INSTITUTE OF MATHEMATICS m

of the
Polish Academy of Sciences
y P AN
ul. Sniadeckich 8, P.O.B. 21, 00-956 Warszawa 10, Poland http://www.impan.gov.pl

IM PAN Preprint 673 (2006)

Jacek Jakubowski and Jerzy Zabczyk

Exponential moments
for HJIM models with jumps

Published as manuscript

Received 23 November 2006



Exponential moments for HIM models with
jumps*

Jacek Jakubowski
Institute of Mathematics, University of Warsaw, Warsaw, Poland
and
Jerzy Zabczyk

Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland

Abstract

General HIM models driven by a Lévy process are considered. Necessary mo-
ment conditions for the discounted bond prices to be local martingales are derived.
Itis proved, under the moment conditions, that the discounted bond prices are local
martingales if and only if a generalized HIM condition holds.

0.1 Introduction

Let P(t,0), 0 < t < 6, be the market price at timeof a bond payindl at the
maturity timed. LetT be a finite time horizon, i.e? < T'. Theforward rate curve
is a functionf (¢, 6) such that

P(t, 9) —e fte f(t,S)ds. (1)

Heath, Jarrow and Morton [13] proposed to model the forward curves as Ité pro-
cesses
df(t,0) = a(t,0)dt + (o(t,0), dZ(t)), 0<t<0, @

with Z thed-dimensional standard Wiener process, defined on a filtered probabil-
ity space(Q2, F, (F:), P ). According to the observed bond prices, the (random)
function f(t, ) should be regular if for fixed ¢t and chaotic irt for fixed 6. The
latter property is implied by the presence of the procgss the representation
and the former by the regular dependence@f ) ando (¢, ) on 6 for fixed ¢.

One says that thelJM postulateis satisfied for (1) if the discounted bond
price processe®(t,0) = P(t,0)eJo /(b)ds ¢ < ¢ forg e [0,T] are local
martingales (see e.g. [7] or [15]). Whehis a Wiener process, conditions under
which the HIM postulate is satisfied for (2) are well known.

We consider a generalization of this model replacing the Wiener process by a
general Lévy procesg with values in a separable Hilbert spade Of course Z
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can be finite-dimensional i/ = R?. The importance of treating models with an
infinite number of factors was stressed in recent papers of Carmona and Tehranchi
[4], Ekeland and Taflin [11], Cont [5] and Ozkan and Schmidt [16]. Ozkan and
Schmidt considered a model of defaultable bonds driven by a general Lévy process.

Basic results on HIM models driven by discontinuous noise were obtained in
the pioneering papers by Bjork at al. [2], [3]. For more recent contributions see
Eberlein at al. [8], [9], [10].

Let

b(u) = /| o e Yy(dy), B={ueU: b(u)< oo},

wherev is the jump measure of the Lévy procegsand (-, -) denotes the scalar
product inU.

In Theorem 1 we show, under natural assumptions, that if the HIM postulate
holds, then for each < T,

0
/ o(t,v)dv € B, dt® dP-almost surely ?3)
t

Thus the HIM postulate imposes existence of some exponential moments of the
jump measure, related to the behavior of the volatility. Recall that for an arbitrary
Lévy process,

we B iff BEe %) < oo forsomet >0 4)

(see Sato [19] and for the infinite dimensional extension [17]). Thus our result
can be regarded as a stochastic analog of (4) but it is not a consequence of (4) and
requires a new proof.

Part (ii) of Theorem 1 states that if the necessary condition (3) is satisfied then
the HIM postulate holds if and only if the drift coefficient satisfies a generalized
HJM type condition formulated in terms of the logarithm of the moment generating
function of the proces&. The HJIM condition as given in this paper was first
formulated in Eberlein and Ozkan [9] for models with a finite number of factors,
and later, independently and for an infinite number of factors, in the first version
of the present paper [14]. Our derivation of the HIM condition is obtained under
minimal assumptions on the model. In [2], [3], [8], [9] some a priori requirements
were imposed on the moments of the jump measurén particular in [9] it is
required that there exists a constaiit> 0 such that

./ e Yy (dy) < oo forallc e [-M,M]". ®)
ly|>1

However, as follows from Theorem 1, d4f is a positive process and has only
positive jumps, No a priori requirements prare necessary.

In section 4 the properties of the sBtare discussed. It turns out that many
properties ofB which hold in finite dimensions are not true in infinite dimensions.
In particular, in infinite dimensions the st could be the difference of an open
set and a dense subset. We also investigate the interplay between condition (3) and
the supports of the distributions gff o(t,v) dv.

Section 5 concerns existence of strong exponential moments

/ "y (dy) < oo.
ly|>1
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In section 6 some extensions of our results are obtained for models

df(t,0) = a(t,0)dt + o(t,0) dW ()

[ ottty — @) + [ o 0.m)u(dtdy)
Jlyl<1 ly[>1
with x a Poissonian random measure with intensifyiz) ® d¢. Such models
have already been studied (see e.g. Bjork et al. [2], [3], Eberlein and Raible [8],
Eberlein and Ozkan [9], Eberlein et al. [10]). In Bjork et al. [2] sufficient, but not
necessary, conditions for the HIM postulate to hold are given (Proposition 5.3 and
Assumption 5.1 in [2]).

The present paper is a rewritten version of our preprint [14]. One of the referees
indicated that in a forthcoming paper [16] the HIM conditions are obtained under
an integrability condition.

For basic information on Lévy processes we refer to the books by Bertoin [1],
Sato [19] and Gihman and Skorohod [12].

Acknowledgement The authors thank the anonymous referees for their comments
that allowed an improved presentation of the results.

0.2 Forward rate function driven by a Lévy process

We assume that the basic probability spé@eF, P ) is complete. LetZ be a
Lévy process in a separable Hilbert spatd.e. a cadlag process with stationary
independent increments and valuedin Let F? = o(Z(s);s < t) be theo-
fields generated by (t),t > 0, andF; be the completion of{ by all sets ofP
probability zero. It is known that this filtration is right continuous, so it satisfies
the "usual conditions". We denote jpythe measure associated to the jumpg of
i.eforT € B{U)withT C U \ {0},

p([0,¢,T) = > 1r(AZ(s)).

A measurer such that
E(u([0,2],T)) = tv(T)
is called aLévy measuref the process.
Throughout the paper we denote the inner produét ioy (- , -) and the norm
inU by]|-|.
The characteristic function df (¢) has the form (Lévy-Khintchine formula)

EeiME®) — gtvN)
where
B = i, ) QAN+
+ /U(e“”> —1— i\ @)1 <1y (2))r(da),

anda € U, @ is a symmetric non-negative nuclear operatotom is the measure
onU with v({0}) = 0 and

/U(|:c|2 A1) v(dz) < oco. (6)



MoreoverZ has a decomposition

Z(t) =at+W(t) + /0 / - y(p(ds, dy) — dsv(dy)) @

t
+// yu(ds, dy),
0 J|y[>1

whereW is a Wiener process with valueslihand covariance operat@. Under
additional conditions, the distributions &f(¢), ¢ > 0, have exponential moments
and the Laplace transform exists, and

E e (w70) _ t/w)
where
Jw) = ~{a,u) + 3 (Qu,u) + Jolw), ®)
Jo(u) = / [e%“’w -1+ (u,y)l{‘y‘gl}(y)]y(dy), uel. 9)
U

Let b be the Laplace transform of the measureestricted to the complement of
the ball{y : |y| < 1}:

b(u) = / =)y (dy),
ly|>1

and B the set of those € U for which the Laplace transform is finite:
B={ueU: b(u) < oo}

It follows from Fatou’s lemma thdtis lower semicontinuous anf is a countable
union of closed sets.

As was stated in the Introduction, we consider a generalized Heath, Jarrow and
Morton model (2) taking a Lévy procegsin U instead of Wiener process,

df (t,0) = a(t,0)dt + (o(t,0), dZ(t)), 0<t<0<T, (10)

whereT is a finite horizon. Equivalently, far < 6,

f(t,0)=5(0,0) + /Ot a(s,0)ds + /Ot(a(s,e), dZ(s)). (12)

For eachd the processes(t, 0), o(¢,0), t < 0, are assumed to be predictable with
respect to a given filtratioQF;) and such that integrals in (11) are well defined.
The forward rate curve functiofi(¢, 6) defined by (1) is usually interpreted as the
anticipated short rate at tinteas seen by the market at time

Letr(t), t > 0, be the short rate process. If at tii@ne putsl into the bank
account then at timeone has

Bt _ efot 'r(o')dcr.

Itis convenient to assume that once a bond has matured its cash equivalent goes to
the bank account. ThuB(¢, ), the market price at timeof a bond payind at
the maturity time), is defined also fot > 0 by the formula

P(t,0) = eld (@) (12)



For6 < t we put
a(t,0) =o(t,0) =0, (13)

so the forward rat¢ is defined fort, 6 € [0, T]. By (13) we deduce from (11) that
fort > 6,

0 6
f(t,0)= f(0,0)+/0 a(s,&)der/O (o(s,0), dZ(s)).

Consequently, for eadh > 0 the proces¥ (¢, 0), t > 6, is constant int and could
be identified with the short rate:

0 0
r(0) = £(0,0) +/0 a(s,&)der/O (0(s,0), dZ(s)). (14)

>From now on we assume (10) and (13) and that the short rate is given by (14).
We will assume that for giveff’, the integrals in the definition of exist in the
sense of the Hilbert spadé = L?(0, T") with the scalar produd, -)z. We will
regard the coefficients ando in (10) as, respectivelyi{ and L(U, H) valued,
predictable processes:

a(t)(0) = a(t,0),0 € [0,T], o(t)u(d) = (c(t,0),u), ue U, 6¢€0,T].
Then (10) can be written as

df (t) = a(t)dt + o(t)dZ(t). (15)

0.3 Arbitrage free models

Let us recall that thélJM postulate is the requirement that the discounted bond
price processeB(-,0), 0 € [0,T1], given by

P(t,0) = P(t,0)/By = ¢~ 1 10505~ I§ S(01ds _ = [ (001

are local martingales.

We now intend to prove a theorem giving necessary and sufficient conditions
for the HIM postulate to be satisfied. The following assumptions are used through-
out this paper:

(H1) The processes and o are predictable and with probability one have
bounded trajectories.

(H2) For arbitraryr > 0 the functionb is bounded o{u : |u| < r, b(u) <

Theorem 1 Assume that (H1) holds.
(i) If the HIM postulate holds then, for arbitraty< T, P -almost surely,

/9 o(t,v)dv e B (16)

for almost allt € [0, 6].



(i) Assume (H2) and that for al < T', P -almost surely(16) holds for almost
all t € [0, 6]. Then the HIM postulate holds if and only if the following HIM

condition holds:
0 0
/ at,v)dv = J</ o(t,v) dv) a7)
t t

for almost allt € [0, 6].

Proof Fix § < T'. Set, fort € [0, T,

0 [4
A(t’ 0) = (1[0,0]7Q)H - / O((t, 77) dnv Z(t7 9) = O-* (t)l[o,o] = / U(ta 7)) d777
t t

wheres™ (t) is the adjoint operator to(¢).
Sinced is fixed in the following calculations we omftand write A(¢), 3(t). Let
X(t) = (1[0’9], f(t))H Then

dX (t) = A(t)dt + (S(t), dZ(t))
= A(t)dt + (S(t), adt + dW (¢))

+ /U 1(z1<1y (2)(3(s), 2) (p(dt, dz) — dt v(dz))
+ [ Lo ()06, utds, o).
U
To apply 1t&’s formula (see e.g. [6]) to the processX (t)) for a functiony € C?,

denote byu x the jump measure of the semimartingale We have
AX(t) = (3(t), AZ(t)), therefore

([0,4],T) = > 1r((® / /1p ) u(ds, dz)

s<t

for ' € B(R) with 0 ¢ T', and, more generally, for a non-negative predictable field
v(s,y),s>0,yeR

// (s,y) px(ds,dy) = // ) u(ds, dz).

Moreover, the quadratic variation processfé(E(s), dW (s)) is

/Ot<QE(s), X(s))ds, t>0.
Consequently, the Ité formula gives
P(X (1) = ¥(X(0)) + /0 U'(X(s—)) dX (s)

= "W (X()) (@B (s), S(s)) ds
3 X () — (X (5-)) — ' (X (s—))AX(3)]

s<t

=P(X(0)) + Li(t) + I2(t) + Is(),



where
b+ / W (X (=) [A®) + (S(s), a)] ds
[ ] L (4 (X)), 2 s, 2

and M, (t) is a local martingale as a sum of a Wiener integral and a stochastic
integral with respect to the compensated jump meag(de, dy) — ds v(dy),

=5 | ¢ XE)QE(). 2 ds
and

I =" [$(X(s)) = p(X(5-)) — ¢ (X (s—))AX (s)]

s<t

= / o [ =) ) = 90X () = 9/ (X (5= ))] ux (s, dy)

:/Ot /U[w(X(sf)+<Z(3)vz>)
¥

— P(X () — ¥/ (X(s—))(2(5), 2)] u(ds, dz).

Consequently,
Y(X (1) = $(X(0)) + Mi(t) (18)
/ V(X T (S(s).a)] ds

f/ P (X (s) (s),2(s)) ds
o[ i

X(s=)) = 1<y ()¢ (X (s))(S(5), 2)] pu(ds, dz).

The HIM postulate requires that X (¢)), t > 0, is a local martingale fop(x) =
e,z € R. Thus, there exists an increasing sequdnge of stopping times such
that the integrals

/ / 5=) + (3(s), )

(X (=) = a2y ()Y (X (5-))(2(s), 2)] nu(ds, dz)

//ﬁn(sz (ds, dz)

are random variables with finite expectation. In particular also

//fnsz (ds,dz), //fnsz (ds,dz)



are integrable random variables. Since the random fglds¢,, are predictable,
it follows that

E/(;t/[j|£n(s,z)|u(ds,dz):E/Ot/U €n (s, 2)|ds v(dz) < oo,

Consequently,

B [ [ 30001000 GI(X (52 +(E(0),2) =X () ulda)ids < .

and thus,
t
E/ 1[o,rn](5)€_x(s_>(/ le™ (B2 _ 1v(dz))ds < oo.
0 lz1>1

Hence, for each natural, P -almost surely,

/OT" b(S(s))ds < oo,

and assertion (i) of the theorem follows.

To prove (i), consider formula (18). Note that,(if72) and (16) hold, then, using
condition (6), for the function)(z) = e™*,

/ /w (S(s), 2))

(=) = L2121y ()P (X (5-))(B(s), 2) | v(dz)ds < oo

Therefore

/ / B(X(5-) + (S(5), 2)

X(s=)) = 1120y ()¢ (X (s=))(2(s), 2)] (s, dz)

/ / (s, 2))

X(s=)) = 1<y ()9 (X (s—))(S(5), 2)] (u(ds, dz) — ds v(dz))

//wX +(5(5), )

(X (5-)) = Lypzi<13 (2)8" (X (s))(2(s), 2) | v(dz)ds.
Consequently, formula (18) can be rewritten as
e X = X0 4 py( / W (X [A(s) — J(2(s))] ds,
whereM-(t) is a local martingale. This finishes the proof of the theorel.
Remark 2 Explicit formulation (17), in terms of the functio, indicates that the

drift term is completely determined by the diffusion term. In the particular case
whena = 0, 4 = 0, one arrives at the classical HIM condition (see [13]).



Remark 3 Part (i) of Theorem 1 is in the spirit of Theorem 25.3 in Sato [19]
which implies that for a finite dimensional Lévy process the conditions

Ee™ "7 < oo (19)

and
/ e Yy (dy) < oo (20)
ly|>1

are equivalent. This equivalence can be generalized to the infinite dimensional
case (see [17]).

In Theorem 1 we generalized the implication (£9)(20) taking a stochastic inte-

gral with respect to a Lévy procegsinstead ofZ. For a fixedT', we have proved

that if for a bounded process, the process

t t
Y, = exp ( - / ((s), dZs) —/ J(3(s)) ds) (1)
0 0
is a local martingale, then
X(t)eB dt ® dP almost surely (22)

Remark 4 Our condition, even in the finite dimensional case, is more general
than that given in the previous papers by Eberlein et al. who assume that the mo-
ment generating function of the Lévy process has to be finite in the whole interval
[—M, M| (which is equivalent to condition (5)) and the volatility function takes
values in that interval. Indeed, if Bdimensional Lévy proces& has positive
jumps and the volatility is non-negative, then condition (16) is always satisfied
(condition (5) might not be satisfied).

In the next theorem we describe the dynamics of the forwardfrateder the HIM
condition. It is an immediate but useful consequence of Theorem 1.

Theorem 5 Assume that
/ e Y y(dy) < oo (23)
ly|>1

for all w from some neighborhood of the set in whif;?la(t, v)dv takes values.
Then the HIM conditio17) implies that the dynamics gfhas the form

df(t,0) = <DJ< /‘ea(t,v)dv),a(tﬁ» dt + (o(t,0),dZ(1)),  (24)
whereD J is the gradient of/.

Proof. Using assumption (23) one can check differentiability/oSo, by (17) we
have

alt,0) = <DJ</t U(t,v)dv>,a(t,0)>
and (24) follows. W

Thus, under very mild assumptions, the HIM postulate holds if and only if

6
df(t,0) = <DJ(/ o(t,v) dv),a(t,0)> dt + (o(t,0),dZ(t)).

t



Remark 6 In fact, Theorem 5 holds under the weaker assumption that the direc-
tional derivatives of/ in the directionsff o(t,v) dv exist.

0.4 Existence of exponential moments

In this section we derive several consequences of our basic Theorem 1. In partic-
ular, we show that under a natural condition on the volatiitthe functionbd is

finite on a certain set.

We denote byupp (X) the support of the distribution of the random variafle

Let S(t,0) = supp < ftg o(t, n)dn). As a corollary from Theorem 1 (i) we obtain

Proposition 7 If the HIM postulate is satisfied and for sofhinere exists a closed
setK such thatK’ C S(t, 6) for all ¢ in a subset of0, 8] of positive measure, then
there exists a dense subg€f of K such thatK, C B.

Proof. The random variableéX takes all values from some dense subsekah
supp (X), providedP(X € K) = 1andK is closed. The proposition is a simple
consequence of this remarkill

Hence, as a special case we obtain:

Corollary 8 Leto be a deterministic function. For fixefithe functiony(t) =
j'f o (t,v) dv defines a curve ilv. Let

K={u=~():te]0,0]}.

If the HIM postulate is satisfied, then @6), v(¢) € B for almost all¢, so there
exists a dense subskt, of K such thatK, C B.

Corollary 9 LetU = R?. Under the assumptions of Proposition 7Iif KX # 0,
then
b(u) < oo (25)

forallu € IntK,i.e.IntK C B.

Proof. We first prove that itV = R? and (25) is satisfied on a dense subBebf
the open balB(z,r), z € R%, r > 0, thenit holds for alt € B(z,r). Indeed, for
everyc € B(z,r) there exist, . .., cat1 € D such that belongs to the simplex
with verticescy, . .., cay1, 1.6 ¢ = S5 Nei, i € [0,1], A = 1.
Hence, by convexity of the exponential function,

d+1

/H 67<C’y>u(dy) < Z)‘Z/ ei<ci’y>1/(dy) < 00,
y[>1

i=1 {ly|>1}

sincecy, . .., cit1 € D.

Next, sinceG = IntK is open, for everyr € G there exists: > 0 such that
B(z,r) C G. By assumption and Proposition 7, (25) holds for a dense subset
of B(z,r), so by the previous considerations (25) holds foryak B(z, ), in
particular fory = 2. W
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Corollary 10 If v is a Lévy measure of the-stable symmetric process in R,
then

v(dy) = cly|”' " %dy and Vu#0 / eV y |y = .
J{ly[>1}

Therefore, as a consequence of Theorem 1, the HIM postulate is not satisfied for
the a-stable symmetric procegs$, soZ cannot be used to model the forward rate.

Theorem 11 There exists a model of the for(t0) for which (H1) holds, the HIM
postulate is satisfied and

/ e Y y(dy) < oo (26)
ly|>1
for v in a dense subset @& (0, r) and
/ e V) (dy) = oo (27)
ly[>1

for a sequence,, — 0 asn — oo.

Proof. First, we construct a probability measurefor which (26) and (27) are
satisfied. Let = (&), where(¢y) are independent random variables each taking
two valuesz, > land O andP (§x = zx) = pr > 0, k = 1,2,..., with

> e, pr < oo. By the Borell-Cantelli lemma < 22 with probability 1. Putting

v = L(¢) we see that for = —(a1, as,...) € (%,

s

oo
/ e~ y(dy) = E(eXr=12%%0) = T E(e**) = H(eakl’“pk+1—pk).
ly[>1 k=1

k

1

Obviously, for a dense set af € £2 consisting ofu such thata, = 0 apart from
finitely manyk, the expression on the right hand side is finite.
On the other hand,

/ e Yy (dy) = oo if
ly[>1

3 (e~ 1)py = oo (28)
k=1
For given(ax), ar > 0, k = 1,2,..., there always existzx), zx > 1, k =
1,2,..., such that (28) holds. (28) implies that for amy
D (e = 1)y = oc,
k=m
so foru, = —(0,0,. .., am, Gm+1,...) € £2,

/ e~y (dy) = oo,
ly|>1

i.e. (27) is satisfied.
Now we describe the desired HIM model. L&be a Lévy process with a Lévy

11



measure’ anda = 0, Q = 0. Let f be given by (10) with deterministic constant
processr(t,0) = (1,0,0,...) = o and with the procesa(¢, #) obtained from
(17). Soa is also deterministic. To prove that the HIM postulate is satisfied note
that from the properties of, fort < 6,

6 ¢ (4
E(e 10 ftmdny — o pe 1o JotolsmdZoyduy _ o pe=0(e 20y =

— CE(@—Ht(J,Zl)) -C (/

ly[>1

iy + [ e u(ay) < o,

ly|<1

whereC' = e~ /i J¢ a(swidsdu (g4 0,0, . ..). Using Itd’s lemma in the same
way as in the proof of Theorem 1 and taking into account thatas chosen for
(17) to hold we get the result.ll

0.5 Analytical comments on strong exponential moments

In this section we study the relationship between existence of exponential moments
and finiteness of

/ ey (dy) < oo
ly[>1

for somey > 0.
Note that the exponential moments of the restricted measure exist:

/ ey (dy) < 0o (29)
[y|>1

for u € —B. Therefore the results in this paper can be presented as results con-
cerning exponential moments of the Lévy measur&or example, assuming that

U = R? and that (29) holds for in a dense subset of an open &&wve infer that

(29) is satisfied for all: € G (the proof is analogous to the proof of Corollary 9).
The next proposition indicates that in the finite dimensional case existence of ex-
ponential moments of type (29) on an open ball implies existence of “normal”
exponential moments on some ball.

Proposition 12 If U = R, G = B(0,r) andb(u) < oo onG, then
/ "y (dy) < oo (30)
Jy[>1

for v € R such thaty| < -.

Proof. Fix v € R such thaty| < _=. Since

d d
> il =D yysigny;,
j=1 j=1

for each orthantd;, = {sign y1 = e1,...,sign ya = eq} for h = (e1,..., eaq),
e; € {—1, 1}, takingc, = vh we obtain by assumption

/ e“’ly‘y(dy) < / e<c’“y>1/(dy)
Apn{lyl>1} Apn{lyl>1}

< / er Yy (dy) < oc,
{ly|>1}

12



becausey|y| < (cn,y) and|cs| < r. Hence

/ Yy (dy) < Z/ e‘“r ¥ y(dy) < oo.
lyl>1 T Jyis1

Remark 13 If (30) is satisfied for ally € B(0,r), then (29) holds for al. €
B(0,r).

The next proposition indicates a difference between models with finite dimensional
and infinite dimensional noises.

Proposition 14 There exists a measureon U = ¢ such that(29) holds for a
dense subset @éf but not for allu € ¢, and for anyy > 0,

/ e’ 1Vl (dy) = oo. (31)
ly|>1

Proof. The measure constructed in the proof of Theorem 11 satisfies condition
(26) and foru,, = (0,0,...,am,am+1,...) € £%,

/ ey (dy) = oo. (32)
ly|>1

(32) implies that the sequeneg, := |u.| satisfies (31) becaussp(ym|y|) >
exp({um,y)) > 0. Moreoverv,, tends to 0 asn — oo, which completes the
proof. W

0.6 General case

We now analyze the general case proposed in two papers by Bjork et al. [2], [3].
Let

df (t,0) = a(t,0)dt + o(t,0) AW (t) (33)

* /| \<100(t’9’y)(“(dt’dy) —dtv(dy)) + /H 101(t,9,y)u(dt, dy)

with p a Poissonian random measure with intensiyz) ® d¢t andW a Wiener
process with values iV and covariance operatd). We assume that the mea-
surev satisfies condition (6). Moreover, for eagtihe processea(-,6), o(-, 8),
oo(+,0,-),01(+,0,-) fort < 6 are assumed to be predictable and

T T
E / / / oo (t,0,y)dodtv(dy)
o Jyl<1Jo

T
:E/‘/ lloo(t, - )2 dtv(dy) < oo, (34)
0 ly|<1

T 2
/‘ﬂ/ o1 (t, 0, y)u(dt, dy)| do < oo, (35)
0 ly|>1

13



where, as usual, by - ||z we denote the norm iff = L?[0,T]. We also assume
that with probability one the processeso, oo ando, have bounded trajectories.
These conditions guarantee that the integrals in (33) are well definefi(andlis
an element off. The Schwarz inequality implies that (35) is satisfied provided
is bounded on the sétz| > 1}. As before we assume that fér< ¢,

a(t,0) =0, o(t,0)=0.

OU(t70,y) = <J(t7‘9)7y>1{\y\§1}(y)7
01(t79,y) = <J(t79)7y>1{\y\>1}(y)7

then we obtain the model considered in the previous sections (see [12]).
Set, fort € [0,7],0 < T,

] 0
A(t,9)=(1[o,9],a)H=/t a(t,n)dn, E(t,H)z/t o(t,n)dn,

-6

So(t,v) :/0

0
oo(t,n,y)dn, 9(t,y) :/ o1(t,n,y) dn.
0
Let
Jl(f) - %(Qu7u>7
Ty _ = _ p(d 7
f) /{ e u(dy)

Ja(f) /{ T gty

for f: U — R and
N={f:U—R: e "Wy (dy) < oo}
J{ly|>1}
In this general case arguing in a similar way as for Lévy pro¢ees obtain
Theorem 15 (i) If the HIM postulate holds then, for arbitray < T, P -
almost surely,
Sit) €N (36)
for almost allt € [0, 6].

(i) Assume that for alp < T, P -almost surely(36) holds for almost all
t € [0,0]. Then the HIM postulate holds if and only if the following HIM
condition holds:

/te a(t,v)dv = J (E(t,@)) + J2 (Eﬁ(t,y)) + J3<2617(t7y)) 37)

for almost all¢ € [0, 6].

14
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