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Abstract

General HJM models driven by a Lévy process are considered. Necessary mo-
ment conditions for the discounted bond prices to be local martingales are derived.
It is proved, under the moment conditions, that the discounted bond prices are local
martingales if and only if a generalized HJM condition holds.

0.1 Introduction
Let P (t, θ), 0 ≤ t ≤ θ, be the market price at timet of a bond paying1 at the
maturity timeθ. LetT be a finite time horizon, i.e.θ ≤ T . Theforward rate curve
is a functionf(t, θ) such that

P (t, θ) = e−
∫ θ
t f(t,s)ds. (1)

Heath, Jarrow and Morton [13] proposed to model the forward curves as Itô pro-
cesses

df(t, θ) = α(t, θ)dt + 〈σ(t, θ), dZ(t)〉, 0 ≤ t ≤ θ, (2)

with Z thed-dimensional standard Wiener process, defined on a filtered probabil-
ity space(Ω,F , (Ft),P ). According to the observed bond prices, the (random)
functionf(t, θ) should be regular inθ for fixed t and chaotic int for fixed θ. The
latter property is implied by the presence of the processZ in the representation
and the former by the regular dependence ofα(t, θ) andσ(t, θ) onθ for fixed t.

One says that theHJM postulateis satisfied for (1) if the discounted bond
price processeŝP (t, θ) := P (t, θ)e−

∫ t
0 f(t,s)ds, t ≤ θ, for θ ∈ [0, T ] are local

martingales (see e.g. [7] or [15]). WhenZ is a Wiener process, conditions under
which the HJM postulate is satisfied for (2) are well known.

We consider a generalization of this model replacing the Wiener process by a
general Lévy processZ with values in a separable Hilbert spaceU . Of course,Z

∗Research supported in part by Polish KBN Grant P03A 034 29 “Stochastic evolution equations driven
by Lévy noise”.
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can be finite-dimensional ifU = Rd. The importance of treating models with an
infinite number of factors was stressed in recent papers of Carmona and Tehranchi
[4], Ekeland and Taflin [11], Cont [5] and Özkan and Schmidt [16]. Özkan and
Schmidt considered a model of defaultable bonds driven by a general Lévy process.

Basic results on HJM models driven by discontinuous noise were obtained in
the pioneering papers by Björk at al. [2], [3]. For more recent contributions see
Eberlein at al. [8], [9], [10].

Let

b(u) =

∫
|y|>1

e−〈u, y〉ν(dy), B = {u ∈ U : b(u) <∞},

whereν is the jump measure of the Lévy processZ and〈·, ·〉 denotes the scalar
product inU .

In Theorem 1 we show, under natural assumptions, that if the HJM postulate
holds, then for eachθ ≤ T ,∫ θ

t

σ(t, v) dv ∈ B, dt⊗ dP -almost surely. (3)

Thus the HJM postulate imposes existence of some exponential moments of the
jump measureν, related to the behavior of the volatility. Recall that for an arbitrary
Lévy processZ,

u ∈ B iff Ee−〈u,Zt〉 <∞ for some t > 0 (4)

(see Sato [19] and for the infinite dimensional extension [17]). Thus our result
can be regarded as a stochastic analog of (4) but it is not a consequence of (4) and
requires a new proof.

Part (ii) of Theorem 1 states that if the necessary condition (3) is satisfied then
the HJM postulate holds if and only if the drift coefficient satisfies a generalized
HJM type condition formulated in terms of the logarithm of the moment generating
function of the processZ. The HJM condition as given in this paper was first
formulated in Eberlein and Özkan [9] for models with a finite number of factors,
and later, independently and for an infinite number of factors, in the first version
of the present paper [14]. Our derivation of the HJM condition is obtained under
minimal assumptions on the model. In [2], [3], [8], [9] some a priori requirements
were imposed on the moments of the jump measureν. In particular in [9] it is
required that there exists a constantM > 0 such that∫

|y|>1

e−〈c,y〉ν(dy) <∞ for all c ∈ [−M,M ]d. (5)

However, as follows from Theorem 1, ifσ is a positive process andZ has only
positive jumps, no a priori requirements onν are necessary.

In section 4 the properties of the setB are discussed. It turns out that many
properties ofB which hold in finite dimensions are not true in infinite dimensions.
In particular, in infinite dimensions the setB could be the difference of an open
set and a dense subset. We also investigate the interplay between condition (3) and
the supports of the distributions of

∫ θ
t
σ(t, v) dv.

Section 5 concerns existence of strong exponential moments∫
|y|>1

eγ|y|ν(dy) <∞.
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In section 6 some extensions of our results are obtained for models

df(t, θ) = α(t, θ)dt+ σ(t, θ) dW (t)

+

∫
|y|≤1

σ0(t, θ, y)(µ(dt, dy)− dtν(dy)) +

∫
|y|>1

σ1(t, θ, y)µ(dt, dy)

with µ a Poissonian random measure with intensityν(dx) ⊗ dt. Such models
have already been studied (see e.g. Björk et al. [2], [3], Eberlein and Raible [8],
Eberlein and Özkan [9], Eberlein et al. [10]). In Björk et al. [2] sufficient, but not
necessary, conditions for the HJM postulate to hold are given (Proposition 5.3 and
Assumption 5.1 in [2]).

The present paper is a rewritten version of our preprint [14]. One of the referees
indicated that in a forthcoming paper [16] the HJM conditions are obtained under
an integrability condition.

For basic information on Lévy processes we refer to the books by Bertoin [1],
Sato [19] and Gihman and Skorohod [12].

Acknowledgement. The authors thank the anonymous referees for their comments
that allowed an improved presentation of the results.

0.2 Forward rate function driven by a Lévy process
We assume that the basic probability space(Ω,F ,P ) is complete. LetZ be a
Lévy process in a separable Hilbert spaceU , i.e. a càdlàg process with stationary
independent increments and values inU . Let F0

t = σ(Z(s); s ≤ t) be theσ-
fields generated byZ(t), t ≥ 0, andF t be the completion ofF0

t by all sets ofP
probability zero. It is known that this filtration is right continuous, so it satisfies
the "usual conditions". We denote byµ the measure associated to the jumps ofZ,
i.e for Γ ∈ B(U) with Γ ⊂ U r {0},

µ([0, t],Γ) =
∑

0<s≤t

1Γ(∆Z(s)).

A measureν such that
E(µ([0, t],Γ)) = tν(Γ)

is called aLévy measureof the processZ.
Throughout the paper we denote the inner product inU by 〈· , ·〉 and the norm

in U by | · |.
The characteristic function ofZ(t) has the form (Lévy-Khintchine formula)

Eei〈λ,Z(t)〉 = etψ(λ),

where

ψ(λ) = i〈a, λ〉 − 1

2
〈Qλ, λ〉+

+

∫
U

(ei〈λ,x〉 − 1− i〈λ, x〉1{|x|≤1}(x))ν(dx),

anda ∈ U ,Q is a symmetric non-negative nuclear operator onU , ν is the measure
onU with ν({0}) = 0 and∫

U

(|x|2 ∧ 1) ν(dx) <∞. (6)
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MoreoverZ has a decomposition

Z(t) = at+W (t) +

∫ t

0

∫
|y|≤1

y(µ(ds, dy)− dsν(dy)) (7)

+

∫ t

0

∫
|y|>1

yµ(ds, dy),

whereW is a Wiener process with values inU and covariance operatorQ. Under
additional conditions, the distributions ofZ(t), t ≥ 0, have exponential moments
and the Laplace transform exists, and

E e−〈u,Z(t)〉 = etJ(u),

where

J(u) = −〈a, u〉+
1

2
〈Qu, u〉+ J0(u), (8)

J0(u) =

∫
U

[
e−〈u,y〉 − 1 + 〈u, y〉1{|y|≤1}(y)

]
ν(dy), u ∈ U. (9)

Let b be the Laplace transform of the measureν restricted to the complement of
the ball{y : |y| ≤ 1}:

b(u) =

∫
|y|>1

e−〈u, y〉ν(dy),

andB the set of thoseu ∈ U for which the Laplace transform is finite:

B = {u ∈ U : b(u) <∞}.

It follows from Fatou’s lemma thatb is lower semicontinuous andB is a countable
union of closed sets.

As was stated in the Introduction, we consider a generalized Heath, Jarrow and
Morton model (2) taking a Lévy processZ in U instead of Wiener process,

df(t, θ) = α(t, θ)dt+ 〈σ(t, θ), dZ(t)〉, 0 ≤ t ≤ θ ≤ T, (10)

whereT is a finite horizon. Equivalently, fort ≤ θ,

f(t, θ) = f(0, θ) +

∫ t

0

α(s, θ)ds+

∫ t

0

〈σ(s, θ), dZ(s)〉. (11)

For eachθ the processesα(t, θ), σ(t, θ), t ≤ θ, are assumed to be predictable with
respect to a given filtration(Ft) and such that integrals in (11) are well defined.
The forward rate curve functionf(t, θ) defined by (1) is usually interpreted as the
anticipated short rate at timeθ as seen by the market at timet.

Let r(t), t ≥ 0, be the short rate process. If at time0 one puts1 into the bank
account then at timet one has

Bt = e
∫ t
0 r(σ)dσ.

It is convenient to assume that once a bond has matured its cash equivalent goes to
the bank account. ThusP (t, θ), the market price at timet of a bond paying1 at
the maturity timeθ, is defined also fort ≥ θ by the formula

P (t, θ) = e
∫ t
θ r(σ)dσ. (12)
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Forθ < t we put
α(t, θ) = σ(t, θ) = 0, (13)

so the forward ratef is defined fort, θ ∈ [0, T ]. By (13) we deduce from (11) that
for t > θ,

f(t, θ) = f(0, θ) +

∫ θ

0

α(s, θ)ds+

∫ θ

0

〈σ(s, θ), dZ(s)〉.

Consequently, for eachθ > 0 the processf(t, θ), t > θ, is constant int and could
be identified with the short rate:

r(θ) = f(0, θ) +

∫ θ

0

α(s, θ)ds+

∫ θ

0

〈σ(s, θ), dZ(s)〉. (14)

>From now on we assume (10) and (13) and that the short rate is given by (14).
We will assume that for givenT , the integrals in the definition off exist in the
sense of the Hilbert spaceH = L2(0, T ) with the scalar product(·, ·)H . We will
regard the coefficientsα andσ in (10) as, respectively,H andL(U,H) valued,
predictable processes:

α(t)(θ) = α(t, θ), θ ∈ [0, T ], σ(t)u(θ) = 〈σ(t, θ), u〉, u ∈ U, θ ∈ [0, T ].

Then (10) can be written as

df(t) = α(t)dt+ σ(t)dZ(t). (15)

0.3 Arbitrage free models
Let us recall that theHJM postulate is the requirement that the discounted bond
price processeŝP (·, θ), θ ∈ [0, T ], given by

P̂ (t, θ) = P (t, θ)/Bt = e−
∫ θ
t f(t,s)dse−

∫ t
0 f(t,s)ds = e−

∫ θ
0 f(t,s)ds

are local martingales.
We now intend to prove a theorem giving necessary and sufficient conditions

for the HJM postulate to be satisfied. The following assumptions are used through-
out this paper:

(H1) The processesα and σ are predictable and with probability one have
bounded trajectories.

(H2) For arbitraryr > 0 the functionb is bounded on{u : |u| ≤ r, b(u) <
∞}.

Theorem 1 Assume that (H1) holds.

(i) If the HJM postulate holds then, for arbitraryθ ≤ T , P -almost surely,∫ θ

t

σ(t, v) dv ∈ B (16)

for almost allt ∈ [0, θ].
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(ii) Assume (H2) and that for allθ ≤ T, P -almost surely(16)holds for almost
all t ∈ [0, θ]. Then the HJM postulate holds if and only if the following HJM
condition holds: ∫ θ

t

α(t, v) dv = J

(∫ θ

t

σ(t, v) dv

)
(17)

for almost allt ∈ [0, θ].

Proof Fix θ ≤ T . Set, fort ∈ [0, T ],

A(t, θ) = (1[0,θ], α)H =

∫ θ

t

α(t, η) dη, Σ(t, θ) = σ∗(t)1[0,θ] =

∫ θ

t

σ(t, η) dη,

whereσ∗(t) is the adjoint operator toσ(t).
Sinceθ is fixed in the following calculations we omitθ and writeA(t), Σ(t). Let
X(t) = (1[0,θ], f(t))H . Then

dX(t) = A(t)dt+ 〈Σ(t), dZ(t)〉
= A(t)dt+ 〈Σ(t), a dt+ dW (t)〉

+

∫
U

1{|z|≤1}(z)〈Σ(s), z〉
(
µ(dt, dz)− dt ν(dz)

)
+

∫
U

1{|z|>1}(z)〈Σ(s), z〉µ(ds, dz).

To apply Itô’s formula (see e.g. [6]) to the processψ(X(t)) for a functionψ ∈ C2,
denote byµX the jump measure of the semimartingaleX. We have
∆X(t) = 〈Σ(t),∆Z(t)〉, therefore

µX([0, t],Γ) =
∑
s≤t

1Γ(〈Σ(s),∆Z(s)〉) =

∫ t

0

∫
U

1Γ(〈Σ(s), z〉)µ(ds, dz)

for Γ ∈ B(R) with 0 /∈ Γ, and, more generally, for a non-negative predictable field
ϕ(s, y), s ≥ 0, y ∈ R∫ t

0

∫
R
ϕ(s, y)µX(ds, dy) =

∫ t

0

∫
U

ϕ(s, 〈Σ(s), z〉)µ(ds, dz).

Moreover, the quadratic variation process of
∫ t
0
〈Σ(s), dW (s)〉 is∫ t

0

〈QΣ(s),Σ(s)〉 ds, t ≥ 0.

Consequently, the Itô formula gives

ψ(X(t)) = ψ(X(0)) +

∫ t

0

ψ′(X(s−)) dX(s)

+
1

2

∫ t

0

ψ′′(X(s))〈QΣ(s),Σ(s)〉 ds

+
∑
s≤t

[
ψ(X(s))− ψ(X(s−))− ψ′(X(s−))∆X(s)

]
= ψ(X(0)) + I1(t) + I2(t) + I3(t),
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where

I1(t) = M1(t) +

∫ t

0

ψ′(X(s−))
[
A(t) + 〈Σ(s), a〉

]
ds

+

∫ t

0

∫
U

1{|z|>1}(z)ψ
′(X(s−))〈Σ(s), z〉µ(ds, dz)

andM1(t) is a local martingale as a sum of a Wiener integral and a stochastic
integral with respect to the compensated jump measureµ(ds, dy)− ds ν(dy),

I2(t) =
1

2

∫ t

0

ψ′′(X(s))〈QΣ(s),Σ(s)〉 ds

and

I3 =
∑
s≤t

[
ψ(X(s))− ψ(X(s−))− ψ′(X(s−))∆X(s)

]
=

∫ t

0

∫
R1

[
ψ(X(s−) + y)− ψ(X(s−))− ψ′(X(s−))y

]
µX(ds, dy)

=

∫ t

0

∫
U

[
ψ

(
X(s−) + 〈Σ(s), z〉

)
− ψ(X(s−))− ψ′(X(s−))〈Σ(s), z〉

]
µ(ds, dz).

Consequently,

ψ(X(t)) = ψ(X(0)) +M1(t) (18)

+

∫ t

0

ψ′(X(s−))
[
A(t) + 〈Σ(s), a〉

]
ds

+
1

2

∫ t

0

ψ′′(X(s))〈QΣ(s),Σ(s)〉 ds

+

∫ t

0

∫
U

[
ψ

(
X(s−) + 〈Σ(s), z〉

)
− ψ(X(s−))− 1{|z|≤1}(z)ψ

′(X(s−))〈Σ(s), z〉
]
µ(ds, dz).

The HJM postulate requires thatψ(X(t)), t ≥ 0, is a local martingale forψ(x) =
e−x, x ∈ R. Thus, there exists an increasing sequence(τn) of stopping times such
that the integrals∫ t

0

∫
U

1[0,τn](s)
[
ψ

(
X(s−) + 〈Σ(s), z〉

)
− ψ(X(s−))− 1{|z|≤1}(z)ψ

′(X(s−))〈Σ(s), z〉
]
µ(ds, dz)

=

∫ t

0

∫
U

ξn(s, z)µ(ds, dz)

are random variables with finite expectation. In particular also∫ t

0

∫
U

ξ+n (s, z)µ(ds, dz),

∫ t

0

∫
U

ξ−n (s, z)µ(ds, dz)
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are integrable random variables. Since the random fieldsξ+n , ξ
−
n are predictable,

it follows that

E

∫ t

0

∫
U

|ξn(s, z)|µ(ds, dz) = E

∫ t

0

∫
U

|ξn(s, z)|ds ν(dz) <∞.

Consequently,

E

∫ t

0

∫
U

1[0,τn](s)1{|z|>1}(z)|ψ
(
X(s−)+〈Σ(s), z〉

)
−ψ(X(s−))|ν(dz)ds <∞,

and thus,

E

∫ t

0

1[0,τn](s)e
−X(s−)(∫

|z|>1

|e−〈Σ(s),z〉 − 1|ν(dz)
)
ds <∞.

Hence, for each naturaln, P -almost surely,∫ τn

0

b(Σ(s))ds <∞,

and assertion (i) of the theorem follows.

To prove (ii), consider formula (18). Note that, if(H2) and (16) hold, then, using
condition (6), for the functionψ(x) = e−x,∫ t

0

∫
U

|ψ
(
X(s−) + 〈Σ(s), z〉

)
− ψ(X(s−))− 1{|z|≤1}(z)ψ

′(X(s−))〈Σ(s), z〉| ν(dz)ds <∞.

Therefore∫ t

0

∫
U

[
ψ

(
X(s−) + 〈Σ(s), z〉

)
− ψ(X(s−))− 1{|z|≤1}(z)ψ

′(X(s−))〈Σ(s), z〉
]
µ(ds, dz)

=

∫ t

0

∫
U

[
ψ

(
X(s−) + 〈Σ(s), z〉

)
− ψ(X(s−))− 1{|z|≤1}(z)ψ

′(X(s−))〈Σ(s), z〉
]
(µ(ds, dz)− ds ν(dz))

+

∫ t

0

∫
U

[
ψ

(
X(s−) + 〈Σ(s), z〉

)
− ψ(X(s−))− 1{|z|≤1}(z)ψ

′(X(s−))〈Σ(s), z〉
]
ν(dz)ds.

Consequently, formula (18) can be rewritten as

e−X(t) = e−X(0) +M2(t) +

∫ t

0

ψ′(X(s−))
[
A(s)− J(Σ(s))

]
ds,

whereM2(t) is a local martingale. This finishes the proof of the theorem.

Remark 2 Explicit formulation (17), in terms of the functionJ , indicates that the
drift term is completely determined by the diffusion term. In the particular case
whena = 0, µ = 0, one arrives at the classical HJM condition (see [13]).
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Remark 3 Part (i) of Theorem 1 is in the spirit of Theorem 25.3 in Sato [19]
which implies that for a finite dimensional Lévy process the conditions

Ee−〈u,Zt〉 <∞ (19)

and ∫
|y|>1

e−〈u,y〉ν(dy) <∞ (20)

are equivalent. This equivalence can be generalized to the infinite dimensional
case (see [17]).
In Theorem 1 we generalized the implication (19)⇒ (20) taking a stochastic inte-
gral with respect to a Lévy processZ instead ofZ. For a fixedT , we have proved
that if for a bounded processΣ, the process

Yt = exp
(
−

∫ t

0

〈Σ(s), dZs〉 −
∫ t

0

J(Σ(s)) ds
)

(21)

is a local martingale, then

Σ(t) ∈ B dt⊗ dP almost surely. (22)

Remark 4 Our condition, even in the finite dimensional case, is more general
than that given in the previous papers by Eberlein et al. who assume that the mo-
ment generating function of the Lévy process has to be finite in the whole interval
[−M,M ] (which is equivalent to condition (5)) and the volatility function takes
values in that interval. Indeed, if a1-dimensional Lévy processZ has positive
jumps and the volatility is non-negative, then condition (16) is always satisfied
(condition (5) might not be satisfied).

In the next theorem we describe the dynamics of the forward ratef under the HJM
condition. It is an immediate but useful consequence of Theorem 1.

Theorem 5 Assume that ∫
|y|≥1

e−〈u,y〉ν(dy) <∞ (23)

for all u from some neighborhood of the set in which
∫ θ
t
σ(t, v)dv takes values.

Then the HJM condition(17) implies that the dynamics off has the form

df(t, θ) =
〈
DJ

( ∫ θ

t

σ(t, v)dv
)
, σ(t, θ)

〉
dt+ 〈σ(t, θ), dZ(t)〉, (24)

whereDJ is the gradient ofJ .

Proof. Using assumption (23) one can check differentiability ofJ. So, by (17) we
have

α(t, θ) =
〈
DJ

( ∫ θ

t

σ(t, v)dv
)
, σ(t, θ)

〉
and (24) follows.

Thus, under very mild assumptions, the HJM postulate holds if and only if

df(t, θ) =
〈
DJ

( ∫ θ

t

σ(t, v) dv
)
, σ(t, θ)

〉
dt+ 〈σ(t, θ), dZ(t)〉.
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Remark 6 In fact, Theorem 5 holds under the weaker assumption that the direc-
tional derivatives ofJ in the directions

∫ θ
t
σ(t, v) dv exist.

0.4 Existence of exponential moments
In this section we derive several consequences of our basic Theorem 1. In partic-
ular, we show that under a natural condition on the volatilityσ the functionb is
finite on a certain set.
We denote bysupp (X) the support of the distribution of the random variableX.

LetS(t, θ) = supp
( ∫ θ

t
σ(t, η)dη

)
. As a corollary from Theorem 1 (i) we obtain

Proposition 7 If the HJM postulate is satisfied and for someθ there exists a closed
setK such thatK ⊂ S(t, θ) for all t in a subset of[0, θ] of positive measure, then
there exists a dense subsetK0 ofK such thatK0 ⊂ B.

Proof. The random variableX takes all values from some dense subset ofK ∩
supp (X), providedP (X ∈ K) = 1 andK is closed. The proposition is a simple
consequence of this remark.

Hence, as a special case we obtain:

Corollary 8 Let σ be a deterministic function. For fixedθ the functionγ(t) =∫ θ
t
σ(t, v) dv defines a curve inU . Let

K = {u = γ(t) : t ∈ [0, θ]}.

If the HJM postulate is satisfied, then by(16), γ(t) ∈ B for almost allt, so there
exists a dense subsetK0 ofK such thatK0 ⊂ B.

Corollary 9 LetU = Rd. Under the assumptions of Proposition 7, ifIntK 6= ∅,
then

b(u) <∞ (25)

for all u ∈ IntK, i.e. IntK ⊂ B.

Proof. We first prove that ifU = Rd and (25) is satisfied on a dense subsetD of
the open ballB(x, r), x ∈ Rd, r > 0, then it holds for allc ∈ B(x, r). Indeed, for
everyc ∈ B(x, r) there existc1, . . . , cd+1 ∈ D such thatc belongs to the simplex
with verticesc1, . . . , cd+1, i.e. c =

∑d+1
i=1 λici, λi ∈ [0, 1],

∑d+1
i=1 λi = 1.

Hence, by convexity of the exponential function,∫
|y|>1

e−〈c,y〉ν(dy) ≤
d+1∑
i=1

λi

∫
{|y|>1}

e−〈ci,y〉ν(dy) <∞,

sincec1, . . . , cd+1 ∈ D.
Next, sinceG = IntK is open, for everyx ∈ G there existsr > 0 such that
B(x, r) ⊂ G. By assumption and Proposition 7, (25) holds for a dense subset
of B(x, r), so by the previous considerations (25) holds for ally ∈ B(x, r), in
particular fory = x.
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Corollary 10 If ν is a Lévy measure of theα-stable symmetric processZ in R,
then

ν(dy) = c|y|−1−αdy and ∀u 6= 0

∫
{|y|>1}

e〈u,y〉|y|−1−αdy = ∞.

Therefore, as a consequence of Theorem 1, the HJM postulate is not satisfied for
theα-stable symmetric processZ, soZ cannot be used to model the forward rate.

Theorem 11 There exists a model of the form(10) for which (H1) holds, the HJM
postulate is satisfied and ∫

|y|>1

e−〈u,y〉ν(dy) <∞ (26)

for u in a dense subset ofB(0, r) and∫
|y|>1

e−〈un,y〉ν(dy) = ∞ (27)

for a sequenceun → 0 asn→∞.

Proof. First, we construct a probability measureν for which (26) and (27) are
satisfied. Letξ = (ξk), where(ξk) are independent random variables each taking
two valuesxk > 1 and 0 andP (ξk = xk) = pk > 0, k = 1, 2, . . ., with∑∞
k=1 pk < ∞. By the Borell-Cantelli lemmaξ ∈ `2 with probability 1. Putting

ν = L(ξ) we see that foru = −(a1, a2, . . .) ∈ `2,∫
|y|>1

e−〈u,y〉ν(dy) = E(e
∑∞

k=1 akξk ) =

∞∏
k=1

E(eakξk ) =

∞∏
k=1

(eakxkpk+1−pk).

Obviously, for a dense set ofu ∈ `2 consisting ofu such thatak = 0 apart from
finitely manyk, the expression on the right hand side is finite.
On the other hand, ∫

|y|>1

e−〈u,y〉ν(dy) = ∞ if

∞∑
k=1

(eakxk − 1)pk = ∞. (28)

For given(ak), ak > 0, k = 1, 2, . . ., there always exist(xk), xk > 1, k =
1, 2, . . ., such that (28) holds. (28) implies that for anym,

∞∑
k=m

(eakxk − 1)pk = ∞,

so forum = −(0, 0, . . . , am, am+1, . . .) ∈ `2,∫
|y|>1

e−〈um,y〉ν(dy) = ∞,

i.e. (27) is satisfied.
Now we describe the desired HJM model. LetZ be a Lévy process with a Lévy

11



measureν anda = 0, Q = 0. Let f be given by (10) with deterministic constant
processσ(t, θ) ≡ (1, 0, 0, . . .) = σ and with the processα(t, θ) obtained from
(17). Soα is also deterministic. To prove that the HJM postulate is satisfied note
that from the properties ofν, for t ≤ θ,

E(e−
∫ θ
0 f(t,u)du) = C E(e−

∫ θ
0

∫ t
0 〈σ(s,u),dZs〉du) = C E(e−θ〈σ,Zt〉) =

= C E(e−θt〈σ,Z1〉) = C (

∫
|y|>1

e〈b,y〉ν(dy) +

∫
|y|≤1

e〈b,y〉ν(dy)) <∞,

whereC = e−
∫ θ
0

∫ t
0 α(s,u)dsdu, b = (θt, 0, 0, . . .). Using Itô’s lemma in the same

way as in the proof of Theorem 1 and taking into account thatα was chosen for
(17) to hold we get the result.

0.5 Analytical comments on strong exponential moments
In this section we study the relationship between existence of exponential moments
and finiteness of ∫

|y|>1

eγ|y|ν(dy) <∞

for someγ > 0.
Note that the exponential moments of the restricted measure exist:∫

|y|>1

e〈u, y〉ν(dy) <∞ (29)

for u ∈ −B. Therefore the results in this paper can be presented as results con-
cerning exponential moments of the Lévy measureν. For example, assuming that
U = Rd and that (29) holds foru in a dense subset of an open setG we infer that
(29) is satisfied for allu ∈ G (the proof is analogous to the proof of Corollary 9).
The next proposition indicates that in the finite dimensional case existence of ex-
ponential moments of type (29) on an open ball implies existence of “normal”
exponential moments on some ball.

Proposition 12 If U = Rd,G = B(0, r) andb(u) <∞ onG, then∫
|y|>1

eγ|y|ν(dy) <∞ (30)

for γ ∈ R such that|γ| < r√
d

.

Proof. Fix γ ∈ R such that|γ| < r√
d

. Since

d∑
j=1

|yj | =
d∑
j=1

yjsign yj ,

for each orthantAh = {sign y1 = e1, . . . , sign yd = ed} for h = (e1, . . . , ed),
ei ∈ {−1, 1}, takingch = γh we obtain by assumption∫

Ah∩{|y|>1}
eγ|y|ν(dy) ≤

∫
Ah∩{|y|>1}

e〈ch,y〉ν(dy)

≤
∫
{|y|>1}

e〈ch,y〉ν(dy) <∞,

12



becauseγ|y| ≤ 〈ch, y〉 and|ch| < r. Hence∫
|y|>1

eγ|y|ν(dy) ≤
∑
h

∫
{|y|>1}

e〈ch,y〉ν(dy) <∞.

Remark 13 If (30) is satisfied for allγ ∈ B(0, r), then (29) holds for allu ∈
B(0, r).

The next proposition indicates a difference between models with finite dimensional
and infinite dimensional noises.

Proposition 14 There exists a measureν on U = `2 such that(29) holds for a
dense subset of`2 but not for allu ∈ `2, and for anyγ > 0,∫

|y|>1

eγ |y|ν(dy) = ∞. (31)

Proof. The measureν constructed in the proof of Theorem 11 satisfies condition
(26) and forum = (0, 0, . . . , am, am+1, . . .) ∈ `2,∫

|y|>1

e〈um,y〉ν(dy) = ∞. (32)

(32) implies that the sequenceγm := |um| satisfies (31) becauseexp(γm|y|) ≥
exp(〈um, y〉) > 0. Moreoverγm tends to 0 asm −→ ∞, which completes the
proof.

0.6 General case
We now analyze the general case proposed in two papers by Björk et al. [2], [3].
Let

df(t, θ) = α(t, θ)dt+ σ(t, θ) dW (t) (33)

+

∫
|y|≤1

σ0(t, θ, y)(µ(dt, dy)− dt ν(dy)) +

∫
|y|>1

σ1(t, θ, y)µ(dt, dy)

with µ a Poissonian random measure with intensityν(dx) ⊗ dt andW a Wiener
process with values inU and covariance operatorQ. We assume that the mea-
sureν satisfies condition (6). Moreover, for eachθ the processesα(·, θ), σ(·, θ),
σ0(·, θ, ·), σ1(·, θ, ·) for t ≤ θ are assumed to be predictable and

E

∫ T

0

∫
|y|≤1

∫ T

0

σ2
0(t, θ, y)dθdtν(dy)

= E

∫ T

0

∫
|y|≤1

||σ0(t, ·, y)||2Hdtν(dy) <∞, (34)∫ T

0

E
∣∣∣ ∫

|y|>1

σ1(t, θ, y)µ(dt, dy)
∣∣∣2dθ <∞, (35)
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where, as usual, by‖ · ‖H we denote the norm inH = L2[0, T ]. We also assume
that with probability one the processesα, σ, σ0 andσ1 have bounded trajectories.
These conditions guarantee that the integrals in (33) are well defined andf(t, ·) is
an element ofH. The Schwarz inequality implies that (35) is satisfied providedσ1

is bounded on the set{|x| > 1}. As before we assume that forθ < t,

α(t, θ) = 0, σ(t, θ) = 0.

If

σ0(t, θ, y) = 〈σ(t, θ), y〉1{|y|≤1}(y),

σ1(t, θ, y) = 〈σ(t, θ), y〉1{|y|>1}(y),

then we obtain the model considered in the previous sections (see [12]).
Set, fort ∈ [0, T ], θ ≤ T ,

A(t, θ) = (1[0,θ], α)H =

∫ θ

t

α(t, η) dη, Σ(t, θ) =

∫ θ

t

σ(t, η) dη,

Σθ0(t, y) =

∫ θ

0

σ0(t, η, y) dη, Σθ1(t, y) =

∫ θ

0

σ1(t, η, y) dη.

Let

J1(f) =
1

2
〈Qu, u〉,

J2(f) =

∫
{|y|>1}

(e−f(y) − 1)ν(dy),

J3(f) =

∫
{|y|≤1}

(e−f(y) − 1− f(y))ν(dy)

for f : U −→ R and

N = {f : U −→ R :

∫
{|y|>1}

e−f(y)ν(dy) <∞}.

In this general case arguing in a similar way as for Lévy processZ we obtain

Theorem 15 (i) If the HJM postulate holds then, for arbitraryθ ≤ T , P -
almost surely,

Σθ1(t, ·) ∈ N (36)

for almost allt ∈ [0, θ].

(ii) Assume that for allθ ≤ T, P -almost surely(36) holds for almost all
t ∈ [0, θ]. Then the HJM postulate holds if and only if the following HJM
condition holds:∫ θ

t

α(t, v) dv = J1

(
Σ(t, θ)

)
+ J2

(
Σθ0(t, y)

)
+ J3

(
Σθ1(t, y)

)
(37)

for almost allt ∈ [0, θ].
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