash manifold,
2) if X, Y in S′ then MorS(X, Y ) = MorS′(X, Y ),

where MorS(X, Y ) = {f ∈ S : f : X → Y }.

Now we can repeat word by word the proof of the Theorem 3.5 to obtain:

Theorem 4.12. Let S′ be a pseudo-algebraic category and let (X,Rn), (Y,Rn) ∈ S′
be smooth (not necessarily connected) manifolds of dimension (not necessarily pure) k.
Let f : X → Y be an S′−diffeomorphism. If n ≥ 2k + 2, then f can be extended a
tame S′−diffeomorphism F : Rn → Rn. Moreover, there is a smooth family of tame
S′−diffeomorphisms Ft : Rn × R→ Rn, such that F0 = identity and F1|X = f.

It is easy to check that the following categories are pseudo-algebraic: the category
of Nash submanifolds of Rn with Nash mappings as morphisms, (here S′ = NA), the
category of Nash submanifolds of Rn with real analytic mappings as morphisms, (here
S′ ⊂ RA), the category of Nash submanifolds of Rn with smooth mappings as morphisms
(here S′ ⊂ S0). In particular we have following:

Theorem 4.13. Let X,Y ⊂ Rn be Nash (not necessarily connected) manifolds of dimen-
sion (not necessarily pure) k. Let f : X → Y be a diffeomorphism. If n ≥ 2k + 2, then
f can be extended to a tame diffeomorphism F : Rn → Rn. Moreover, there is a smooth
family of tame diffeomorphisms Ft : Rn×R→ Rn, such that F0 = identity and F1|X = f.

This gives the following nice application to study complex algebraic varieties:

Corollary 4.14. Let X, Y ⊂ Cn be smooth (not necessarily connected) complex algebraic
manifolds of complex dimension (not necessarily pure) k. Let f : X → Y be a diffeomor-
phism. If n ≥ 2k + 1, then f can be extended to a tame diffeomorphism F : Cn → Cn. In
particular, if two smooth algebraic complex curves X, Y ⊂ C3 are diffeomorphic, then they
are (topologically) embedded into C3 in the same way.

Proof. Indeed, we can treat X, Y as 2k dimensional real algebraic smooth submanifold of
Cn ∼= R2n. By the assumption 2n ≥ 2(2k + 1) = 2(2k) + 2. ¤

We have also the analytic variant of Theorem 4.13:



MANIFOLDS WITH A TAMELY UNIQUE EMBEDDING 11

Theorem 4.15. Let X, Y ⊂ Rn be Nash (not necessarily connected) submanifolds of
dimension (not necessarily pure) k. Let f : X → Y be a Nash isomorphism (real an-
alytic isomorphism). If n ≥ 2k + 2, then f can be extended to a tame Nash isomor-
phism (real analytic isomorphism) F : Rn → Rn. Moreover, there is an analytic family
of tame Nash isomorphisms (real analytic isomorphisms) Ft : Rn × R → Rn, such that
F0 = identity and F1|X = f.

Example 4.16. Since some non-trivial knots f : R→ R3 can be realized as a polynomial
embedding (see e.g. [11]), we see that the assumption n ≥ 2k + 2 in Theorem 4.13 and
Theorem 4.15 is optimal.

5. Complex pseudo-algebraic categories

Now assume that our field is a complex field. By S0 we mean the category of all pairs
(X,Cn(X)), where X ⊂ Cn(X) is a smooth closed submanifold of Cn(X) and morphisms are
smooth mappings. Every object of S0 is the pair (X,Cn(X)), in further we will identify
such object simply with X. In particular we will identify (Cn,Cn) with Cn. Let S be a
subcategory of S0. We can easily extend Definition 4.3 to:

Definition 5.1. We say that S is a fine category iff:
1) for every n ∈ N : Cn ∈ S,

2) if f : X → C is in S, then f can be extended to a mapping F : Cn(X) → C which is
also in S,

3) C−linear mappings are in S, moreover, if X ∈ S, then the restriction of mappings
from S to X are in S,

4) if X ∈ S, then the set CS(X) = {f : X → C; f ∈ S} is an C−algebra,
5) if X ∈ S and π : X → Cn is a projection, which is a smooth embedding, then f is an

S−embedding,
6) if X ∈ S and f : X → Cn and g : X → Cm are S−morphisms, then (f, g) : X →

Cn × Cm is also an S−morphism.

From now on our models of fine categories will be a category St of smooth Stein sub-
manifolds X ⊂ Cn(X), with holomorphic mappings as morphisms and the category Pl of
smooth algebraic submanifolds with polynomial mappings as morphisms. Note that again
the fact that the category St satisfies property (2) is a non-trivial fact, which follows from
the Cartan Theorem B, for details see [4]. We can also define a complex pseudo-algebraic
category:

Definition 5.2. Let S be a (complex) fine category and let S′ ⊂ S be a subcategory. We
say that S′ is a (complex) pseudo-algebraic sub-category in S (or shortly a pseudo-algebraic
category) iff

1) if X ∈ S′, then X is a complex algebraic manifold,
2) if X, Y in S′ then MorS(X, Y ) = MorS′(X, Y ),

where MorS(X, Y ) = {f ∈ S : f : X → Y }.

Now we can repeat word by word results of the previous section to obtain:

Theorem 5.3. Let S′ be a pseudo-algebraic category and let (X,Cn), (Y,Cn) ∈ S′ be
smooth (not necessarily connected) complex manifolds of dimension (not necessarily pure)
k. Let f : X → Y be an S′−diffeomorphism. If n ≥ 2k + 2, then f can be extended
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a tame S′−diffeomorphism F : Cn → Cn. Moreover, there is a smooth family of tame
S′−diffeomorphisms Ft : Cn × C→ Cn, such that F0 = identity and F1|X = f.

It is easy to check that the the category of smooth complex algebraic submanifolds
with holomorphic mappings as morphisms, is a pseudo-algebraic category (here S′ ⊂ S =
St). Similarly the category of smooth complex algebraic submanifolds with polynomial
mappings as morphisms, is a pseudo-algebraic category (here S′ = S = Pl). In particular
we have:

Theorem 5.4. Let X,Y ⊂ Cn be smooth (not necessarily connected) complex algebraic
submanifolds of dimension (not necessarily pure) k. Let f : X → Y be a biholomor-
phism (polynomial isomorphism). If n ≥ 2k + 2, then f can be extended to a tame bi-
holomorphism (polynomial automorphism) F : Cn → Cn. Moreover, there is a smooth
family of tame biholomorphisms (polynomial isomorphisms) Ft : Cn × C→ Cn, such that
F0 = identity and F1|X = f.

Example 5.5. Let
X = {(x1, ..., xn) ∈ Cn : x1 · ... · xn = 1}

and
Y = {(x1, ..., xn) ∈ Cn : x1 · (x2 · ... · xn)s = 1},

where s ≥ n ≥ 3. Let us consider the biholomorphic mapping

f : X1 3 (x1, ..., xn) → (xs
1, x2, ..., xn−2, e

−x1xn−1, e
x1xn) ∈ X2.

We show that f can not be extend to a global biholomorphism F : Cn → Cn. Indeed,
assume that F = (F1, ..., Fn) is a such extension. Then

X = {(x1, ..., xn) ∈ Cn : F1 · (F2... · Fn)s = 1}
and the equation

F1 · (F2... · Fn)s = 1
is reduced. This means that the first non-constant homogeneous term in an expansion of
F1 · (F2... · Fn)s into a power series is x1 · ... · xn (up to a non-zero constant factor). Since
every Fi has a non-trivial linear part, this is impossible.2

Example 5.6. (see [9]) Let n ≥ 4 be an even number and consider the variety S2n−1 =
{(x, y) ∈ C2n :

∑n
i=1 xiyi = 1}. Then the embeddings

ι : S2n−1 × C2 3 ((x, y), (s, t)) → ((x, y), s, t, 0, ..., 0) ∈ C2n × Cn,

and φ : S2n−1 × C2 → C2n × Cn given by

((x, y), (s, t)) → ((x, y), y1s+x2t, y2s−x1t, y3s+x4t, y4s−x3t, ..., yn−1s+xnt, yns−xn−1t),

are non-equivalent, i.e., there does not exist a biholomorphism

Φ : C2n × Cn → C2n × Cn,

such that Φ ◦ ι = φ.

Example 5.7. For every n ≥ 2 there is a (closed) holomorphic embedding f : C ×
{0, ..., 0} → Cn, which cannot be extended to a biholomorphism F : Cn → Cn (for details
see [5]). Of course, the reason is that the smooth Stein curve Y = f(C) is far from being
algebraic.

Example 5.8. Let X, Y ⊂ C be finite sets of points with #X = #Y ≥ 3. Since every
biholomorpism of C is a C−linear mapping, we have that in general the non-trivial bijection
f : X → Y can not be extended to a global biholomorphism F : C→ C. This means that
at least for k = 0 the assumption n ≥ 2k + 2 of Theorem 5.4 is optimal.
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6. Semi-algebraic category

At the end of this paper we consider the category, which is not smooth. Let SE be
a category of closed semi-algebraic subsets of Rn, i.e., objects of this category are pairs
(X,Rn(X)) and X ⊂ Rn(X) is a closed semi-algebraic subsets of Rn(X). The morphisms in
SE are continuous semi-algebraic mappings. This is in some sense a fine category, since
we have:

1) for every n ∈ N : Rn ∈ SE,

2) if f : X → R is in SE, then f can be extended to a mapping F : Rn(X) → R, which
is also in SE (this is a semi-algebraic version of Tietze Extension Theorem, see e.g., [3],
Proposition 2.6.9),

3) linear mappings are in SE, moreover, if X ∈ SE, then the restriction of mappings
from SE to X are in SE,

4) if X ∈ SE, then the set CSE(X) = {f : X → R; f ∈ SE} is an R−algebra,
5) if X,∈ SE and π : X → Rn is a projection which is a topological embedding, then f

is an SE−embedding,
6) if X ∈ SE and f : X → Rn and g : X → Rm are SE−morphisms, then (f, g) : X →

Rn × Rm is also an SE−morphism.

By Proposition 4.6 we have:

Lemma 6.1. If X is a semi-algebraic sets and f : X → Rn is an SE−embedding, then
the mapping

f∗ : CSE(Rn) 3 h → h ◦ f ∈ CSE(X)
is an epimorphism.

Moreover, using basic properties of semi-algebraic sets it is not difficult to prove a
topological counterparts of Lemma 4.9, Lemma 4.7 and Lemma 4.10 (the main idea is the
same, we have to use the lemma below).

Lemma 6.2. Let W be a semi-algebraic subset of P(Rn). Let (x1, ..., xk) be a system of
linear homogenous polynomial on P(Rn) such that V (x1, ..., xk)∩W = ∅. Then for generic
λ = (λ1, ..., λk) ∈ Rk we have dim W ∩ V (

∑k
i=1 λixi) ≤ dim W − 1.

Proof. Let W =
⋃r

i=1 Wi be the decomposition of W into irreducible (in a semi-algebraic
sense) components. Let Li be a linear subspace of Pn(R) spanned by Wi, i = 1, ..., s. A
hyperplane H satisfies dim W ∩H = dim W if and only if it contains some of Li. If P(λ)
parametrizes all hyperplanes of the type

∑k
i=1 λixi = 0, then those that contain some Li

form a linear subspace Λi of P(λ). By our assumption we have Λi 6= P(λ) for every i (since
otherwise Wi ⊂ V (x1, ..., xk) ∩ W ). Hence the union

⋃s
i=1 Λi is a proper subset of P(λ)

and the proof is finished. ¤

For example we give a proof of:

Lemma 6.3. Let X be a closed semi-algebraic subset of Rn of dimension k. If n >
2k + 1, then there exists a system of coordinates (x1, ..., x2k+1, x2k+2, ..., xn) such that the
projection π : X 3 (x1, ..., x2k+1, x2k+2, ..., xn) → (x1, ..., x2k+1, 0, ..., 0) ∈ R2k+1 × {0} is a
topological embedding.

Proof. Again we follow the proof of Lemma 3.3. Let us denote by π∞ the hyperplane at
infinity of Rn. Thus π∞ ∼= Pn−1 is a real projective space of dimension n− 1 > 2k. For a
non-zero vector v ∈ Rn let [v] denote an appropriate point in Pn−1.
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Let ∆ = {(x, y) ∈ X ×X : x = y}. Consider a mapping

A : X ×X \∆ 3 (x, y) → [x− y] ∈ π∞.

Since A is a semi-algebraic mapping and the semi-algebraic set X×X\∆ is of dimension 2k,
we conclude that the set Λ := A(X ×X \∆) is (projectively) semi-algebraic of dimension
at most 2k. This means that also the set Σ = closure of Λ is (projectively) semi-algebraic
of dimension at most 2k (for details see e.g., [2]). Consequently we have π∞ \ Σ 6= ∅.

Let P ∈ π∞ \Σ and let H ⊂ Rn−1 be a hyperplane, which does not contain the point P
(at infinity). Since P 6∈ Λ we have that the projection S : X 3 x → Px ∩H ∈ H ∼= Rn−1

is an injection. Moreover, since P 6∈ Σ we get that the S is also proper, hence it is a
topological embedding.

Now we can apply the mathematical induction. ¤

Lemma 6.4. Let (X,Rn) ∈ SE be a closed subset of dimension k. Assume that the
projection π : X 3 (x1, ..., xn) → (x1, ..., xl, 0, ..., 0) ∈ Rl × {0} is a topological embedding.
Then, there exists a tame SE−homeomorphism Π : Rn → Rn such that Π|X = π.2

Lemma 6.5. Let (X,R2n) ∈ SE, where n ≥ 2k + 1. Consider mappings

π1 : X 3 (x1, ..., xn, y1, ..., yn) → (y1, ..., yn) ∈ Rn

and

π2 : X 3 (x1, ..., xn, y1, ..., yn) → (x1, ..., xn) ∈ Rn.

If π1, π2 are (closed) embeddings, then there are affine coordinates (X1, ..., Xn) in Rn×{0}
and affine coordinates (Y1, ..., Yn) in {0} × Rn such that all projection

qr : X 3 (X1, ..., Xn, Y1, ..., Yn) → (X1, ..., Xr, Yr+1, ..., Yn) ∈ Rn, r = 0, ..., n

are topological embeddings. 2

Now we can repeat nearly word by word the proof of the Theorem 3.5 to obtain:

Theorem 6.6. Let X, Y ⊂ Rn be closed semi-algebraic subsets of dimension k. Let f :
X → Y be a semi-algebraic homeomorphism. If n ≥ 2k + 2, then f can be extended to a
tame semi-algebraic homeomorphism F : Rn → Rn.

Since every triangle homeomorphism G = (x1, ..., xn−1, xn+Pn(x1, ..., xn−1)) is homeotopic
to the identity by t → Gt = (x1, ..., xn−1, xn + tPn(x1, ..., xn−1)) and the same is true for
linear mapping with determinant equal to 1, we have:

Corollary 6.7. Let X, Y ⊂ Rn be closed semi-algebraic subsets of dimension k. Let
f : X → Y be a semi-algebraic homeomorphism. If n ≥ 2k + 2, then X,Y are semi-
algebraically homeotopic, i.e., there is a continuous semi-algebraic family t → Gt of semi-
algebraic homeomorphisms Gt : Rn → Rn, such that G0 = identity and G1|X = f.

Remark 6.8. Example 4.16 shows that assumption n ≥ 2k+2 in Theorem 6.6 is essential.

Remark 6.9. In the paper [6] Herman Gluck have obtained similar results for “mild”
topological embeddings of compact polyhedrons. In some sense this section is an extension
of his results to the non-compact case.
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7. Example

If X be a k−dimensional Nash submanifold of Rn and n > 2k + 1 then X has a unique
Nash embedding into Rn. We know that for k = 1 and n = 3 this result is optimal. It is
interesting, whether it is also optimal for large k and n.

We give examples of Nash manifolds Xn+1 ⊂ R2n, (where n is any even number different
from 2, 4, 8) which has at least two different Nash embedding into R2n. This means that
our results can not be much improved for large n.

Theorem 7.1. Let Sn−1 ⊂ Rn be a sphere where n is an even number different from
2, 4, 8. The embeddings

ι : Sn−1 × R2 3 (x, (s, t)) → (x, s, t, 0, ..., 0) ∈ Rn × Rn,

and φ : Sn−1 × R2 → Rn × Rn given by

(x, (s, t)) → (x, x1s + x2t, x2s− x1t, x3s + x4t, x4s− x3t, ..., xn−1s + xnt, xns− xn−1t),

are non-equivalent, i.e., does not exist a diffeomorphism

Φ : Rn × Rn → Rn × Rn,

such that Φ ◦ ι = φ.

Proof. Let n be an even number and Sn−1 ⊂ Rn be a sphere. It is well known that for
n 6= 2, 4, 8 the tangent bundle A = TSn−1 is not trivial. However, since the normal bundle
N(Sn−1) is trivial, we have that A is stably trivial. In fact, if Er denote a trivial bundle
of rank r on the sphere, then A⊕E1 = En.

More precisely, let x1, ..., xn be standard coordinates in Rn. Let E′ ⊂ En be a subbundle
of rank 1 generated by the vector a = (x1, ..., xn) and E′′ be a subbundle generated by the
vector b = (x2,−x1, x4,−x3, ...., xn,−xn−1).

It is easy to see that

F : En 3 (v1, ..., vn) →
n∑

i=1

xivi ∈ E1

and
G : En 3 (v1, ..., vn) → x2v1 − x1v2 + ... + xnvn−1 − xn−1vn ∈ E1

are morphisms of vector bundles. Moreover, F (a) = 1 and G(b) = 1. This means that E′
and E′′ are prime factors in En.

Since ker F = A, we have E′ ⊕A = En. Moreover, since F (b) = 0 we have E′′ ⊂ A.
In particular, this means that there exist a subbundle C ⊂ En, such that A = E′′ ⊕ C.
By the construction we have C ⊕ < a,b > = En, where < a,b > denote the subbundle
generated by vectors a and b (please check that it is really a subbundle!).

Now consider the embedding

φ : Sn−1×R2 3 (x, (s, t)) → (x, x1s+x2t, x2s−x1t, ..., xn−1s+xnt, xns−xn−1t) ∈ Rn×Rn.

By direct computations we see that the normal bundle N(φ(Sn−1×R2)) restricted to the
submanifold Sn−1 × {0} is equal to

N(Sn−1)⊕ (En/< a,b >) = E1 ⊕C = A = TSn−1.

This means that this normal bundle is not trivial along Sn−1 × {0}.
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However it is easy to see that the normal bundle N(ι(Sn−1 × R2)) restricted to the
submanifold Sn−1 × {0} is trivial. Since φ and ι coincide along Sn−1 × {0}, this implies
that there is not a diffeomorphism

Φ : Rn × Rn → Rn × Rn,

such that Φ ◦ ι = φ. ¤
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