
INSTITUTE OF MATHEMATICS
of the

Polish Academy of Sciences
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Characteristic vector fields of generic

distributions of corank 2

B. Jakubczyk∗ W. Kryński∗ F. Pelletier†

Abstract

We study generic distributions D ⊂ TM of corank 2 on manifolds M of dimension
n ≥ 5. We show that singular curves of such a distribution determine the distribution
on the subset of M where they generate at least two different directions. In particular,
this happens on the whole of M if rank of D is odd. The distribution is determined by
characteristic vector fields and their Lie brackets of appropriate order. We characterize
pairs of vector fields which can appear as characteristic vector fields of a corank 2
distribution.

1. Introduction

Let M = Mn denote a smooth, paracompact differential manifold of dimension n ≥ 5.
Consider a smooth distribution D of rank m = n − 2 understood as a subbundle of TM
of rank m spanned, locally, by m smooth linearly independent vector fields. Equivalently,
we can write locally

D = kerω1 ∩ kerω2,

where ω1, ω2 are C∞ differential 1-forms on M , called later cogenerators of D.
Let I = [0, 1] ⊂ IR. Recall that horizontal curves of D on I are curves γ : I → M almost

everywhere tangent to D. Let Ω(x0) denote the set of absolutely continuous horizontal
curves on I, with locally square integrable derivative, satisfying γ(0) = x0. This set can
be endowed with a structure of a Hilbert manifold. The endpoint map End : Ω(x0) → M
defined by

End (γ) = γ(1)

is differentiable (cf. [B], Ch. 1). Its singular points, i.e. curves γ ∈ Ω(x0) such that the
tangent map D End (γ) is not onto Tγ(1)M , are called singular curves of D, cf. [BH], [A],
[M2]. Such curves can be rigid as described in [BH], [AS]. Recent results of Chitour, Jean,
and Trélat [CJT] show that for generic distributions such curves are of minimal order and
of corank 1, but they can not be rigid if the rank of D is larger then 2.

In sub-Riemannian geometry such curves, called there abnormal, attracted special
attention after the discovery that they can be locally minimizing ([M1], [LS]). They are
minimizing for generic distributions D of rank 2 ([LS]), but they can not be minimizing
for generic D of rank larger then 2 ([CJT]).
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In this paper we are interested in singular curves of corank 2 distributions and in
establishing when such curves determine the distribution, cf. [M2], [K]. We say that
singular curves determine a distribution D on an open subset U ⊂ M if for any other D̃
with the same singular curves on U we have D|U = D̃|U .

Given D, we denote by SingD(x) the set of smooth singular curves of D starting from
x and SingD := ∪x∈MSingD(x). The cone of singular vectors is

S(x) := { v ∈ TxM : v = γ̇(0), γ ∈ SingD(x) }.
Clearly, S(x) ⊂ D(x). The elements of the projectivization of S(x) will be called singular
directions. Denote by Dm(Mn) the set of smooth distributions of rank m on Mn. Recall
that a subset is called residual if it is a countable intersection of open and dense subsets.
Our first main result says the following.

Theorem 1. If M = Mn, n ≥ 5, and M admits a distribution of corank 2 then there
exists a subset G ⊂ Dm(Mm+2), which is residual (and therefore dense) in the Whitney
C∞-topology, such that for any D ∈ G the singular curves determine D in the region R of
points x ∈ M where the cone S(x) has at least two different singular directions (if m is
odd then R = M).

Remark 1. The assumption that M admits a corank 2 distribution can be removed if
Dm(Mm+2) is replaced by the class Dm

sing(M
m+2) of singular distributions understood as

sub-sheaves of Γ(TM) generated locally by m smooth vector fields, linearly independent
almost everywhere. The result also holds if, instead of so understood singular distributions,
we consider singular co-distributions D∗ ⊂ T ∗M , locally generated by two 1-forms, linearly
independent a.e..

Early results in this direction concerned distributions of corank 1. Namely, the results
in [Z] implied that in many cases singular curves determine a corank 1 distribution D
locally, up to a diffeomorphism. In [JZ] it was shown that for corank 1 distributions vio-
lating the Darboux condition on a nowhere dense subset of M the singular curves ”almost
always” determine the distribution (up to a diffeom.), if M is compact and distributions
are close to each other. For distributions of corank ≥ 3 a stronger property was proved
by R. Montgomery [M2] in the case of rankD odd: the singular curves determine the
distribution, if it is generic. In [M2] the same property was conjectured in the case of
rankD even. This was proved in [K] in the case where rankD is not divisible by 4.

The case of rankD divisible by 4, corankD ≥ 3, is not settled yet. This case is degen-
erated as the class D4s(Mn) may contain fat distributions [R] where the set of singular
curves is empty. Note that the class of corank 1 distributions contains contact distributions
(rankD even), where the set of singular curves is also empty. In this class, as well as for
quasi-contact distributions (rankD odd), the Darboux theorem says that such distribu-
tions are all locally equivalent. This phenomenon can not hold in the case of distributions of
corank D larger then 1. Namely, if 2 ≤ rankD ≤ dimM − 2 and (rankD,dimM) 6= (2, 4)
then there must be infinite dimensional (functional) invariants, see [JP], page 21, or [VG].
For general results concerning singularities of corank 2 distributions see [P].

In the paper we introduce the notions of characteristic and horizontal vector fields X
of D. We prove (Theorems 2 and 3) that the singular curves of D are integral curves
of horizontal vector fields X and the characteristic vector fields, together with their Lie
brackets, span the distribution in the generic case. This implies that characteristic (and
horizontal) vector fields contain all geometric information on D. Throughout the paper
we assume that M admits a distribution of corank 2.

We express our thanks to Marek Rupniewski for helpful remarks concerning an earlier
version of the manuscript.
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2. Characteristic vector fields: rank D = 2k+1.

We begin our analysis with distributions D ⊂ TM of odd rank m = 2k + 1. Let
D⊥ ⊂ T ∗M denote the annihilator of D,

D⊥(x) = {p ∈ T ∗xM : pD(x) = 0}.

Consider local cogenerators ω1, ω2 of D which are linearly independent 1-forms, sections
of D⊥. Let ω be arbitrary smooth local section of D⊥. We define a characteristic vector
field X = Xω of D, corresponding to ω, by the equality

Xω cΩ = ω1 ∧ ω2 ∧ (dω)k, (CV F )

where Ω is a local volume form on M = M2k+3 and on the right-hand side we have
(n-1)-differential form. Here we use the usual notation Xcη = η(X, . . .) for the interior
product of a vector field X with a differential form η. Basic properties of Xω are listed in
Proposition 1, in particular we have Xω(x) ∈ D(x).

A section ω of D⊥ is called horizontal if Xω c dω = 0. A characteristic vector field Xω

is called horizontal if it is defined by a horizontal section ω of D⊥. We denote by Cchar(x)
(respectively, Chor(x)) the set of characteristic vectors (respectively, horizontal vectors),
which consists of vectors Xω(x), where Xω are characteristic (respectively, horizontal)
vector fields of D.

We also define local vector fields Y0, . . . , Yk via

Yj cΩ = ω1 ∧ ω2 ∧ (dω1)j ∧ (dω2)k−j . (V F )

We will later show that Yj(x) ∈ D(x) (Proposition 1).

Theorem 2. There exists a subset G ⊂ D2k+1(M2k+3), which is residual (and therefore
dense) in the Whitney C∞-topology, such that for any D ∈ G the following conditions hold.

(i) At generic points in M the singular curves of D are exactly integral curves of hori-
zontal characteristic vector fields Xω, up to parametrization. At such points

S(x) = Cchar(x) = Chor(x),

where S(x) is the cone of singular vectors at x.

(ii) At a generic point x ∈ M the cone Cchar(x) ⊂ D(x) of characteristic vectors linearly
spans a subdistribution Dchar(x) ⊂ D(x) of rank k + 1.

(iii) The characteristic vector fields of D, together with their first Lie brackets, span D
at a generic point. The same holds for horizontal vector fields.

(iv) For any local cogenerators ω1, ω2 of D the following conditions hold at a generic
point in M :

Y0(x), Y1(x), . . . , Yk(x) are linearly independent, (G′)

span r,s,t=0,...,k{Yr(x), [Ys, Yt](x) } = D(x). (G′′)

Above and further on we say that a property holds at a generic point in M if it holds
on an open, dense subset in M . [X, Y ] denotes the Lie bracket of vector fields X, Y .

Remark 2. (a) Statements (i) and (iii) imply Theorem 1, if m = 2k + 1.
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(b) The set of generic points in (ii) is the set where (G’) holds, while the sets of generic
points in (i) and (iii) are given by both (G’) and (G”).
(c) The subset G ⊂ D2k+1(M2k+3) will be defined as the set of distributions whose 2-jet
maps are transversal (in the sense of Thom transversality theorem) to the subset of 2-jets
not satisfying the genericity conditions (G’) or (G”).

Remark 3. The relation between vector fields in (CVF) and (VF) can be explained
as follows. Let ω1, ω2 be local cogenerators of D. Consider an arbitrary section

ω = a1ω1 + a2ω2

of D⊥. Then dω = a1dω2 + a2dω2 + da1 ∧ ω1 + da2 ∧ ω2 and we see that the (n-1)-form

ω1 ∧ ω2 ∧ (dω)k = ω1 ∧ ω2 ∧ (a1dω1 + a2dω2)k

depends polynomially on the vector a = (a1, a2). Thus (CVF) gives

Xω =
k∑

j=0

aj
1a

k−j
2 Yj , (CV F ′)

where Yj were defined in (VF). Therefore the map ω 7−→ Xω can be treated, at a fixed
x ∈ M , as a homogeneous, degree k polynomial map D⊥(x) → D(x).

After [M2], this map will be called singular exp and denoted

Sexpx(p) := Xω(x),

where ω is a local section of D⊥ such that ω(x) = p. This map defines the projectivized
map PSexpx : P (D⊥(x)) → P (D(x)). Note that span p∈D⊥(x)Sexpx(p) = Dchar, which
follows directly from the definitions.

From the definitions (CVF) and (VF) it is easy to observe the following

Proposition 1. Characteristic vector fields X = Xω and the vector fields Y0, . . . , Yk

have the following properties in the domain of their definition:

X(x) ∈ D(x), (P1)

Xω(x) ∈ ker dω|D(x), (P2)

[X,Y ](x) ∈ D(x), (P3)

Yj(x) ∈ D(x), (P4)

[Yi, Yj ](x) ∈ D(x), (P5)

span j=0,...,k{Yj(x)} = span p∈D⊥(x)Sexpx(p), (P6)

where (P3) holds for any other characteristic vector field Y and (P4), (P5) hold for all
i, j = 0, . . . , k.

Before proving Proposition 1 we state the following elementary facts, for further use.

Fact 1. If ω is a a section of D⊥ and X, Y are sections of D, then

dω(X,Y ) = −ω([X, Y ]) (∗)

and both sides, evaluated at x, depend on the values of ω, X and Y at x, only.
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This is a special case of the formula dω(X,Y ) = Xω(Y )− Y ω(X)− ω([X, Y ]).

Fact 2. If Ω is a local volume form and ω, ω1, . . . , ωr are 1-forms on Mn, with
n− r − 1 = 2`, then the vector field X given by

X cΩ = ω1 ∧ · · · ∧ ωr ∧ (dω)` (1)

satisfies
X cωi = 0, i = 1, . . . , r, (2)

and
X c (dω|ker ω1∩···∩ker ωr) = 0. (3)

Vice versa, if (2) and (3) hold at x and (ω1 ∧ · · · ∧ ωr ∧ (dω)`)(x) 6= 0, then (1) holds at
x, up to a nonzero factor.

Proof. Denote η = ω1 ∧ · · · ∧ ωr ∧ (dω)` and assume X(p) 6= 0 (otherwise (2) and
(3) are trivial). Then η = ωi ∧ η̂i, with some η̂i, and ker η ⊂ kerωi. Thus (2) follows
from X c η = 0, implied by (1). To prove the remaining part we fix a point p ∈ M .
Then ωj(p) are linearly independent and we can choose local coordinates z0, z1, . . . , zr,
x1, . . . , x`, y1, . . . , y` such that at the point p we have ω1(p) = dz1, . . . , ωr(p) = dzr and
dω|D(p) =

∑
j dxj ∧ dyj , where D(p) = ∩j kerωj(p) (use the Darboux algebraic lemma for

(dω|D)(p)). In such coordinates X(p) = ∂/∂z0, up to scalar factor, and checking Fact 2 is
straightforward.

Proof of Proposition 1. Let ω1, ω2 be cogenerators of D. Properties (P1) and (P4)
follow from X cωi = 0 and from Yj cωi, i = 1, 2, which are consequences of definitions
(CVF) and (CV) and Fact 2. Similarly, (P2) follows from Fact 2.

(P3) is implied by (P1), (P2). Namely, for X = Xω, Y = Xω̃ and i = 1, 2 we have
0 = dωi(X, Y ) = −ωi([X, Y ]), thus [X,Y ] ∈ D (the first equality follows from (P2) and in
the second we use Fact 1 and ωi(X) = ωi(Y ) = 0, i.e. (P1)).

Property (P6) is a consequence of the formula (CVF’). Namely, from the definition
Sexpx(p) = Xω(x), where ω(x) = p, and from the fact that the coefficients a1(x), a2(x) ∈
IR in (CVF’) are arbitrary we see that (P6) holds.

Finally, property (P5) can be shown using (P3) and (P6) in the following way. Note
that span p∈D⊥(x)Sexpx(p) = Dchar(x) is the ”distribution” spanned by the characteristic
vector fields (its rank may vary). Let U ⊂ M be the open set where this rank is maximal.
Then, locally on U , we have Yi =

∑
s ϕisXs, Yj =

∑
s ψjsXs, where Xs are characteristic

vectors fields that span Dchar and ϕis, ψjs are functions. It follows from (P3) and (P1)
that [Yi, Yj ](x) is in D(x) on U . If U is dense in M , we get (P5) on M , by continuity.
Otherwise, we get (P5) on the closure clU , only. Consider the open set V = M \ clU
and the subset U1 ⊂ V where Dchar is of maximal rank on V (smaller then the rank on
U). Repeating the above argument gives that [Yi, Yj ](x) belongs to D(x) in clU1. After a
finite number of such steps we get that [Yi, Yj ](x) is in D(x) for any x ∈ M . Q.E.D.

Lemma 1. The subset G2(x) of 2-jets at x of corank 2 distributions on M2k+3, defined
by the conditions (G’) and (G”), is open and dense in the space of all 2-jets.

Proof. It follows from the definition of G2(x) that so defined set is open and its
complement is a real algebraic subset in the space of 2-jets. If we show that G2(x) is
nonempty, it will follow that it is dense. We can take M = IR2k+3 and x = 0.
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Let IR2k+3 be endowed with linear coordinates p1, . . . , pk+1, q1, . . . , qk, z1, z2. Consider
two differential 1-forms on M

ω1 = dz1 +
k∑

1

pidqi,

ω2 = dz2 +
k∑

1

qidpi+1 +
k∑

1

pk+1pidpi+1,

and the corresponding distribution D(x) = kerω1(x) ∩ kerω2(x). Then

dω1 =
k∑

1

dpi ∧ dqi,

dω2 =
k∑

1

dqi ∧ dpi+1 +
k∑

1

pk+1dpi ∧ dpi+1 −
k−1∑

1

pidpi+1 ∧ dpk+1.

We then compute

(dω1)k = k!
k∏

i=1

(dpi ∧ dqi),

(dω1)j ∧ (dω2)k−j = a
j∏

i=1

(dpi ∧ dqi) ∧
k∏

i=j+1

(dqi ∧ dpi+1)

+ a pk+1

j∏

i=1

(dpi ∧ dqi) ∧ dpj+1 ∧ dpj+2 ∧
k∏

i=j+2

(dqi ∧ dpi+1) +
k−1∑

i=1

pi ηi,

for j = 0, . . . , k−1, where a = j!(k−j)! and ηi are some (n-1)-forms. Consider the volume
form Ω =

∏k
i=1(dpi ∧ dqi) ∧ dpk+1 ∧ dz1 ∧ dz2 and the vector fields Yj defined by

YjcΩ = aω1 ∧ ω2 ∧ (dω1)j ∧ (dω2)k−j .

Then
Yk = ∂pk+1

,

Yj = ∂pj+1 + pk+1∂qj+1 +
k−1∑

i=1

piZji,

for j = 0, . . . , k − 1, where Zji are some vector fields. The Lie brackets at 0 ∈ IRn of Yk

and Yj are
[Yk, Yj ](0) = ∂qj+1 ,

for j = 0, . . . , k − 1, and, together with the vector fields Y0, . . . , Yk, span the distribution
D at 0. The proof is complete.

Proof of Theorem 2. We define the exceptional subset E = E ′ ∪ E ′′ in the space of
2-jets on M of smooth distributions in D2k+1(M2k+3), where E ′ consists of 2-jets which
do not satisfy the genericity condition (G’) and E ′′ consists of 2-jets that do not satisfy
the condition (G”). Both these subsets are real algebraic subvarieties defined by a set of
polynomial equations in the space of 2-jets, in a given coordinate system. These equations
are expressed in terms of minors of the matrix of coefficients of the vector fields Y0, . . . , Yk,
and [Yi, Yj ], i, j = 0, . . . , k. (Note that these vector fields are in D, by (P4) and (P5) in
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Proposition 1.) Moreover, these sets have empty interior as their complement contains
the distribution germ constructed in Lemma 1. The space G of generic distributions is
defined as consisting of those distributions which satisfy the Thom transversality theorem
with respect to the stratified submanifolds E ′ and E ′′. In particular, such distributions
satisfy conditions (G’) and (G”) on open dense subsets in M . This last statement implies
condition (iv) and all other assertions of the theorem. Namely, such distributions satisfy
(ii) which follows from (G’) and property (P6) in Proposition 1 (note that (P6) can be
written as Dchar(x) = span {Y0(x), . . . , Yk(x)}, where Dchar is the distribution spanned by
the characteristic vector fields). Condition (iii) follows from (G”) and (P6). Namely, using
the equality Dchar = span {Y0 . . . , Yk} we see that (G”) implies Dchar +[Dchar, Dchar] = D
at generic points.

In order to finish the proof we show that condition (i) is satisfied on the open subset
U of M where conditions (G’) and (G”) hold. It follows from the invariant form of the
Pontriagin Maximum Principle that singular curves x(t) of D are projections to M of
curves λ(t) = (x(t), p(t)) in D⊥ which satisfy the adjoint equation

d

dt
(p(t)Y (x(t))− p(t)([ẋ(t), Y ]) = 0, (AE)

for any smooth vector field Y on M , see Sussmann [S], page 540, Theorem 14.1, statement
[II]. Above, given the vector field Y and p ∈ D⊥(x), v ∈ D(x), the expression p[Y, v]
should be understood as the evaluation at x of the tensor field Γ(D⊥)× Γ(D) → C∞(M)
defined by (ω,X) 7→ ω([X, Y ]) = dω(Y, X), where ω([X, Y ])(x) =: p[Y, v] depends on the
values ω(x) = p and X(x) = v, only.

Assume that ω is a horizontal section of D⊥ and let γ, t 7→ x(t) be an integral curve
of Xω, i.e. ẋ(t) = Xω(x(t)). Denote p(t) = ω(x(t)). Then for arbitrary vector field Y on
M we have

0 = dω(Xω, Y )(x(t))
= (Xω(ω(Y ))− ω([Xω, Y ]))(x(t)) (?)

=
d

dt
(p(t)Y (x(t)))− p(t)([ẋ(t), Y ])

and (AE) implies that γ is singular.
Vice versa, assume that γ, t 7→ x(t), is a singular curve. Let p(t) be a nonvanishing

section of D⊥ along γ, which satisfies (AE). Then (AE) implies p(t)[ẋ(t), Y ] = 0, if Y
is a section of D. It follows that the vector ẋ(t) lies in the kernel of the partial tensor
field Γ∞(D) × Γ∞(D) → C∞(M) defined by (X, Y ) 7−→ ω([X, Y ]) = dω(Y,X), where ω
is a section of D⊥ (cf. Fact 1). This means ẋ(t) c (dω|D(x(t))) = 0. It follows from Fact 2
that if rank dω|D(x) = 2k = m− 1, the vectors v in ker dω(x)|D(x) are exactly those which
satisfy the equality v cΩ(x) = (ω1 ∧ ω2 ∧ dωk)(x), or equivalently v cµ(x) = (dω|D(x))k

(here µ(x) is a volume form on D(x)). The condition rank dω|D(x) = 2k holds under
the genericity assumption (G’). Namely, dω|D(x) = a1β1 + a2β2, where βi = dωi|D(x). It
follows from (G’) that rank (a1β1 + a2β2) = 2k, for all a = (a1, a2) ∈ IR2, a 6= 0. We
conclude that for a singular curve γ, t 7→ x(t), the field of tangent vectors can be written
as v(t) = ẋ(t) = Xω(x(t)), where Xω is a characteristic vector field corresponding to a
section ω of D⊥, which is any extension to a neighbourhood of the curve γ of the field of
covectors t 7→ p(t) along γ. Therefore, any singular curve in U is an integral curve of a
characteristic vector field.

It remains to show that the section ω can be taken horizontal. Take a point x = x(t)
on the curve γ. Since rank dω|D(x) = 2k = m−1, the kernel of dω|D(x) is of dimension one
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and v = ẋ(t) is in the kernel. This implies that there is a well defined, up to multiplicative
factor, nonzero vector w tangent to D⊥ at p = ω(x). Namely, let v ∈ ker dω|D(x) and let X
be any extension of v to the local section of D. It is not hard to verify that the Hamiltonian
vector field ~HX corresponding to the Hamiltonian HX :T ∗M → IR, HX(λ) = λ(X), is
tangent to D⊥ at λ = (x, p) and depends only on v = X(x). (If D = span{X1, . . . , Xm},
take the unique u such that v =

∑
i uiXi(x) and then take w =

∑
i ui

~HXi(x, p).) A field of
such vectors defines a bi-characteristic vector field ~H locally on D⊥, which is nonvanishing
over the region of x where (G’) holds. It is unique up to multiplicative factor (a function
of λ ∈ D⊥). Its trajectories t 7→ (x(t), p(t)) satisfy (AE). The singular curves are exactly
projections to M of the integral curves of ~H. We can choose a submanifold S ⊂ D⊥ which
is a single cover of a neighbourhood of the singular curve γ and coincides with the field of
covectors t 7→ p(t) over the curve γ. For example, we can take a submanifold in S0 ⊂ D⊥ of
dimension n− 1 which intersects the curve t 7→ λ(t) = (x(t), p(t)) transversally at a single
point and projects regularly on M . Then we define S as a submanifold of local integral
curves of ~H passing through S0. Since ẋ(t) 6= 0 the submanifold S has a nonsingular
projection πS : S → M on a neighbourhood of γ, and πS is a diffeomorphism onto πS(S).
The foliation of trajectories of ~H projects on a foliation of singular curves of D, onto a
neighbourhood of γ. The section ω(x) := π−1

S (x) is the desired section and Xω has all
trajectories being singular curves of D, including the curve γ. It follows from the second
and the third equality in (?) and from (AE) that Xω c dω = 0, i.e., the constructed section
ω is horizontal.

We have shown that the sets of smooth singular curves and of integral curves of hori-
zontal vector fields coincide on the set U where (G’) and (G”) hold. Thus, S(x) = Chor(x).
Clearly, Chor(x) ⊂ Cchar(x). We have shown in the preceding paragraph that any vector
v ∈ Cchar(x) belongs to Chor(x), thus Chor(x) = Cchar(x). This finishes the proof of
statement (i) and of Theorem 2.

Remark 4. Notice that we do not need the distribution D to be jet-transversal to
the exceptional sets E ′ and E ′′. In order that conditions (i)-(iv) hold it is enough that it
meets the sets E ′ and E ′′ at a nowhere dense subset of M .
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3. Characteristic vector fields: rank D = 2k.

Consider smooth distribution D on M2k+2 of even rank m = 2k. Locally we can
write D = kerω1 ∩ kerω2, with smooth cogenerators ω1, ω2. A section ω of D⊥ is called
characteristic 1-form of D if

ω1 ∧ ω2 ∧ (dω)k = 0.

Given a local volume form Ω on M , the local vector field X = Xω satisfying

Xω cΩ = ω ∧ (dω)k (CV F )

is called characteristic vector field of D, if ω is characteristic 1-form.
A characteristic 1-form ω is called horizontal if Xω c dω = 0 and the corresponding

vector field Xω is called horizontal vector field of D.

Proposition 2. Characteristic vector fields Xω have properties (P1), (P2), (P3) from
Proposition 1, i.e.,Xω(x) ∈ D(x), Xω(x) ∈ ker dω|D(x), and [Xω, Y ](x) ∈ D(x), for any
other characteristic vector field Y .

Proof. Definition (CVF) and Fact 2 imply Xω cω = 0 and Xω ∈ ker dω|ker ω. Thus
we get (P2) as D ⊆ kerω. Moreover ω̄ ∧ ω ∧ (dω)k = 0 for any section ω̄ of D⊥ since
ω is characteristic. This gives 0 = Xω c (ω̄ ∧ ω ∧ (dω)k) = (Xω c ω̄) ∧ ω ∧ (dω)k, since
Xω c (ω∧(dω)k) = Xω c (Xω cΩ) = 0. Therefore, Xω c ω̄ = 0. This, together with Xω cω =
0, gives (P1). Property (P3) follows from (P1) and (P2), exactly as in the odd-rank case.

Contrary to the case of odd rank, if m = 2k the characteristic 1-forms and characteristic
vector fields fill ”discrete” subsets in D⊥ and D. In order to explain this better we represent
ω = λ1ω1 + λ2ω2 and introduce the characteristic equation of D,

ω1 ∧ ω2 ∧ (λ1dω1 + λ2dω2)k = 0, (CE)

with the unknown λ = (λ1, λ2) ∈ IR2 depending on x. If Ω is a local volume form on M ,
we can write the characteristic equation in the equivalent form

P (λ1, λ2) :=
k∑

j=0

ajλ
k−j
1 λj

2 = 0, (CE′)

where

aj =
ω1 ∧ ω2 ∧ (dω1)k−j ∧ (dω2)j

Ω
are locally defined functions on M . This is a homogeneous equation, thus its nonzero
solutions at a given point x can be considered as points in the projective line.

Note that the characteristic polynomial P is defined by the distribution D uniquely, up
to invertible factor, since the transformation ω1 → a11ω̃1 + a12ω̃2 and ω2 → a21ω̃1 + a22ω̃2

changes ω1 ∧ ω2 into detA ω̃1 ∧ ω̃2, where A = {aij}. The solutions of (CE), when
understood as elements ω = λ1ω1 + λ2ω2 of the annihilator D⊥, depend only on D and
not on the choice of ω1 and ω2.

We fix two cogenerators ω1, ω2 of D so that a0(x) 6= 0. This can be done, locally, if
P 6≡ 0 and it means that (1, 0) is not a root of P = 0. Let Q = Q(a0, . . . , ak) denote the
discriminant of the polynomial P̃ (t) := P (t, 1), which is a polynomial of the coefficients
a0, . . . , ak. Denote Discr(x) = Q(a0(x), . . . , ak(x)). We introduce the genericity condition

Discr(x) 6= 0, (G0)
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equivalent to all roots of (CE’) being single. If a root λ0 = (t0, 1) is single then P̃ (t0) = 0
and P̃ ′(t0) 6= 0, thus the implicit function theorem is applicable. Consequently, the solution
(t0, 1) has a locally unique continuation which depends smoothly on the coefficients of P .

We see that if rankD is even, the characteristic vector fields are locally defined and
smooth in the region where Discr 6= 0 (the condition a0(x) 6= 0 is no more needed). They
are unique up to order and multiplication by nonvanishing functions. There are at most
k of them and they are given via the formula (CVF) where ω = λi

1ω1 + λi
2ω2 is a solution

of ω1 ∧ ω2 ∧ (dω)k = 0, or equivalently, λi = (λi
1, λ

i
2) is a solution of (CE) or (CE’).

In what follows we shall mostly work in the region R2 of points in M , where the charac-
teristic equation (CE) has at least 2 single real roots (counted in the projective line).

The region R2 is an open subset in M , which follows from continuous dependence of
(complex) solutions of polynomial equations with respect to the coefficients. The roots
λ1 = (λ1

1, λ
1
2) and λ2 = (λ2

1, λ
2
2) being single, they depend analytically on the coefficients

of the equation (treated as elements of the projective line). In particular, we can choose
smooth sections λi(x) = (λi

1(x), λi
2(x)) so that each ω̃i = λi

1ω1 + λi
2ω2 is a smooth section

of D⊥ and ω̃1, ω̃2 are cogenerators of D. Such cogenerators satisfy the following equations
(we omit tildes)

(ω1 ∧ ω2 ∧ (dω1)k)(x) = 0, (C1)

(ω1 ∧ ω2 ∧ (dω2)k)(x) = 0, (C2)

and will be called characteristic cogenerators. Thus we have proved

Proposition 3. For any point x ∈ R2 we can choose cogenerators ω1 and ω2 of D in
a neighbourhood of x so that (C1) and (C2) hold.

Remark 5. Note that if k > 2 then the characteristic equation may have r > 2 real
solutions. If they are all different and single at a given point, we may define in the same
way r different characteristic 1-forms ωi, i = 1, . . . , r in a neighbourhood of this point. In
that case we can choose any two of them as characteristic cogenerators.

In order to state the main result consider two vector fields X1, X2 defined on an open
subset U ⊂ M2k+2. We define two distributions

Γ1(x) := span {X1, X2, adi
X1

X2 : i = 1, . . . , 2k − 1 }(x), (D1)

Γ2(x) := span {X1, X2, adi
X2

X1, i = 2, . . . , 2k − 1 }(x), (D2)

where adXY = [X, Y ] denotes the Lie bracket of vector fields and we define inductively
adi

XY = adX(adi−1
X Y ). We introduce genericity conditions, imposed on the pair (X1, X2),

dimΓ1(x) = 2k + 1, (G1)

dimΓ2(x) = 2k + 1, (G2)

equivalent to pointwise linear independence of the vector fields defining Γ1 and Γ2. Denote

Y−1 := X1, Y0 := X2, Y1 := adX1X2, . . . , Y2k−1 := ad2k−1
X1

X2.

Suppose (G1) be satisfied at x ∈ M and define a nonvanishing 1-form ω1 which satisfies

ω1(Yi) = 0, i = −1, 0, . . . , 2k − 1. (F1)

Then ω1 is defined locally around x uniquely, up to a nonvanishing factor. Another useful
genericity conditions is

rank {ω1([Yi, Yj ])(x) }2k−1
i,j=−1 = 2k. (G3)
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The matrix in (G3) is antisymmetric, thus its rank is even, equal at most 2k. Interchanging
the role of X1, X2 and assuming (G2) we analogously define the vector fields

Z−1 := X2, Z0 := X1, Z1 := adX2X1, . . . , Z2k−1 := ad2k−1
X2

X1

and a nonvanishing 1-form ω2 which satisfies

ω2(Zi) = 0, i = −1, 0, . . . , 2k − 1. (F2)

The next genericity condition is

rank {ω2([Zi, Zj ])(x) }2k−1
i,j=−1 = 2k. (G4)

We will also need
dim (Γ1(x) + Γ2(x)) = 2k + 2 (G5)

and
dω1(X2, [X2, X1]) 6= 0, dω2(X1, [X1, X2]) 6= 0. (G6)

Theorem 3. There exists a subset G ⊂ D2k(M2k+2), residual and therefore dense in
Whitney C∞-topology, such that for any distribution D ∈ G the following conditions hold.

(i) At generic points in M the singular curves of D are exactly integral curves of hor-
izontal (equivalently, characteristic) vector fields, up to parametrization, and (G0)
holds.

(ii) Around generic points x ∈ R2 there exist two characteristic vector fields X1, X2 of
D which satisfy conditions (G1)-(G6). Moreover, at such x we have

D(x) = Γ1(x) ∩ Γ2(x).

Remark 6. (a) Clearly, statements (i) and (ii) imply Theorem 1, if m = 2k.
(b) If k is odd then a generic distribution is not determined by characteristic vector fields
in the region where the characteristic equation (CE’) has only one single root as, by
statement (i), all singular curves are orbits of a single vector field. If k is even then (CE’)
has no or at least 2 single roots at generic points.
(c) Any smooth distribution D ⊂ TM can be modified on a contractible neighbourhood
of a point p so that its germ at p is an a priori given germ (this follows from connectedness
of the Grassmannians). Thus, the region R2 can always be made nonempty, by Lemma 2.

Statement (ii) admits the following converse. We introduce the invariance condition

[X1, Γ1] ⊂ Γ1, [X2,Γ2] ⊂ Γ2. (I)

(For brevity, we write [X,∆] ⊂ ∆ instead of [X, Γ∞(∆)] ⊂ Γ∞(∆), with Γ∞(∆) denoting
the set of local sections of ∆.) (I1) and (I2) mean invariance of Γi under the flow of Xi.

Theorem 4. If X1, X2 are vector fields satisfying (G1)-(G5), and (I1), (I2), on an
open subset U ⊂ M , then X1, X2 are characteristic vector fields of D(x) = Γ1(x)∩Γ2(x),
corresponding to nonvanishing characteristic 1-forms ω1, ω2 given by (F1), (F2).

Proof. Let ω1, ω2 be given by (F1), (F2). Then kerω1(x) and kerω2(x) are uniquely
defined (which follows from (G1), (G2)) and Γi = kerωi, i = 1, 2. Take D = Γ1 ∩Γ2, then
codimD(x) = 2, by (G5). Conditions (I1), (I2), and Fact 1 give Xi ∈ ker dωi|Γi . This and
Xi ∈ D imply Xi c (ω1 ∧ ω2 ∧ (dωi)k) = 0, therefore ω1 ∧ ω2 ∧ (dωi)k = 0 (if an n-form
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has nontrivial kernel then it vanishes). Thus ωi, i = 1, 2, are characteristic cogenerators
of D. From (G3) and (G4) it follows that the kernels of dωi|Γi are of dimension 1, thus
ker dωi|Γi(x) = span {Xi(x)}. This is equivalent to existence of nonvanishing f1, f2 such
that Xi cΩ = fiωi ∧ (dωi)k, which completes the proof.

Lemma 2. There exist polynomial vector fields X1 and X2 on IR2κ+4, κ ≥ 1, which
satisfy (I1), (I2), (G1), (G2), (G3), (G4), (G5) and (G6) at generic points. Moreover,
introducing the coordinates x1, x2, z1, z2, and p1, . . . , pκ, q1, . . . , qκ, we can take them in
the form

X1 = ∂x1 +
κ∑

1

(xi+1
2 ∂pi + xκ+i+1

2 ∂qi) +
κ∑

1

xi+1
2 qi ∂z1 + x2∂z2 ,

X2 = ∂x2 +
κ∑

1

(xi+1
1 ∂qi + xκ+i+1

1 ∂pi) +
κ∑

1

xi+1
1 pi ∂z2 + x1∂z1 ,

and then their germ at any point where x1 = x2 = 0 and p1 = q1 = 1 satisfies (I1), (I2)
and (G1)-(G6), with k = κ+1. In neighbourhood of such points the characteristic equation
of D(x) = Γ1(x)∩ Γ2(x) has all roots real, ω1, ω2 defined by (F1), (F2) are characteristic
cogenerators of D, and X1, X2 are characteristic vector fields corresponding to ω1, ω2.

Proof. We will compute the Lie brackets defining Γ1. Note that no coordinate function
in X1 and X2 depends on z1, z2 (the corresponding terms in Lie brackets will vanish) and
only some of them depend, linearly, on pi or qi. By direct computation we find

Y1 = [X1, X2] =
κ∑

1

((i + 1)xi
1 − (κ + i + 1)xκ+i

2 ) ∂qi

+
κ∑

1

((κ + i + 1)xκ+i
1 − (i + 1)xi

2) ∂pi

+
κ∑

1

(i + 1)xi
1pi ∂z2 −

κ∑

1

(i + 1)xi
2qi ∂z1

+
κ∑

1

(1− xi+1
1 xi+1

2 ) (∂z1 − ∂z2),

Y2 = ad2
X1

X2 =
κ∑

1

(i + 1)ixi−1
1 ∂qi +

κ∑

1

(κ + i + 1)(κ + i)xκ+i−1
1 ∂pi

+
κ∑

1

(i + 1)ixi−1
1 pi ∂z2 +

κ∑

1

κxκ+2i+1
2 ∂z1

+ 2
κ∑

1

(i + 1)xi
1x

i+1
2 (∂z2 − ∂z1),

Y3 = ad3
X1

X2 =
κ∑

2

(i + 1)i(i− 1)xi−2
1 ∂qi

+
κ∑

1

(κ + i + 1)(κ + i)(κ + i− 1)xκ+i−2
1 ∂pi

+
κ∑

2

(i + 1)i(i− 1)xi−2
1 pi ∂z2

+ 3
κ∑

1

(i + 1)i xi−1
1 xi+1

2 (∂z2 − ∂z1),
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Y4 = ad4
X1

X2 =
κ∑

3

(i + 1)!
(i− 3)!

xi−3
1 ∂qi +

κ∑

1

(κ + i + 1)!
(κ + i− 3)!

xκ+i−3
1 ∂pi

+
κ∑

3

(i + 1)!
(i− 3)!

xi−3
1 pi ∂z2

+ 4
κ∑

2

(i + 1)!
(i− 2)!

xi−2
1 xi+1

2 (∂z2 − ∂z1).

To be more precise, if κ = 1 then the sum at ∂pi is empty, similarly as the other sums
in the formula for Y4, and thus Y4 = Y2κ+2 = 0. In this case we stop our calculations here.
If κ ≥ 2 we continue the recursive procedure and get

Yκ+1 = adκ+1
X1

X2 = (κ + 1)! ∂qκ +
κ∑

1

(κ + i + 1)!
i!

xi
1∂pi

+ (κ + 1)! pκ ∂z2

+ (κ + 1)
κ∑

κ−1

(i + 1)!
(i− κ + 1)!

xi−κ+1
1 xi+1

2 (∂z2 − ∂z1)

Yκ+2 = adκ+2
X1

X2 =
κ∑

1

(κ + i + 1)!
(i− 1)!

xi−1
1 ∂pi + (κ + 2)!xκ+1

2 (∂z2 − ∂z1),

Yκ+3 = adκ+3
X1

X2 =
κ∑

2

(κ + i + 1)!
(i− 2)!

xi−2
1 ∂pi ,

...

Y2κ = ad2κ
X1

X2 =
κ∑

κ−1

(κ + i + 1)!
(i− κ + 1)!

xi−κ+1
1 ∂pi ,

Y2κ+1 = ad2κ+1
X1

X2 = (2κ + 1)! ∂pκ .

We see that [X1, Y2κ+1] = 0 and [X1, Yj ] = Yj+1, for j = 0, · · · , 2κ, thus (I1) holds. By the
symmetry of X1 and X2 condition (I2) also holds.

At the points where x1 = x2 = 0 the above vector fields take much simpler form

Y−1 = X1 = ∂x1 ,
Y0 = X2 = ∂x2 ,
Y1 = adX1X2 = ∂z1 − ∂z2 ,
Y2 = ad2

X1
X2 = 2! ∂q1 + 2! p1∂z2 ,

Y3 = ad3
X1

X2 = 3! ∂q2 + 3! p2∂z2 ,
...

Yκ+1 = adκ+1
X1

X2 = (κ + 1)! ∂qκ + (κ + 1)! pκ ∂z2 ,

Yκ+2 = adκ+2
X1

X2 = (κ + 2)! ∂p1 ,
...

Y2κ = ad2κ
X1

X2 = (2κ)! ∂pκ−1 ,

Y2κ+1 = ad2κ+1
X1

X2 = (2κ + 1)! ∂pκ

and we see that condition (G1) is satisfied at such points. By the symmetry we see that
condition (G2) is also satisfied at these points.
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From the definition of Yj we get

(i) [Y−1, Yj ] = [X1, Yj ] = Yj+1, for 0 ≤ j < 2κ + 1, and [Y−1, Y2κ+1] = 0.

Moreover, at the points where x1 = x2 = 0 we have

(ii) [Y0, Yj ] = [X2, Yj ] = 0, for all 1 < j ≤ 2κ + 1, and [Y0, Y1] = −2∂p1 − 2q1∂z1 .

The Lie brackets of vector fields Yr, Ys which are tangent to the submanifold

S = { x1 = x2 = 0 }

can be correctly computed at the points in S using the formulas for Yr, Ys restricted to
S. All Yj , 1 ≤ j ≤ 2κ + 1, are tangent to S.

From the above formulas for Yj restricted to S we easily find that:

(iii) Y1 commutes on S with all Yj , 1 < j ≤ 2κ + 1.

(iv) Yr and Ys commute on S if 2 ≤ r, s ≤ κ + 1 or κ + 2 ≤ r, s ≤ 2κ + 1.

(v) Yr and Ys commute on S if 2 ≤ r ≤ κ + 1, κ + 2 ≤ s ≤ 2κ + 1, s− r 6= κ.

(vi) [Yr, Yr+κ] = −r! (κ + r)! ∂z2 on S if 2 ≤ r ≤ κ + 1.

We easily see that the 1-form ω1 annihilating the vector fields Y−1, Y0, Y1, . . . , Y2κ+1

restricted to S is

ω1 = dz1 + dz2 −
κ∑

1

pidqi.

Thus the above calculations give the matrix ω1([Yi, Yj ]) on the submanifold S. Namely,
by (i)-(vi) we have on S

ω1([Yr, Ys]) = 0

for all −1 ≤ r, s ≤ 2κ + 1, with the following exceptions:

ω1([Y0, Y1]) = −ω1([Y1, Y0])(0) = −2q1,

ω1([Yr, Yr+κ]) = −ω1([Yr+κ, Yr]) = −r! (κ + r)! ,

for 2 ≤ r ≤ κ + 1. Therefore (G3) and the first part of (G6) hold at all points where
x1 = x2 = 0 and q1 6= 0. By the symmetry between X1 and X2 we see that (G4) and the
second part of (G6) hold, too, at the points where x1 = x2 = 0 and p1 6= 0.

Finally, at S = {x1 = x2 = 0} the corresponding 1-form ω2 annihilating Γ2 is

ω2 = dz1 + dz2 −
κ∑

1

qidpi.

We see that at points where p = (p1, . . . , pκ) 6= 0 or q = (q1, . . . , qκ) 6= 0 we have
kerω1(x) 6= kerω2(x), thus corank Γ1(x)∩Γ2(x) = 2 at such points and dim Γ1(x)+Γ2(x) =
2κ + 4, i.e., (G5) holds.

The set of points where (I1), (I2), and (G1)-(G6) are satisfied is open and dense in
IRn, n = 2κ + 4. This follows from the fact that X1 and X2 have polynomial coefficients.
Namely, negations of conditions (G1), (G2) and (G5) mean linear dependence of some
Lie brackets of X1 and X2. Since the coefficients of Y−1 = X1, Y0 = X2 and of the Lie
brackets Yj = adj

X1
X2 defining Γ1 (respectively, Γ2) depend polynomially on the coordi-

nates, the negations of (G1), (G2) and (G5) can be expressed as polynomial equations.
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These equations are nontrivial as we have shown that they are not satisfied at some point
in IRn. Therefore, the set of their solutions is closed and nowhere dense in IRn and the
set U ⊂ IRn of points where (G1), (G2) and (G5) are satisfied is open and dense in IRn.
The 1-form ω1 is defined by the equations ω1(Yj) = 0, j = −1, 0, . . . , 2κ + 1, and can be
taken with rational coefficients, the common denominator of which is nonzero on U . The
negation of condition (G3) can then be expressed as a nontrivial polynomial equation on
U . The same applies to (G4) and (G6). Therefore, negations of conditions (G3), (G4),
(G5), and (G6) hold on closed, nowhere dense subsets of U . This means that (G1)-(G6)
are satisfied on an open, dense subset V in IRn. Finally, it follows from our proof that
[X1, Yj ] = Yj+1, for j = −1, 0, . . . , 2κ + 1, with Y2κ+2 := 0. Thus (I1) and (I2) hold on V .

To show that all characteristic roots are real note that (1, 0) and (0, 1) are such roots,
at points in S, since ω1, ω2 are characteristic cogenerators. We will show that λ = (1, 1)
is the remaining root, which is of multiplicity κ − 1 = k − 2. In fact, consider the
subdistribution N ⊂ D given by D ∩ TS. Then codimN = 4 for a generic point in S.
Take ω = ω1 +ω2, which corresponds to λ = (1, 1). We see from the form of ωi|S , i = 1, 2,
that dω1|N = −dω2|N , thus dω|N = (dω1 + dω2)|N = 0. This means that dω is of rank at
most codimN = 4 at a generic point in S. Therefore, λ = (1, 1) is a solution of (CE) of
multiplicity at least k−4/2 = k−2. On the other hand, it can not have higher multiplicity
as there are two other real roots. The proof is complete.

Lemma 3. There exists a corank 2 distribution germ D at 0 ∈ IR2k+2, k ≥ 2,
which satisfies (G0), all k roots of characteristic equation are real, and it has a pair of
characteristic vector fields (X1, X2) that fulfill conditions (G1)-(G6).

Proof. We shall first perturb the example in Lemma 2 so that condition (G0) is satis-
fied. (We were unable to find out, by hand calculations, whether the distribution in Lemma
2 satisfies (G0) at some points.) Consider a distribution D and its cogenerators ω1, ω2. Fix
a local volume form Ω. The coefficients a0, . . . , ak of the characteristic polynomial (CE’)
depend polynomially on the first jet of (ω1, ω2). The map j1(ω1, ω2) 7→ (a0, . . . , ak) is sub-
mersive at generic jets. (For polynomial maps it is enough to check submersivity at one
point. It is easy to do it on the 1-jet j1ω1 = dz1+

∑k
1 xidyi, j1ω2 = dz2+

∑k
1 bixidyi, where

the coefficients a0, . . . , ak are symmetric functions ar =
∑

j1···jr
bj1 · · · bjr of b1, . . . , bk.) The

equation Discr = 0 defines an algebraic subset of codimension 1 in the space of coefficients
a0, . . . , ak. Thus there exist arbitrarily small perturbations of a given 1-jet j1(ω1, ω2)
which give Discr 6= 0.

Consider the distribution germ D = D(ω1, ω2) defined in Lemma 2, with cogenerators
(ω1, ω2) satisfying the genericity conditions (G1)-(G6) for a fixed pair of characteristic
vector fields (X1, X2). Applying a shift, we may assume that this is a germ at 0 ∈ IR2k+2.
Choose cogenerators ω̃1 and ω̃2 so that the coefficient a0 of the characteristic equation
(CE’), relative to these cogenerators, is nonzero (this is equivalent to (1, 0) not being
solution of (CE’)). By the above argument, a slight perturbation of the first jet of (ω̃1, ω̃2)
will satisfy (G0) at 0 and, by continuity, in its neighbourhood. By surjectivity, we can
choose the perturbation so that all roots of the characteristic equation will remain real.
(The unperturbed polynomial equation has real roots, thus it is a product of linear terms.)

At the same time we can choose the perturbation so small that conditions (G1)-(G6) are
still satisfied for the pair (X1, X2). This follows from the fact that the roots λi = (λi

1, λ
i
2)

of the characteristic equation (CE’) depend smoothly, as elements of the projective line,
on the coefficients a0, . . . , ak (the implicit function theorem is applicable here since they
are single roots). Similarly, finite jets of λi(x) depend smoothly on finite jets of a0, . . . , ak,
thus they depend smoothly on finite jets of (ω̃1, ω̃2). The lemma is proved.
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Proof of Theorem 3. Consider the space of homogeneous degree k real polynomials∑k
j=0 ajλ

k−j
1 λj

2 and let Discr denote the subset of such polynomials having Discr = 0.
As algebraic subset, it has a stratification into a finite number of submanifolds. The
complement of this set is open and dense.

We first prove statement (ii). In the proof we will use the following condition.
(A) The characteristic equation (CE) has at least 2 single real roots (in the projective line).

Denote by E0 the subset, in the space of finite jets of distributions, which consists of
D for which (G0) does not hold, that is Discr(x) = 0 (this equation is independent of
the choice of cogenerators). For i = 1, 2 denote by Ei the subset, in the space of finite
jets of distributions, which consists of those distributions D for which the implication
((G0) and (A)) ⇒ (Gi) does not hold at a given x, for a pair of characteristic vector
fields X1, X2. Similarly, let E3 be the subset consisting of those distributions D for which
the implication ((G0), (A) and (G1)) =⇒ (G3) does not hold for a pair (X1, X2) and
let E4 denote the subset of D for which the implication ((G0), (A) and (G2)) =⇒ (G4)
does not hold for a pair (X1, X2). Finally, let E6 be the subset of D such that the
implication ((G0), (A), (G1) and (G2)) =⇒ (G6) does not hold at a given x, for a pair
of characteristic vector fields X1, X2. (In the definition of different subsets Ei the pair
(X1, X2) is the same.) From the form of conditions (Gi), i = 0, . . . , 4, 6, it is easy to
see that the subset Ei, at a given x, is a real stratified submanifold and it has nonzero
codimension as, by Lemma 3, there exist distribution jets which satisfy all (A) and (G0)-
(G6). Note that ((G0), (A), (G1) and (G2)) =⇒ (G5) automatically holds, as (G0) means
that the characteristic cogenerators defined by (F1), (F2) are linearly independent.

We define the set G ⊂ D2k(M2k+2) of generic distributions as those smooth distribu-
tions which have the 1-jet extensions transversal to all submanifolds in the stratified set
E0 and, moreover, their finite jet extensions are transversal to the exceptional subsets Ei,
i = 1, . . . , 4, 6, in the space of appropriate jets. By the Thom transversality theorem, the
set of such distributions is residual in the Whitney C∞ topology.

Since all exceptional subsets E0, . . . , E4, E6 have nonzero codimension, and a distribution
D ∈ G meets the subsets E0, . . . , E4, E6 at a closed, nowhere dense subset in M , it follows
that D satisfies (G0) on an open, dense subset in M and it satisfies (G1)-(G6) on an open,
nowhere dense subset in the region R2 (note that (G5) is implied by (G0)).

Moreover, at generic points in R2 there are characteristic vector fields X1, X2 of D ∈ G
which fulfil (G1)-(G5), as well as (I1), (I2). They correspond to characteristic 1-forms
ω1, ω2 satisfying (G0). Using Theorem 4 we conclude that D = Γ1 ∩ Γ2. This proves
statement (ii).

In order to prove statement (i) it is enough to show that if Xω is a characteristic vector
field, then there exists a function f on M such that fω is horizontal. Then the proof will
follow from equation (AE) as in the odd-rank case.

Note that if ω is characteristic, then Xω ∈ ker dω|ker ω (Proposition 2). Consider
a vector field Y satisfying ω(Y ) = 1. It is enough to find a function f such that
d(fω)(Xω, Y ) = 0. Since ω(Xω) = 0, we have

d(fω)(Xω, Y ) = df(Xω)ω(Y ) + fdω(Xω, Y ) = Xω(f) + fdω(Xω, Y ).

Each nontrivial solution of the ordinary differential equation Xω(f) + fdω(Xω, Y ) = 0
gives a horizontal section fω. The proof is complete.

Remark 7. If we admit complex solutions to the characteristic equation (CE) or
(CE’), we obtain complex valued characteristic 1-forms and the corresponding complex
vector fields, being sections of complexified cotangent and tangent bundles T ∗ICM and
T ICM (the n-form Ω in (CVF) is still real). Denote by C ⊂ M the subset where the
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characteristic equation has at least one non-real root. It seems that arguments analogous
to above, provided that an appropriate version of Lemma 2 is shown, should lead to a
proof of the following analog of statement (ii) in Theorem 3.

Conjecture. For any generic distribution D = D2k on M2k+2, around generic points
x ∈ C, there exists a pair of complex conjugated characteristic vector fields X1, X2 of D
which satisfy conditions (G1)-(G6) in the complex sense and D(x) = Re{Γ1(x) ∩ Γ2(x)}.
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[BH ] R.L. Bryant, L. Hsu, Rigidity of integral curves of rank 2 distributions, Inventiones
Math. 114 (1993), 435-461.

[CJT ] Y. Chitour, F. Jean, E. Trélat, Genericity results for singular curves, J. Differential
Geometry 73 (2006), 45-73.

[JP ] B. Jakubczyk, F. Przytycki, Singularities of k-tuples of vector fields, Dissertationes
Mathematicae 213, Warsaw 1984, 1-64.

[JZ ] B. Jakubczyk, M. Zhitomirskii, Distributions of corank 1 and their characteristic
vector fields, Trans. Am. Math. Soc. 355 (2003), 2857-2883.
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