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Abstract: The paper is devoted to a stochastic partial di�erential equa-
tion for the forward curve of the bond market, in the Musiela parameteriza-
tion and the Heath-Jarrow-Morton framework. Special attention is paid to
the existence and positivity of the solutions.

1 Introduction

The paper is devoted to stochastic partial di�erential equation

dr(t)(ξ) =

(
∂

ξ
r(t)(ξ) + F (t, r(t))(ξ)

)
dt+

∑
j

Gj(t, r(t))(ξ)dZj(t), ξ ≥ 0

which appears in the theory of bond market, see Section 3. In the most
studied case Zj are independent Brownian motions. Existence, asymptotics
of solutions as well as stochastic invariance have been discussed, in particular,
in Musiela [19], Bjork [2], Vargiolu [27], Filipovic [9], ,Tehranchi [25] . The
case where Zj are Lévy processes is much less investigated and is the object
of the present paper. To the best of our knowledge only papers by Filipovic
and Tappe [10], and Rusinek [22], [23], were devoted to those more general
equations.

In the �rst two sections we derive the equation from some �nancial as-
sumptions. In Section 3 we investigate existence of the solutions. Our results
are similar to those of Filipovic and Tappe but we work in di�erent function
spaces. Also, in the case of �nite-dimensional noise, our conditions are more
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explicit. Then, in Section 4 we investigate positivity of solutions, a prop-
erty important in applications. We show in particular, that if the noise is
one-dimensional with jumps bounded from below then, under rather mild
conditions on volatility, the equation preserves positivity. The �nal section
treats equations with linear volatility. It has been observed by Morton in his
PhD thesis that if the noise is Gaussian then solutions necessarily explode.
We provide a large class of Lévy disturbances for which solutions do not
explode. We show, in addition, that in the Gaussian case, when the linear-
ity is random, then the non-exploding solutions exist provided the random
coe�cient behaves in a special way.

2 HJM Condition

Denote by P (t, θ), 0 ≤ t ≤ θ, the market price, at time t, of a bond paying 1
at time θ, and by (R(t), t ≥ 0) the short rate process o�ered by a bank.
Functions f(t, θ), 0 ≤ t ≤ θ, de�ned by the relation

P (t, θ) = e−
∫ θ

t f(t,σ) dσ, t ≤ θ,

are called forward rate functions. It is reasonable to assume that f(t, t) =
R(t), t ≥ 0.

In Heath, Jarrow and Morton [12] it was assumed that

df(t, θ) = α(t, θ) dt+ 〈σ(t, θ), dW (t)〉, (1)

where W is a d-dimensional Wiener process with covariance Q. According
to the observed data, the (random) function f(t, θ) should be regular in θ
for �xed t and chaotic in t for �xed θ. The latter property is implied by the
presence of W in the representation, and the former is implied by regular
dependence of α(t, θ) and σ(t, θ) on θ for �xed t.

For practical implementation of the bond market models it is useful to
replace the Wiener processW by a Lévy process Z de�ned on a �ltered proba-
bility space (Ω,F , (Ft),P) and taking values in a possibly in�nite-dimensional
Hilbert space (U, 〈·, ·〉U). Thus we assume that the dynamics of the forward
rate functions is given by the equation

df(t, θ) = α(t, θ) dt+ 〈σ(t, θ), dZ(t)〉U , t ≤ θ. (2)
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For each θ ≥ 0, α(t, θ), σ(t, θ) are predictable processes. One extends α,
σ and P putting

α(t, θ) := 0, σ(t, θ) := 0 for t ≥ θ (3)

and
P (t, θ) := e

∫ t
θ R(s) ds for t ≥ θ. (4)

Let us note that if t ≤ θ then

f(t, θ) = f(0, θ) +

∫ t

0

α(s, θ) ds+

∫ t

0

〈σ(s, θ), dZ(s)〉U

and if θ ≤ t then

R(θ) = f(θ, θ) = f(0, θ) +

∫ θ

0

α(s, θ) ds+

∫ θ

0

〈σ(s, θ), dZ(s)〉U . (5)

Let us recall (see e.g. Peszat and Zabczyk [20]), that any Lévy process Z
on a Hilbert space U admits the representation

Z(t) = at+W (t) +

∫ t

0

∫
{|y|U≤1}

y
(
π(ds, dy)− ds ν(dy)

)
+

∫ t

0

∫
{|y|U>1}

y π(ds, dy),

where π is the Poisson random measure corresponding to Z and ν is the jump
intensity measure of Z. Moreover,∫

U

|y|2U ∧ 1ν(dy) <∞,

and the exponential moments E e−〈x,Z(t)〉U , x ∈ U , are �nite, if and only if,∫
{|y|U>1}

e−〈x, y〉Uν(dy) < +∞.

Finally
E e−〈x,Z(t)〉U = etJ(x), x ∈ U,
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where
J(x) := −〈a, x〉U + 1

2
〈Qx, x〉U + J0(x),

J0(x) :=

∫
U

[
e−〈x,y〉U − 1 + 〈x, y〉Uχ{|y|U≤1}

]
ν(dy).

(6)

Let b be the Laplace transform of the measure ν restricted to the complement
of the ball {y : |y|U ≤ 1}, that is,

b(x) :=

∫
{|y|U>1}

e−〈x, y〉Uν(dy),

and let B be the set of those x ∈ U for which the Laplace transform is �nite.
Thus B = {x ∈ U : b(x) < ∞}. We intend now to prove a theorem from
Jakubowski and Zabczyk [14], which states �if and only if� conditions under
which the discounted price processes are local martingales with respect to the
probability P. We will regard the coe�cients α and σ in (2) as, respectively,
H = L2([0, T ]) and L(U,H)-valued, predictable processes given by

α(t)(θ) = α(t, θ), θ ∈ [0, T ], σ(t)x(θ) = 〈σ(t, θ), x〉U , x ∈ U, θ ∈ [0, T ].

For our purposes it is convenient to introduce the following condition on the
jump intensity measure ν:

∀ r > 0 the function b is bounded on {x ∈ B : |x|U ≤ r}. (7)

Let
P̂ (t, θ) := e−

∫ t
0 R(s)dsP (t, θ), t ≥ 0 (8)

be the discounted price of the bond.In the theorem below J : U 7→ R is given
by (6).

Theorem 1 Assume that predictable processes α and σ have bounded trajec-
tories and that (7) is satis�ed.

(i) If the discounted price processes given by (8) are local martingales then
for all θ ≤ T ,∫ θ

t

σ(t, v) dv ∈ B, P-a.s. for almost all t ∈ [0, θ]. (9)
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(ii) Assume (9). Then the discounted price processes (8) are local martin-
gales if and only if∫ θ

t

α(t, v) dv = J

(∫ θ

t

σ(t, v) dv

)
,

∀ θ ≤ T , P-a.s. for almost all t ∈ [0, θ].
(10)

Remark 1 We call (10) the HJM Condition. Let D be the derivative opera-
tor acting on functions de�ned on U . Note that the theorem says that under
very mild assumptions the discounted price processes are local martingales
if and only if (10) holds, or equivalently if and only if

α(t, θ) =
d

dθ
J

(∫ θ

t

σ(t, v)dv

)
=

〈
DJ

(∫ θ

t

σ(t, v)dv

)
, σ(t, θ)

〉
U

.

Thus the dynamics of the forward rate functions is given by

df(t, θ) =

〈
DJ

(∫ θ

t

σ(t, v)dv

)
, σ(t, θ)

〉
U

dt+ 〈σ(t, θ), dZ(t)〉U .

Note that the drift term is completely determined by the di�usion term.

Remark 2 In the particular case of Z being a Wiener process with covari-
ance Q one arrives at the Classical HJM Condition∫ θ

t

α(t, v) dv =
1

2

〈
Q

∫ θ

t

σ(t, v) dv,

∫ θ

t

σ(t, v) dv
〉
U

introduced in Heath, Jarrow and Morton [12]. Clearly the condition above
holds if and only if

α(t, θ) =
〈
Qσ(t, θ),

∫ θ

t

σ(t, v) dv
〉
U

for every θ ≤ T , P-a.s. for almost all t ∈ [0, θ].

Remark 3 Formulae similar to (10) have been obtained earlier in Björk et
al. [4], Björk, Kabanov and Runggaldier [5], and Eberlein and Raible [8].
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3 HJMM equation

An important link between HJM modeling and stochastic partial di�erential
equations is provided by the so-called Musiela parametrization. Assume that

df(t, θ) = α(t, θ) dt+ 〈σ(t, θ), dZ(t)〉U

and for t ≥ 0, ξ ≥ 0 and u ∈ U de�ne

r(t)(ξ) := f(t, t+ ξ), a(t)(ξ) := α(t, t+ ξ), (b(t)u) (ξ) := 〈σ(t, t+ ξ), u〉U .

We will call r the forward curve. Next, let S(t)ϕ(ξ) = ϕ(ξ + t) be the shift
semigroup. Then

r(t)(ξ) = f(t, t+ ξ)

= f(0, t+ ξ) +

∫ t

0

α(s, t+ ξ)ds+

∫ t

0

〈σ(s, t+ ξ), dZ(s)〉U

= r(0)(t+ ξ) +

∫ t

0

a(s)(t− s+ ξ)ds+

∫ t

0

b(s)(t− s+ ξ)dZ(s)

= S(t)r(0)(ξ) +

∫ t

0

S(t− s)a(s)(ξ)ds+

∫ t

0

S(t− s)b(s)(ξ)dZ(s).

Thus

r(t) = S(t)r(0) +

∫ t

0

S(t− s)a(s)ds+

∫ t

0

S(t− s)b(s)dZ(s)

is a mild solution to the equation

dr(t) =

(
∂

∂ξ
r(t) + a(t)

)
dt+ b(t)dZ(t),

where ∂
∂ξ

denotes the generator of (S(t), t ≥ 0). Identifying the L(U,R)-

valued processes b(·)(ξ), ξ ≥ 0, with the U -valued process (denoted also by
b(·)(ξ), ξ ≥ 0) we note that if the HJM Condition is satis�ed, then

dr(t)(ξ) =

(
∂

∂ξ
r(t)(ξ) +

〈
b(t)(ξ), DJ

(∫ ξ

0

b(t)(η)dη

)〉
U

)
dt

+ b(t)(ξ)dZ(t)

=
∂

∂ξ

(
r(t)(ξ) + J

(∫ ξ

0

b(t)(η)dη

))
dt+ b(t)(ξ)dZ(t).

(11)
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Let the volatility b depend on the forward curve r, say b(t)(ξ) = G(t, r(t))(ξ),
and let

F (t, r)(ξ) :=

〈
G(t, r(t))(ξ), DJ

(∫ ξ

0

G(t, r(t))(η)dη

)〉
U

=
∂

∂ξ
J

(∫ ξ

0

G(t, r(t))(η)dη

)
.

(12)

Then the forward curve process becomes a solution of the so-called Heath�
Jarrow�Morton�Musiela equation

dr(t)(ξ) =

(
∂

∂ξ
r(t)(ξ) + F (t, r(t))(ξ)

)
dt+G(t, r(t))(ξ)dZ(t). (13)

4 Existence of solutions

In this section we deduce the existence of a solution to (13) from Theorem 9.7
of Peszat and Zabczyk [20]. We assume that the driving noise Z is a �nite-
dimensional, say Rd-valued, square integrable martingale. Thus U = Rd,
and Z is a sum of a Wiener process and a compensated jump process, and
therefore

J(z) =
〈Qz, z〉

2
+

∫
Rd

(
e−〈z,y〉 − 1 + 〈z, y〉

)
ν(dy), (14)

where Q is a symmetric non-negative de�nite matrix and the jump measure
ν satis�es

∫
Rd |y|2ν(dy) <∞. Here we denote by 〈·, ·〉 the scalar product on

Rd and by | · | the corresponding norm. We have the following elementary
fact.

Lemma 1 (i) If z ∈ Rd is such that
∫
{|y|≥1} |y|e

|z||y|ν(dy) < ∞, then J is
di�erentiable at z and

DJ(z) = Qz +

∫
Rd

y
(
1− e−〈z,y〉

)
ν(dy).

(ii) If z ∈ Rd is such that
∫

Rd |y|2e|z||y|ν(dy) <∞, then J is twice di�eren-
tiable at z and

D2J(z) = Q+

∫
Rd

y ⊗ y e−〈z,y〉ν(dy),

where y ⊗ y[v] = 〈y, v〉y, v ∈ Rd.
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We assume that G is of composition type, that is,

G(t, r(t))(ξ)[z] = 〈g(t, ξ, r(t)(ξ)), z〉, t, ξ ∈ [0,+∞), z ∈ Rd, (15)

where g : [0,+∞)×[0,+∞)×R 7→ Rd. We identify G(t, ψ)(ξ) with the vector
g(t, ξ, ψ(ξ)) in Rd.

Given γ > 0 we consider the equation on the state space Hγ := Hγ ⊕
{constant functions}, where Hγ := L2

(
[0,+∞),B([0,+∞)), eγξdξ

)
. Note

that Hγ, equipped with the scalar product 〈ψ+u, ϕ+v〉Hγ := 〈ψ, ϕ〉Hγ +uv,
ψ, ϕ ∈ Hγ, u, v ∈ R, is a real separable Hilbert space.

Let S be the shift semigroup. Then for ψ ∈ Hγ,

|S(t)ψ)|2Hγ
=

∫ +∞

0

|ψ(ξ + t)|2eγξdξ =

∫ +∞

t

|ψ(η)|2eγ(η−t)dη ≤ e−γt|ψ|2Hγ

and hence the following lemma holds.

Lemma 2 S is a C0-semigroup on Hγ and Hγ. Moreover,

‖S(t)‖L(Hγ ,Hγ) ≤ e−
γ
2
t, ‖S(t)‖L(Hγ ,Hγ) = 1, t ≥ 0.

By the Hölder inequality, for every γ > 0, the space Hγ is continuously
embedded into L1 := L1([0,+∞),B([0,+∞)), dξ) and |ψ|L1 ≤ γ−1/2|ψ|Hγ for
all ψ ∈ Hγ. We can formulate our �rst existence theorem.

Theorem 2 Let Z be an Rd-valued square integrable mean zero Lévy process
with jump measure ν, and let G be given by (15). Assume that there are
functions g ∈ Hγ and h ∈ Hγ ∩ L∞ such that

(i)
∫

R y
2e|g|L1 |y|ν(dy) <∞,

(ii) for all t, ξ ∈ [0,+∞) and u, v ∈ R,

|g(t, ξ, u)| ≤ g(ξ), |g(t, ξ, u)− g(t, ξ, v)| ≤ h(ξ)|u− v|.

Then for each r0 ∈ Hγ, and for each r0 ∈ Hγ, there is a unique solution
r to (13) in Hγ, respectively in Hγ, satisfying r(0) = r0. Moreover, if the
coe�cient g does not depend on t, then (13) de�nes (time homogeneous)
Feller families on Hγ and on Hγ.
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Clearly (13) can be written as a time homogeneous equation of variables
X = (r, t) on the state space Hγ × R. Therefore the theorem is a direct
consequence of Lemmas 1 and 2, and the lemma below to formulate which it
is convenient to introduce the following notation:

K1(J, g) := sup
z : |z|≤|g|L1

|DJ(z)| , K2(J, g) := sup
z : |z|≤|g|L1

∥∥D2J(z)
∥∥
L(Rd,Rd)

.

Clearly, if assumption (i) of Theorem 2 is satis�ed, then by Lemma 1, J
is twice di�erentiable at an arbitrary z with |z| ≤ |g|L1 and Ki(J, g) < ∞,
i = 1, 2.

Lemma 3 Under the assumptions of Theorem 2, for every t ≥ 0 one has
G(t, ·) : Hγ 7→ L(HS)(Rd, Hγ) and F (t, ·) : Hγ 7→ Hγ. Moreover, the following
estimates hold:

(i) For all t ≥ 0 and ψ ∈ Hγ,

|F (t, ψ)|2Hγ
+ ‖G(t, ψ)‖2

L(HS)(Rd,Hγ) ≤
(
K2

1(J, g) + 1
)
|g|2Hγ

.

(ii) For all t ≤ 0 and ψ, ϕ ∈ Hγ,

‖G(t, ψ)−G(t, ϕ)‖L(HS)(Rd,Hγ) ≤ |h|L∞ |ψ − ϕ|Hγ
,

|F (t, ψ)− F (t, ϕ)|Hγ
≤ K|ψ − ϕ|Hγ ,

where K := |h|L∞
(
2K2(J, g)|g|2Hγ

+ 2K1(J, g)
)1/2

.

(iii) For all t ≥ 0 and ψ, ϕ ∈ Hγ,

|F (t, ψ)− F (t, ϕ)|2Hγ
+ ‖G(t, ψ)−G(t, ϕ)‖2

L(HS)(Rd,Hγ) ≤ K̃ |ψ − ϕ|2Hγ
,

where K̃ := 2
(
|h|2L∞ + |h|2Hγ

)(
1 + 2K2(J, g)|g|2Hγ

+ 2K1(J, g)
)
.

Proof Take t ≥ 0 and ψ ∈ Hγ. Then

‖G(t, ψ)‖2
L(HS)(Rd,Hγ) =

∫ ∞

0

|g(t, ξ, ψ(ξ))|2eγξdξ ≤ |g|2Hγ
.
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Next, for G(t, ψ)(η) treated as a vector in Rd,∣∣∣∣∫ ξ

0

G(t, ψ)(η)dη

∣∣∣∣ ≤ ∫ ∞

0

|g(η)|dη = |g|L1 . (16)

Hence, by the �rst assumption of the theorem and Lemma 1, for every ξ > 0,∫ ξ
0
G(t, ψ)(η)dη belongs to the domain of the derivative of J ,∣∣∣∣DJ (∫ ξ

0

G(t, ψ)(η)dη

)∣∣∣∣ ≤ K1(J, g) <∞,

and (i) follows.
To see the Lipschitz continuity note that for ψ, ϕ ∈ Hγ and t ≥ 0,

‖G(t, ψ)−G(t, ϕ)‖2
L(HS)(Rd,Hγ) ≤

∫ ∞

0

|h(ξ)|2|ψ(ξ)− ϕ(ξ)|2eγξdξ.

Thus C(ψ, ϕ) := ‖G(t, ψ)−G(t, ϕ)‖2
L(HS)(Rd,Hγ)

can be estimated by
|h|2L∞|ψ − ϕ|2Hγ

if ψ, ϕ ∈ Hγ,

h|2Hγ
|ψ − ϕ|2 if ψ, ϕ ∈ R,

2
(
|h|2Hγ

+ |h|2L∞
)(

|ψ|2Hγ
+ |ϕ|2

)
if ψ ∈ Hγ, ϕ ∈ R.

Since for ψ ∈ Hγ and ϕ ∈ R, |ψ − ϕ|2Hγ
= |ψ|2Hγ

+ |ϕ|2, we have

C(ψ, ϕ) ≤

{
|h|2L∞|ψ − ϕ|2Hγ

, if ψ, ϕ ∈ Hγ,

2
(
|h|2L∞ + |h|2Hγ

)
|ψ − ϕ|2Hγ

, if ψ, ϕ ∈ Hγ.

We show the Lipschitz continuity of F . Let ψ, ϕ ∈ Hγ and t ≥ 0. Clearly

|F (t, ψ)− F (t, ϕ)|2Hγ
≤ 2(I1 + I2),

where I1 is equal to∫ ∞

0

|G(t, ψ)(ξ)|2
∣∣∣∣DJ (∫ ξ

0

G(t, ψ)(η)dη

)
−DJ

(∫ ξ

0

G(t, ϕ)(η)dη

)∣∣∣∣2 eγξdξ
and

I2 :=

∫ ∞

0

|G(t, ψ)(ξ)−G(t, ϕ)(ξ)|2
∣∣∣∣DJ (∫ ξ

0

G(t, ϕ)(η)dη

)∣∣∣∣2 eγξdξ.
10



By (16),

I1 ≤ K2(J, g)

∫ ∞

0

|g(ξ)|2
(∫ ξ

0

|G(t, ψ)(η)−G(t, ϕ)(η)|dη
)2

eγξdξ

≤ K2(J, g) |g|2Hγ

∫ ∞

0

|G(t, ψ)(η)−G(t, ϕ)(η)|2dη

≤ K2(J, g) |g|2Hγ
‖G(t, ψ)−G(t, ϕ)‖2

L(HS)(Rd,Hγ)

and
I2 ≤ K1(J, g) ‖G(t, ψ)−G(t, ϕ)‖2

L(HS)(Rd,Hγ).

�

Remark 4 Note that if r0 − c ∈ Hγ then the solution r(t), t ≥ 0 is a
càdlàg process in Hγ and r(t) − c ∈ Hγ t ≥ 0. Indeed, the stochastic term∫ t

0
S(t−s)G(s, r(s))dZ(s) can be written as

∫ t
0
S(t−s)dM(s), whereM(t) =∫ t

0
G(s, r(s))dZ(s) is a square integrable martingale in Hγ. Since, by Lemma

2, S is a semigroup of contractions on Hγ we infer by the Kotelenez theorem;
see Theorem 9.3 in Peszat and Zabczyk [20]. Next, if Z is a Wiener process,
then by the factorization one obtains the continuity of r in Hγ; see Theorem
11.6 of Peszat and Zabczyk [20].

4.1 Existence in a special case

We restrict our attention to the special case of (13), in which Z is two-
dimensional and G is, as in Section 4, of composition type. In fact we assume
that Z = (W,L) where W is a standard real-valued Wiener process, and L is
an independent square integrable real-valued Lévy martingale with Laplace
exponent

log E e−zL(1) =

∫
R

(
e−zy − 1 + zy

)
ν(dy),

∫
R
y2ν(dy) <∞. (17)

Note that in the notation from the previous subsection, d = 2 and

J(z1, z2) =
z2
1

2
+

∫
R

(
e−z2y − 1 + z2y

)
ν(dy). (18)
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Therefore we are concerned with the following equation:

dr(t)(ξ) =

(
∂

∂ξ
r(t)(ξ) + F (r)(ξ)

)
dt+ g1(t, ξ, r(t)(ξ))dW (t)

+ g2(t, ξ, r(t)(ξ))dL(t),

(19)

where gi : [0,+∞)× [0,+∞)× R 7→ R, i = 1, 2, and

F (t, ψ)(ξ) = g1(t, ξ, ψ(ξ))

∫ ξ

0

g1(t, η, ψ(η))dη

+ g2(t, ξ, ψ(ξ))

∫
R
y
(
1− e−y

∫ ξ
0 g2(t,η,ψ(η))dη

)
ν(dy).

Note that G(t, ψ)[z1, z2](ξ) = g1(t, ξ, ψ(ξ))z1 + g2(t, ξ, ψ(ξ))z2.

Theorem 3 Assume that ν is supported in [−m,+∞) for some m ≥ 0, and
that g2(t, ξ, u) ≥ 0 for all t, ξ ≥ 0 and u ∈ R. Moreover, we assume that
there are functions g ∈ Hγ and h ∈ Hγ ∩ L∞ such that for all t, ξ ∈ [0,+∞)
and u, v ∈ R,

|gi(t, ξ, u)| ≤ g(ξ), |gi(t, ξ, u)− gi(t, ξ, v)| ≤ h(ξ) |u− v|, i = 1, 2.

Then for each r0 ∈ Hγ and each r0 ∈ Hγ there is a unique solution r to (19)
in Hγ, respectively in Hγ, satisfying r(0) = r0. Moreover, if the coe�cients
gi do not depend on t, then (19) de�nes (time homogeneous) Feller families
on Hγ and on Hγ.

Proof The proof follows the ideas of the proof of Theorem 2. Only the
fact that we do not assume that

∫
R y

2e|g|L1 |y|ν(dy) <∞ should be explained.
This assumption is compensated by the fact the g2 is non-negative and ν has
support in [−m,+∞). In fact we have the following version of Lemma 3. Its
proof is left to the reader. �

To formulate the result we need the following analogues of K1(J, g) and
K2(J, g). Let

J̃(z) =

∫ +∞

−m

(
e−zy − 1 + zy

)
ν(dy)

and let

K̃1(J̃ , g) := sup
0≤z≤|g|L1

∣∣∣J̃ ′(z)∣∣∣ , K2(J̃ , g) := sup
0≤z≤|g|L1

∣∣∣J̃ ′′(z)∣∣∣ .
Note that K̃i(J̃ , g2) <∞, i = 1, 2.
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Lemma 4 Under the assumptions of Theorem 3, for every t ≥ 0, one has
G(t, ·) : Hγ 7→ L(HS)(R2, Hγ) and F (t, ·) : Hγ 7→ Hγ. Moreover,

(i) For all t ≥ 0 and ψ ∈ Hγ,

|F (t, ψ)|2Hγ
+ ‖G(t, ψ)‖2

L(HS)(R2,Hγ) ≤ 2|g|2Hγ

(
1 + |g|2L1 + K̃2

1(J̃ , g)
)
.

(ii) For all t ≤ 0 and ψ, ϕ ∈ Hγ,

‖G(t, ψ)−G(t, ϕ)‖L(HS)(R2,Hγ) ≤ 2|h|L∞ |ψ − ϕ|Hγ
,

|F (t, ψ)− F (t, ϕ)|Hγ
≤ K|ψ − ϕ|Hγ ,

where K := |h|L∞
(
1 + |g|Hγ + 2K̃2(J̃ , g)|g|2Hγ

+ 2K̃1(J̃ , g)
)1/2

.

(iii) For all t ≥ 0 and ψ, ϕ ∈ Hγ,

|F (t, ψ)− F (t, ϕ)|2Hγ
+ ‖G(t, ψ)−G(t, ϕ)‖2

L(HS)(R2,Hγ) ≤ K̃ |ψ − ϕ|2Hγ
,

where

K̃ := 8
(
|h|2L∞ + |h|2Hγ

)(
1 + |g|2Hγ

+ 2K̃2(J̃ , g)|g|2Hγ
+ 2K̃1(J̃ , g)

)
.

5 Positivity

We call a function ψ : [0,+∞) 7→ R non-negative if ψ(ξ) ≥ 0 for almost
all ξ ≥ 0. Clearly, in all models, the forward curve functions should take
non-negative values. We present here su�cient conditions on the coe�cient
G and the noise Z under which (13) preserves positivity, that is, for every
non-negative initial value r(0) the functions r(t), t ≥ 0, are-non negative.

We restrict our attention to the special case of (13) considered in Sec-
tion 4.1. To simplify the exposition we consider only the time independent
coe�cients gi, i = 1, 2.

Theorem 4 Assume that g1(ξ, 0) = 0 for ξ ∈ [0,∞) and that one of the
following conditions holds:

(i) g = (g1, g2) satisfy the assumptions of Theorem 2, ν is supported on
[−m,M ] for some m,M > 0 and |g2(ξ, u)| ≤ uM−1∧m−1 for all ξ ≥ 0
and u ≥ 0,

13



(ii) ν is supported on [−m,+∞) for some m, g1 and g2 satisfy the as-
sumptions of Theorem 3, and 0 ≤ g2(ξ, u) ≤ um−1 for all ξ ≥ 0 and
u ≥ 0.

Then (16) preserves positivity, that is, for every non-negative r(0) ∈ Hγ,
functions r(t), t ≥ 0, are non-negative.

By Theorems 2 and 3, for any r(0) ∈ Hγ there is a unique solution
(r(t), t ≥ 0) starting from r(0). Moreover, see Remark 4, r is a càdlàg process
in Hγ. In the proof we will use the following theorem from Milian [18] dealing
with the preserving positivity by the equation

dX = (AX + F (t,X)) dt+B(t,X)dW (20)

driven by a Wiener process W taking values in a Hilbert space U . In its
formulation the state space H = L2(O,B(O), ρ(ξ)dξ), where O is an open
domain in Rd and ρ is a non-negative weight, A generates a C0-semigroup S
on H and F : [0,+∞)×H 7→ H, B : [0,+∞)×H 7→ L(HS)(U,H).

Theorem 5 (Milian) Assume that:

(i) The semigroup S preserves positivity.

(ii) There is a constant C such that for all t, s > 0 and x, y ∈ H,

|(F (t, x)− F (s, y)|+ ‖B(t, x)−B(s, y)‖L(HS)(U,H)

≤ C (|t− s|+ |x− y|H) .

(iii) For every t ≥ 0 and for all non-negative continuous x, f ∈ H satisfying
〈f, x〉H = 0 one has 〈F (t, x), f〉H ≥ 0 and 〈B(t, x)v, f〉H = 0 for every
v ∈ U .

Then (20) preserves positivity.

Remark 5 The original Milian theorem is a little more general. In particular
it covers also the case ofW being a cylindrical Wiener process. Also it shows
that (iii) is necessary for preserving positivity. The assumption of Lipschitz
continuity in t can be easily replaced by uniform continuity.

The problem of preserving positivity and the so-called comparison prin-
ciple have been studied by several authors; see e.g. Aubin and Da Prato [1],
Goncharuk and Kotelenez [11], Jachimiak [13], Kotelenez [17].
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Proof of Theorem 4 First of all not that the semigroup S preserves pos-
itivity. Let D(x)(ξ) = g2(ξ, x(ξ)) and let us approximate L by a sequence
{Ln} of processes satisfying |∆Ln(t)| ≥ 1/n, t ≥ 0, n ∈ N. We assume
that Ln converges P-a.s. to L uniformly on each compact time interval. The
existence of such a sequence follows from the Lévy�Khinchin decomposition.
Let rn be the solution to the problem

dr =

(
∂

∂ξ
r + F (r)

)
dt+B(r)dW (t) +D(r)dLn, rn(0) = r(0). (21)

Since rn converges to r it is enough to show that (21) preserves positivity. To
do this note that Ln has only isolated jumps. Between the jumps positivity
is preserved by Theorem 5, as the driving process is Wiener. Assume that
the solution is positive till the jump at time τ . Then

rn(τ)(ξ) = rn(τ−)(ξ) + g2(ξ, rn(τ−)(ξ)) (Ln(τ)− Ln(τ−)) .

Hence, if (a) holds, then

rn(τ−)(ξ) + g2(ξ, rn(τ−)(ξ)) (Ln(τ)− Ln(τ−))

≥ rn(τ−)(ξ)− (m ∨M) |g2(ξ, rn(τ−)(ξ))| ≥ 0

and, if (b) holds, then

rn(τ−)(ξ) + g2(ξ, rn(τ−)(ξ)) (Ln(τ)− Ln(τ−))

≥ rn(τ−)(ξ)−mg2(ξ, rn(τ−)(ξ)) ≥ 0,

and the result follows. �

Example 1 Let Z = (W,L) be as in Theorem 4, and let the jump measure
ν of L be supported on [−m,+∞) for a certain m > 0. Let gi(ξ, u) =
hi(ξ)vi(u), i = 1, 2. Assume that:

(i) vi, i = 1, 2 are bounded and Lipschitz continuous, hi, i = 1, 2 are
bounded and belong to Hγ,

(ii) v1(0) = 0, h2 and v2 are non-negative, 0 ≤ v2(u) ≤ u/(m|h2|L∞) for
u ≥ 0.

Then the assumptions of Theorem 4 are satisfy and (19) de�nes Feller family
preserving positivity.
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An important example of a jump measure supported on [0,+∞) is given
below.

Example 2 Given α > 0 let ν(dξ) = χ{ξ>0}ξ
−1−βe−αξ. Then, there is a

constant c = c(α, β) such that for z > 0,

J ′(z) =

{
c
[
α−1+β − (z + α)−1+β

]
if 0 < β < 1;

c
[
(z + α)−1+β − α−1+β

]
if 1 < β < 2.

6 Linear volatility

As in the section concerning special case we assume that Z = (W,L), where
W is a standard Wiener process in R, and L is a real-valued Lévy martingale
with Laplace transform (17). Moreover we assume that the volatility G is a
linear function of r, that is,

G(t, ψ)[z1, z2](ξ) = g1(t)ψ(ξ)z1 + g2(t)ψ(ξ)z2, z1, z2 ∈ R, ξ, t ≥ 0.

Above g1 and g2 are predictable random processes independent of ξ. Then
(19) becomes

dr(t)(ξ) =

(
∂

∂ξ
r(t)(ξ) + F (t, r)(ξ)

)
dt+ g1(t)r(t)(ξ)dW (t)

+ g2(t)r(t)(ξ)dL(t),

(22)

where

F (t, ψ)(ξ) = g2
1(t)ψ(ξ)

∫ ξ

0

ψ(η)dη

+ g2(t)ψ(ξ)

∫
R
y

(
1− exp

{
−yg2(t)

∫ ξ

0

ψ(η)dη

})
ν(dy).

We will always assume that r0 is a non-negative function. Let u(t)(ξ) =∫ ξ
0
r(t)(η)dη be a primitive of r(t). Then

du(t)(ξ) =

(
∂

∂ξ
u(t)(ξ) +

(g1(t)u(t)(ξ))
2

2
+ J̃ (g2(t)u(t))

)
dt

+ g1(t)u(t)dW (t) + g2(t)u(t)(ξ)dL(t),

(23)
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where

J̃(z) :=

∫
R

(
e−zy − 1 + zu

)
ν(dy). (24)

We assume that the jump measure ν of L satis�es
∫

R |y|
2ν(dy) <∞.

6.1 Pure jump case

Assume that g1 ≡ 0. To simplify we assume that g2 ≡ 1. Then

du(t)(ξ) =

(
∂

∂ξ
u(t)(ξ) + J̃ (u(t)(ξ))

)
dt+ u(t)(ξ)dL(t). (25)

To ensure the positivity we assume that ν is supported on [−1,+∞).
In order to solve (25) and consequently the HJMM equation for r we solve

the following auxiliary problem:

dv(t) = J̃(v(t))dt+ v(t)dL(t), v(0) = ξ. (26)

Clearly J̃ : [0,+∞) 7→ R is Lipschitz continuous if its derivative is bounded.
This is guaranteed by the assumption

ν has support in [0,+∞) and

∫ ∞

0

yν(dy) <∞. (27)

Proposition 1 Assume (27). Then:

(i) For each non-negative ξ ≥ 0 there is a unique non-negative solution
(v(t)(ξ), t ≥ 0) to (26). Moreover, for each t, v(t)(ξ) depends continu-
ously on ξ, P-a.s.

(ii) There exists a version of v di�erentiable in ξ and

∂

∂ξ
v(t)(ξ) = e

∫ t
0 J̃

′(v(s)(ξ))dsA(t) (28)

where A is a positive càdlàg process.

Proof By Protter [21], Theorem 37, p. 308, the unique solution to (26)
depends continuously on ξ. Since J̃ ′′(z) =

∫
[0,∞)

y2e−zyν(dy), z ≥ 0, J̃ ′ is
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locally Lipschitz, by Protter [21], Theorem 39, p. 312, the solution v is
di�erentiable in ξ and vξ(t)(ξ) = ∂

∂ξ
v(t)(ξ) satis�es

dvξ(t)(ξ) = J̃ ′ (v(t−)(ξ)) vξ(t−)(ξ)dt+ vξ(t−)(ξ)dL(t) = vξ(t−)(ξ)dX(t),

where

X(t) = L(t) +

∫ t

0

J̃ ′ (v(s−)(ξ)) ds.

By Doléan's formula (see e.g. Protter [21]),

vξ(t)(ξ) = eX(t)
∏
s≤t

(1 + ∆X(s)) e−∆X(s).

Since ∆X(s) = ∆L(s) and
∫ t

0
J̃ ′ (vξ(s−)(ξ)) ds =

∫ t
0
J̃ ′ (vξ(s)(ξ)) ds,

vξ(t)(ξ) = e
∫ t
0 J̃

′(v(s)(ξ))dseL(t)
∏
s≤t

(1 + ∆L(s)) e−∆L(s).

�

Proposition 2 Assume (27). Let v(t)(ξ), t ≥ 0, ξ ≥ 0, be the solution to
(26). Then

u(t)(ξ) = v(t)(t+ u0(ξ)), t ≥ 0, ξ ≥ 0,

is the unique solution to (25).

Proof We claim that

dv(t)(t+ u0(ξ)) =

(
∂

∂ξ
v(t)(t+ u0(ξ)) + J̃ (v(t)(t+ u0(ξ)))

)
dt

+ v(t)(t+ u0(ξ))dL(t).

Let ψ : [0,+∞)× [0,+∞) 7→ R be a di�erentiable function of both variables.
Given ξ > 0 consider the process (v(t)(ψ(t, ξ)), t ≥ 0). Then for any partition
0 = t0 < t1 < . . . < tN = t,

v(t) (ψ(t, ξ))− v(0) (ψ(0, ξ)) = I1 + I2,
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where
I1 :=

∑
n

(v (tn+1) (ψ(tn+1, ξ))− v (tn+1) (ψ(tn, ξ))) ,

I2 :=
∑
n

(v (tn+1) (ψ(tn, ξ))− v (tn) (ψ(tn, ξ))) .

But
I1 =

∑
n

[vξ (tn+1) (ψ(tn+1, ξ)

+ε̃ (ψ(tn, ξ)− ψ(tn+1, ξ)) (ψ(tn+1, ξ)− ψ(tn, ξ)))]

=
∑
n

vξ (tn+1) (ψ(tn+1, ξ) + ε̃ (ψ(tn, ξ)− ψ(tn+1, ξ)))

× ψ′ (tn + η̃(tn+1 − tn), ξ) (tn+1 − tn),

where ε̃ and η̃ are such that |ε̃| ≤ 1 and |η̃| ≤ 1. Taking into account
continuous dependence of vξ on the second variable (see Proposition 1) we

obtain I1 →
∫ t

0
vξ(s)(ψ(s, ξ))ds as n ↑ ∞. Since v satis�es (26),

I2 =
∑
n

(∫ tn+1

tn

J (v(s−)(ψ(tn+1, ξ)) ds+

∫ tn+1

tn

v(s−) (ψ(tn, ξ)) dL(s)

)
and therefore

I2 →
∫ t

0

J (v(s−)(ψ(s, ξ)) ds+

∫ t

0

v(s−)(ψ(s, ξ))dL(s).

� As a corollary we obtain the following basic result.

Theorem 6 For any nonnegative r0, the unique solution r to (25) is given
by

r(t)(ξ) =
∂

∂ξ
u(t)(ξ) =

∂

∂ξ
v(t)(t+ u0(ξ)) = vξ(t)(t+ u0(ξ))r0(ξ),

where vξ has representation (28).

6.2 Gaussian case

This section is concerned with the Gaussian case. Namely, we assume that
the jump case in (22) vanishes, and consequently L = W is a standard Brow-
nian motion. To shorten the notation we write g1(t) = h(t). We assume that
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h is a predictable process satisfying E
∫ T

0
h2(t)dt < ∞, ∀T > 0. Therefore

(22) becomes
dr(t)(ξ) =

(
∂

∂ξ
r(t)(ξ) + h2(t)r(t)(ξ)

∫ ξ

0

r(t)(η)dη

)
dt

+ h(t)r(t)(ξ)dW (t),

r(0)(ξ) = r0(ξ).

(29)

We assume that r0 is a non-negative function. Set

Mh(t) := exp

{
−1

2

∫ t

0

h2(s)ds+

∫ t

0

h(s)dW (s)

}
.

The theorem below shows that Eq. (29) can be solved explicitly. However
the solution may blow up in �nite time.

Theorem 7 Then unique solution to (29) is given by

r(t)(ξ) =
∂

∂ξ

[(∫ t+ξ

0

r0(η)dη

)−1

− 1

2

∫ t

0

h2(s)Mh(s)ds

]−1

Mh(t). (30)

Proof Let us denote by u(t) the following primitive of r(t), u(t)(ξ) :=∫ ξ
0
r(t)(η)dη. Then r(t)(ξ) = ∂u

∂ξ
(t)(ξ) and consequently we have the following

equation on u:

d
∂u

∂ξ
=

(
∂2u

∂ξ2
+ h2∂u

∂ξ
u

)
dt+ h

∂u

∂ξ
dW

=
∂

∂ξ

{(
∂u

∂ξ
+ h2u

2

2

)
dt+ hudW

}
.

Hence,
du(t)(ξ) =

(
∂u

∂ξ
(t)(ξ) + h2(t)

u2(t)(ξ)

2

)
dt+ h(t)u(t)(ξ)dW (t),

u(0)(ξ) =

∫ ξ

0

r0(η)dη.

In order to solve this equation we use the ideas from the previous subsection.
Namely, u(t)(ξ) = v(t)(t + u(0)(ξ)), where v(t)(ξ) is the unique solution to
the stochastic Bernoulli problem

dv(t)(ξ) = h2(t)
v2(t)(ξ)

2
dt+ h(t)v(t)(ξ)dW (t), v(0)(ξ) = ξ.
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Let us �x ξ. We solve the equation using the substitution z(s) = 1/v(s)(ξ).
By Itô's formula,

dz(s) =

(
− 1

v2(s)
h2(s)

v2(s)

2
+

1

2
2

1

v3(s)
h(s)v2(s)

)
ds

− 1

v2(s)
h(s)v(s)dW (s)

= h2(s)

(
−1

2
+ z(s)

)
ds− h(s)z(s)dW (s).

To solve the equation we use the variation of constants formula. Thus we
look for a solution in the form z(s) = c(s)z0(s), where z0 is a solution to the
homogeneous equation

dz0(s) = h2(s)z0(s)ds− h(s)z0(s)dW (s).

Then
dz = d(cz0) = c′z0ds+ cdz0 = c′z0ds+ h2zds− hzdW.

This leads to the condition c′(s) = −h2(s)
2

1
z0(s)

. Clearly, for z0 we can take

z0(s) = exp

{
1

2

∫ s

0

h2(η)dη −
∫ s

0

h(η)dW (η)

}
=

1

Mh(s)
.

Taking into account the initial value condition z(0) = 1/ξ we obtain

z(s) =

(
ξ−1 − 1

2

∫ s

0

h2(η)Mh(η)dη

)
1

Mh(s)
,

which gives the desired formula. �

Corollary 1 As a direct consequence of (30), the set D of all (t, ξ) for which
the solution blows up is given by

D =

{
(t, ξ) :

1

2

∫ t

0

h2(s)Mh(s)ds =

(∫ t+ξ

0

r0(η)dη

)−1
}
.

Since r0 ≥ 0, the processes t 7→
(∫ t+ξ

0
r0(η)dη

)−1

, where ξ ≥ 0 is �xed, and

ξ 7→
(∫ t+ξ

0
r0(η)dη

)−1

, where t ≥ 0 is �xed, have decreasing trajectories.

Clearly, the process 2−1
∫ t

0
h2(s)Mh(s)ds, t ≥ 0, is increasing and starts from

0. Therefore, if
∫∞

0
r0(η)dη = +∞ and P

(∫∞
0
h2(s)ds > 0

)
= 1, then with

probability 1, for any ξ there is a time t such that (t, ξ) ∈ D.
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Let φ : R 7→ R be a bounded non-negative Lipschitz function satisfying
φ(1) 6= 0, φ(0) = 0 and

m(φ) := sup
x 6=0

|φ(x)|2

|x|
<∞. (31)

Let X be a solution to the equation

dX = φ(X)dW, X(0) = 1.

Note, that X is not identically 0 as φ(1) 6= 0. Clearly, X = Mh with non-
negative process

h(t) =
φ(X(t))

X(t)
, t ≥ 0.

From (31), P-a.s. h2(s)Mh(s) ≤ |φ(X(s))|2
X(s)

≤ m(φ), t ≥ 0. Hence,∣∣∣∣12
∫ t

0

h2(s)Mh(s)ds

∣∣∣∣ ≤ tm(φ)

2

and we have the following consequence of Theorem 7.

Theorem 8 Let T > 0. Then for each non-negative initial value r0 ∈ L1 :=
L1([0,+∞),B([0,+∞), dξ) satisfying |ψ|L1 < 2

Tm(φ)
, the process r given by

(30) has trajectories P-a.s. in C([0, T );L1) and is a unique strong solution
to (29) on the open interval [0, T ). Additionally, if r0 ∈ Cn

b ([0,+∞)), then
r ∈ C ([0, T );Cn

b ([0,+∞)), P-a.s.
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