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Abstract

We present tensor-product divergence-free and curl-free wavelets, and define as-
sociated projectors. These projectors permit the definition of an iterative algorithm
to compute the Helmholtz decomposition in wavelet domain of any vector field. This
decomposition is localized in space, in contrast to the Helmholtz decomposition cal-
culated by Fourier transform. Then we prove the convergence of the algorithm in any
dimension for the particular case of Shannon wavelets. We also present a modification
of the algorithm which allows to apply it in an adaptive context. Finally, numerical
tests show the validity of this approach for any choice of wavelets.

Introduction

In many physical problems, like the simulation of incompressible fluids (Stokes problem,
Navier-Stokes equations [2, 17]), or in electromagnetism (Maxwell’s equations [16]), the
solution has to fulfill a divergence-free condition. The implementation of relevant numeri-
cal schemes often requires orthogonal projection on the set of divergence-free vector valued
functions.

The Helmholtz decomposition [10, 2] consists in decomposing a vector field u ∈
(L2(Rn))n, into the sum of its divergence-free component udiv and its curl-free compo-
nent ucurl. More precisely, there exist a stream-function ψ and a potential-function p such
that:

u = udiv + ucurl (0.1)

with
udiv = curl ψ , (div udiv = 0) and ucurl = ∇p , (curl ucurl = 0) .

Moreover, the functions curl ψ and ∇p are orthogonal in (L2(Rn))n. The stream-function
ψ and the potential-function p are unique, up to an additive constant.

This decomposition arises from the orthogonal direct sum of the two spaces Hdiv 0(R
n),

the space of divergence-free vector functions, and Hcurl 0(R
n), the space of curl-free vector

functions. In short:
(L2(Rn))n = Hdiv 0(R

n) ⊕⊥ Hcurl 0(R
n) .
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This decomposition is straightforward in (L2(Rn))n thanks to the Leray projector (the
orthogonal projector from (L2(Rn))n onto Hdiv 0(R

n)) which can be explicitly described
in Fourier domain. The Helmholtz decomposition (0.1) also exists for more general open
sets Ω [10, 2].

The objective of the present paper is to propose an orthogonal Helmholtz decompo-
sition in wavelet domain of any vector field. Since wavelet bases are localized both in
physical and Fourier spaces [11], the advantages of such a decomposition will be, contrar-
ily to the one based on the Fourier transform, first to be local in physical space, second
to be available on the whole domain Rn, as well as on bounded domains. Moreover, an
accurate wavelet Helmholtz decomposition will be provided by a small number of degrees
of freedom, thanks to nonlinear approximation properties of wavelet bases [4]. This last
property will be of great interest, for instance in Direct Numerical Simulations (DNS) of
turbulence [9].
In this context divergence-free wavelet bases have been originally designed by Lemarié
[12], and investigated along with curl-free wavelets for the decomposition of Hdiv 0(R

n) and
Hcurl 0(R

n) by Urban in [20]. Since divergence-free and curl-free wavelets are biorthogo-
nal (and not orthogonal, see [13]) bases, the associated projectors do not provide directly
the Helmholtz decomposition of a vector field. Therefore we have originally proposed an
iterative algorithm in [7], of which we have proved the convergence in dimensions 2 and
3, using Shannon wavelets [8]. In order to achieve the wavelet Helmholtz decomposition
in any dimension, we propose in this article a new formulation for the divergence-free and
curl-free wavelets. This re-formulation will lead to an expression of the Leray projector in
the wavelet domain, analogous of its expression in the Fourier one: all these ingredients
will allow proving the convergence of the algorithm for Shannon wavelets, and to verify it
experimentally for a large class of wavelets.

The article is organized as follows: in Section 1 we construct biorthogonal wavelet
bases of Hdiv 0(R

n) and Hcurl 0(R
n), with their associated projectors. As the projectors

associated to divergence-free wavelets are oblique, we define in Section 2.1 an iterative
algorithm providing the wavelet Helmholtz decomposition of any vector field in dimension
n. We prove the convergence of this algorithm in Section 2.2 in the case of Shannon
wavelets. In Section 3, we modify the expression of the wavelet bases, to make their use
possible in an adaptive scheme. Section 4 is devoted to numerical tests, in order to observe
the convergence of the wavelet Helmholtz decomposition on 2D and 3D vector fields.

1 Divergence-free and curl-free wavelets

Divergence-free wavelets were defined by P.G. Lemarié in 1992 [12]. K. Urban used them
in the numerical resolution of the Stokes problem [19], and extended the principle of their
construction to derive curl-free wavelets [20]. These constructions are both based on the
existence of biorthogonal wavelet bases (see [3, 14]) linked by differentiation. In particular,
we will use the following result from [12]:

Proposition 1.1 Let (V 1
j ) be a multiresolution analysis (MRA) of L2(R), with associated

wavelet ψ1 and scaling function ϕ1. Then there exists a MRA (V 0
j ), with associated wavelet
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ψ0 and scaling function ϕ0, satisfying:

ψ′
1(x) = 4 ψ0(x) and ϕ′

1(x) = ϕ0(x) − ϕ0(x− 1) (1.1)

By this theorem, we have at our disposal two Riesz bases of L2(R):
(
ψ1,j,k(x) = 2j/2ψ1(2

jx− k))
)

j,k∈Z

and (ψ0,j,k)j,k∈Z
, related by derivation. Hence a function decomposed into the first basis

ψ1,j,k with coefficients (dj,k), has for derivative the function with coefficients (2j+2dj,k)
into the second basis ψ0,j,k. Conversely an indefinite integral of the function of coefficients
(dj,k) into the second basis ψ0,j,k, has for coefficients (2−j−2dj,k) in the first one.
Contrarily to the wavelets proposed in Lemarié’s and Urban’s works, we will prefer to use
divergence-free and curl-free anisotropic wavelet bases, which means tensor-products of
one dimensional wavelet bases [5, 7]. We will recall in the following the main ingredients
for the definition of these wavelets and their associated projectors.

1.1 Anisotropic divergence-free wavelets

1.1.1 The two-dimensional case

Anisotropic divergence-free wavelets in two dimensions are constructed by taking the curl
of wavelets in the tensor-product AMR (V 1

j ⊗ V 1
j ):

Ψdiv
j,k (x1, x2) =

1

4
curl

(
ψ1(2

j1x1 − k1)ψ1(2
j2x2 − k2)

)
=

∣∣∣∣
2j2ψ1(2

j1x1 − k1)ψ0(2
j2x2 − k2)

−2j1ψ0(2
j1x1 − k1)ψ1(2

j2x2 − k2)

Here, j = (j1, j2) ∈ Z2 is the scale parameter, and k = (k1, k2) ∈ Z2 the position parameter.
For j,k ∈ Z2, the set {Ψdiv

j,k} forms a Riesz basis of Hdiv 0(R
2). In order to complete this

family to a basis of (L2(R2))2, we introduce the complementary functions:

ΨN

j,k(x1, x2) =

∣∣∣∣
2j1ψ1(2

j1x1 − k1)ψ0(2
j2x2 − k2)

2j2ψ0(2
j1x1 − k1)ψ1(2

j2x2 − k2)

This choice ensures that, for fixed j and k, the complementary function ΨN

j,k is orthogonal

to the divergence-free wavelet Ψdiv
j,k . The exponent N (and further N ) stands for “nor-

mal”. Note that imposing this constraint of orthogonality yields a unique solution for
the complementary function, contrarily to the several possible choices for the “natural”
supplementary spaces introduced by K. Urban in [21].

To decompose any vector field u into this new basis, we begin with the standard
tensor-product wavelet decomposition of u in the MRA (V 1

j1
⊗ V 0

j2
) × (V 0

j1
⊗ V 1

j2
):

u =
∑

j∈Z2

∑

k∈Z2

(
d1,j,k Ψ1

j,k + d2,j,k Ψ2
j,k

)

where, for j,k ∈ Z2:

Ψ1
j,k(x1, x2) =

∣∣∣∣
ψ1(2

j1x1 − k1)ψ0(2
j2x2 − k2)

0

Ψ2
j,k(x1, x2) =

∣∣∣∣
0
ψ0(2

j1x1 − k1)ψ1(2
j2x2 − k2)
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are the tensor-product wavelets for each component (in L∞ normalization).
We can now express u into the divergence-free wavelet basis and its complementary wavelet
basis:

u =
∑

j∈Z2

∑

k∈Z2

(
ddiv j,k Ψdiv

j,k + dNj,k ΨN

j,k

)
(1.2)

which gives directly the coefficients ddiv j,k and dNj,k:

[
ddiv j,k

dNj,k

]
=

[
2j2

22j1+22j2
− 2j1

22j1+22j2

2j1

22j1+22j2

2j2

22j1+22j2

] [
d1,j,k

d2,j,k

]
(1.3)

Remark 1.1 Since the choice of the complementary wavelets ΨN

j,k is not unique, it influ-
ences the values of the coefficients ddiv j,k and dNj,k. We will see in Section 2.2 that this
choice also influences the convergence of the wavelet Helmholtz decomposition. Of course,
if u is divergence-free we retrieve dNj,k = 0.

1.1.2 The three-dimensional case

As in dimension two, the 3D anisotropic divergence-free wavelets are constructed by taking
the curl of standard tensor-product wavelets:

Ψdiv 1
j,k (x1, x2, x3) = 1

4curl

∣∣∣∣∣∣

0
0
ψ1ψ1ψ0

=

∣∣∣∣∣∣

2j2ψ1(2
j1x1 − k1)ψ0(2

j2x2 − k2)ψ0(2
j3x3 − k3)

−2j1ψ0(2
j1x1 − k1)ψ1(2

j2x2 − k2)ψ0(2
j3x3 − k3)

0

Ψdiv 2
j,k (x1, x2, x3) = 1

4curl

∣∣∣∣∣∣

ψ0ψ1ψ1

0
0

=

∣∣∣∣∣∣

0
2j3ψ0(2

j1x1 − k1)ψ1(2
j2x2 − k2)ψ0(2

j3x3 − k3)
−2j2ψ0(2

j1x1 − k1)ψ0(2
j2x2 − k2)ψ1(2

j3x3 − k3)

Ψdiv 3
j,k (x1, x2, x3) = 1

4curl

∣∣∣∣∣∣

0
ψ1ψ0ψ1

0
=

∣∣∣∣∣∣

−2j3ψ1(2
j1x1 − k1)ψ0(2

j2x2 − k2)ψ0(2
j3x3 − k3)

0
2j1ψ0(2

j1x1 − k1)ψ0(2
j2x2 − k2)ψ1(2

j3x3 − k3)

Indeed this family is linearly dependent (2j3Ψdiv 1
j,k +2j1Ψdiv 2

j,k +2j2Ψdiv 3
j,k = 0), and we have

to choose two functions among the three above, to form a basis of Hdiv 0(R
3). In any case,

we choose as the complementary wavelet a function which is orthogonal to the other three:

ΨN

j,k(x1, x2, x3) =

∣∣∣∣∣∣

2j1ψ1(2
j1x1 − k1)ψ0(2

j2x2 − k2)ψ0(2
j3x3 − k3)

2j2ψ0(2
j1x1 − k1)ψ1(2

j2x2 − k2)ψ0(2
j3x3 − k3)

2j3ψ0(2
j1x1 − k1)ψ0(2

j2x2 − k2)ψ1(2
j3x3 − k3)

(1.4)

Again, to compute the decomposition of a vector field into this new basis, we introduce the
tensor-product wavelets of the AMR (V 1

j1
⊗V 0

j2
⊗V 0

j3
)× (V 0

j1
⊗V 1

j2
⊗V 0

j3
)× (V 0

j1
⊗V 0

j2
⊗V 1

j3
),
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componentwise:

Ψ1
j,k(x1, x2, x3) =

∣∣∣∣∣∣

ψ1(2
j1x1 − k1)ψ0(2

j2x2 − k2)ψ0(2
j3x3 − k3)

0
0

Ψ2
j,k(x1, x2, x3) =

∣∣∣∣∣∣

0
ψ0(2

j1x1 − k1)ψ1(2
j2x2 − k2)ψ0(2

j3x3 − k3)
0

Ψ3
j,k(x1, x2, x3) =

∣∣∣∣∣∣

0
0
ψ0(2

j1x1 − k1)ψ0(2
j2x2 − k2)ψ1(2

j3x3 − k3)

with j = (j1, j2, j3) ∈ Z3 and k = (k1, k2, k3) ∈ Z3.
Let

u =

3∑

i=1

∑

j∈Z3

∑

k∈Z3

di j,k Ψi
j,k

be the decomposition of u into the above basis. To compute the coefficients of u in terms
of the divergence-free vector wavelets and their complementary wavelets:

u =
∑

j∈Z3

∑

k∈Z3

(
ddiv 1,j,k Ψdiv 1

j,k + ddiv 2,j,k Ψdiv 2
j,k + ddiv 3,j,k Ψdiv 3

j,k + dNj,k ΨN

j,k

)
(1.5)

we add the condition:

2j3 ddiv 1,j,k + 2j1 ddiv 2,j,k + 2j2 ddiv 3,j,k = 0

to have as many equations as unknowns. This leads to the following system for the change
of coordinates [5]:




ddiv 1,j,k

ddiv 2,j,k

ddiv 3,j,k

dNj,k




=




2j2

22j1+22j2+22j3
− 2j1

22j1+22j2+22j3
0

0 2j3

22j1+22j2+22j3
− 2j1

22j1+22j2+22j3

− 2j3

22j1+22j2+22j3
0 2j1

22j1+22j2+22j3

2j1

22j1+22j2+22j3

2j2

22j1+22j2+22j3

2j3

22j1+22j2+22j3







d1,j,k

d2,j,k

d3,j,k




(1.6)
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1.2 Generalization to the n-dimensional case

The first and natural idea for the general form of divergence-free wavelets in dimension n
is to introduce:

Ψdiv i
j,k (x1, x2, . . . , xn) =

0
...
0

line i → 2ji+1ψ0(2
j1x1 − k1) . . . ψ0(2

ji−1xi−1 − ki−1)ψ1(2
jixi − ki)

ψ0(2
ji+1xi+1 − ki+1) . . . ψ0(2

jnxn − kn)

line i+ 1 → −2jiψ0(2
j1x1 − k1) . . . ψ0(2

jixi − ki)ψ1(2
ji+1xi+1 − ki+1)

ψ0(2
ji+2xi+2 − ki+2) . . . ψ0(2

jnxn − kn)
0
...
0

(1.7)

for 1 ≤ i ≤ n (for i = n, the line n + 1 is shifted to the first line and the index jn+1 is
replaced by j1). Taking n− 1 vector wavelets out from these n wavelets allows to form a
basis of Hdiv 0(R

n). Note that these functions are no longer derived from the curl operator
since the curl operator takes a complicated form for n ≥ 4.
The complementary functions are chosen to satisfy an orthogonality condition with the
divergence-free wavelets of same index (j,k):

ΨN

j,k(x1, x2, . . . , xn) =

∣∣∣∣∣∣∣∣∣∣∣∣

2j1ψ1(2
j1x1 − k1)ψ0(2

j2x2 − k2) . . . ψ0(2
jnxn − kn)

...
2jiψ0(2

j1x1 − k1) . . . ψ1(2
jixi − ki) . . . ψ0(2

jnxn − kn)
...
2jnψ0(2

j1x1 − k1)ψ0(2
j2x2 − k2) . . . ψ1(2

jnxn − kn)

(1.8)

Like in dimensions two and three, the anisotropic divergence-free wavelet transform will be
related to the standard anisotropic wavelet transform. Each component ui of a vector field
u is decomposed in the tensor-product wavelet basis of the MRA (V 0

j1
⊗· · ·⊗V 1

ji
⊗· · ·⊗V 0

jn
):

ui(x1, . . . , xn) =
∑

j,k∈Zn

di j,k ψ0(2
j1x1 − k1) . . . ψ1(2

jixi − ki) . . . ψ0(2
jnxn − kn)

The divergence-free and complementary coefficients of u are given by:

u =

n∑

i=1

∑

j∈Z3

∑

k∈Z3

ddiv i,j,k Ψdiv i
j,k +

∑

j∈Z3

∑

k∈Z3

dNj,k ΨN

j,k (1.9)

to which we add the relationship between divergence-free coefficients:

n∑

i=1

2−ji−ji+1 ddiv i,j,k = 0
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(with the convention 2−jn+1 = 2−j1) chosen such that the last row of the matrix in the
system below is orthogonal to the others:




2j2 0 0 . . . . . . 0 −2jn 2j1

−2j1 2j3 0
. . .

. . .
... 0 2j2

0 −2j2 2j4
. . .

. . .
. . .

... 2j3

...
. . . −2j3 2j5

. . .
. . .

...
...

...
. . .

. . .
. . .

. . .
. . .

...
...

0 . . . . . . 0 −2jn−2 2jn 0 2jn−1

0 0 . . . . . . 0 −2jn−1 2j1 2jn

2−j1−j2 2−j2−j3 2−j3−j4 . . . 2−jn−2−jn−1 2−jn−1−jn 2−jn−j1 0







ddiv
1 j,k

ddiv
2 j,k

...

...

...
ddiv

n−1 j,k

ddiv
n j,k

dN

j,k




=




d1 j,k

d2 j,k

...

...

...
dn−1 j,k

dn j,k

0




(1.10)

Unfortunately, this matrix cannot be made orthogonal for n ≥ 4 even with the choice of
the last line orthogonal to the others. However for n = 3, the matrix of coordinate change
is still orthogonal:

M =




2j2 0 −2j3 2j1

−2j1 2j3 0 2j2

0 −2j2 2j1 2j3

2j3 2j1 2j2 0


 , withM−1 =

1

22j1 + 22j2 + 22j3




2j2 0 −2j3 2j1

−2j1 2j3 0 2j2

0 −2j2 2j1 2j3

2j3 2j1 2j2 0




(1.11)
This lack of orthogonality for n ≥ 4 makes the inversion of the matrix more difficult. This
is the reason why we will construct another divergence-free wavelet basis in which this
matrix will be orthogonal. Moreover we will see in Section 3.1 that this new construction
will be fruitful for a generalization of the method to isotropic and quasi-isotropic wavelets.

The method that we propose now is inspired by the expression of the Leray projector
in Fourier domain. We recall that the n-dimensional Leray projector P in Fourier space
takes the form:

P̂(u) =




ûdiv 1

ûdiv 2
...
...

ûdiv n−1

ûdiv n




=




1 −
ξ2
1

|ξ|2 − ξ2ξ1
|ξ|2 . . . . . . − ξnξ1

|ξ|2

− ξ1ξ2
|ξ|2 1 −

ξ2
2

|ξ|2
. . .

. . . − ξnξ2
|ξ|2

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

− ξ1ξn

|ξ|2 − ξ2ξn

|ξ|2 . . . − ξn−1ξn

|ξ|2 1 − ξ2
n

|ξ|2







û1

û2
...
...

ûn−1

ûn




(1.12)

where ûk denotes the Fourier transform1 of the k-th component uk of u, on Rn.

By analogy, we introduce the following expressions for the divergence-free wavelets

1The Fourier transform of a function f ∈ L1(R) is noted f̂(ξ) =
R +∞
−∞ f(x) e−ixξdx, we recall that

f 7→
1√
2π

f̂ defines an isometry on L2(R).
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(with the same notation as before): for 1 ≤ i ≤ n,

Ψdiv i
j,k (x1, . . . , xn) = 1

|ω|2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−ωiω1ψ1(ω1x1 − k1)ψ0(ω2x2 − k2) . . . ψ0(ωnxn − kn)
...
−ωiωi−1ψ0(ω1x1 − k1) . . . ψ0(ωi−2xi−2 − ki−2)ψ1(ωi−1xi−1 − ki−1)

ψ0(ωixi − ki) . . . ψ0(ωnxn − kn)

(∑
ℓ 6=i ω

2
ℓ

)
ψ0(ω1x1 − k1) . . . ψ0(ωi−1xi−1 − ki−1)ψ1(ωixi − ki)

ψ0(ωi+1xi+1 − ki+1) . . . ψ0(ωnxn − kn)

−ωiωi+1ψ0(ω1x1 − k1) . . . ψ0(ωixi − ki)ψ1(ωi+1xi+1 − ki+1)
ψ0(ωi+2xi+2 − ki+2) . . . ψ0(ωnxn − kn)

...
−ωiωnψ0(ω1x1 − k1) . . . ψ0(ωn−1xn−1 − kn−1)ψ1(ωnxn − kn)

where ωi = 2ji and |ω|2 =
∑n

i=1 22ji .
The complementary vector wavelet is chosen as before with renormalization:

ΨN

j,k 7→
1

|ω|
ΨN

j,k

For this choice of functions, the matrix expressing the standard coefficients di j,k in terms
of the divergence-free coefficients ddiv i,j,k in the system (1.10), is now given by:

M =




1 −
ω2

1
|ω|2 −ω2ω1

|ω|2 . . . . . . −ωnω1
|ω|2

ω1
|ω|

−ω1ω2
|ω|2 1 −

ω2
2

|ω|2
. . .

. . . −ωnω2
|ω|2

ω2
|ω|

...
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

...
...

−ω1ωn

|ω|2 −ω2ωn

|ω|2 . . . −ωn−1ωn

|ω|2 1 − ω2
n

|ω|2
ωn

|ω|
ω1
|ω|

ω2
|ω| . . . ωn−1

|ω|
ωn

|ω| 0




(1.13)

and this is a symetric orthogonal matrix (M−1 =t M = M).
Note that these new divergence-free wavelets are linear combinations of (1.7). Then,

the projections onto the divergence-free spaces generated by divergence-free wavelets of
same index (j,k) are the same in both cases. The interest of this new formulation for the
basis functions lies in the easy inversion of the matrix M (1.13). It allows to deduce the
divergence-free and complementary wavelet coefficients from the standard ones without
solving a system.

1.3 Curl-free wavelets

The construction of curl-free wavelets in two dimensions is given by considering the
gradient of the tensor-product wavelets of the MRA (V 1

j1
⊗ V 1

j2
):

Ψcurl
j,k (x1, x2) =

1

4
∇
(
ψ1(2

j1x1 − k1)ψ1(2
j2x2 − k2)

)
=

∣∣∣∣
2j1ψ0(2

j1x1 − k1)ψ1(2
j2x2 − k2)

2j2ψ1(2
j1x1 − k1)ψ0(2

j2x2 − k2)
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These vector wavelets form a basis of the space Hcurl 0(R
2). We complete it to a basis of

(L2(R2))2 by adding the complementary functions:

ΨN
j,k(x1, x2) =

∣∣∣∣
2j2ψ0(2

j1x1 − k1)ψ1(2
j2x2 − k2)

−2j1ψ1(2
j1x1 − k1)ψ0(2

j2x2 − k2)

The decomposition of any vector field into this wavelet basis can be obtained from the
standard decomposition into the canonical wavelets:

u =
∑

j∈Z2

∑

k∈Z2

(
d1,j,k Ψ#

1,j,k + d2,j,k Ψ#
2,j,k

)

with

Ψ#
1,j,k(x1, x2) =

∣∣∣∣
ψ0(2

j1x1 − k1)ψ1(2
j2x2 − k2)

0
Ψ#

2,j,k(x1, x2) =

∣∣∣∣
0
ψ1(2

j1x1 − k1)ψ0(2
j2x2 − k2)

The new decomposition:

u =
∑

j∈Z2

∑

k∈Z2

(
dcurl j,k Ψcurl

j,k + dN j,kΨN
j,k

)
(1.14)

is thus given by:

[
dN j,k

dcurl j,k

]
=

[
2j2

22j1+22j2
− 2j1

22j1+22j2

2j1

22j1+22j2

2j2

22j1+22j2

] [
d1,j,k

d2,j,k

]
(1.15)

Remark 1.2 One can notice the similarity between the divergence-free and curl-free trans-
forms, emphasized by the equality of matrices (1.3) and (1.15).

In the same way, three-dimensional curl-free wavelets are constructed by taking the
gradient of tensor-product wavelets of the MRA (V 1

j1
⊗ V 1

j2
⊗ V 1

j3
):

Ψcurl
j,k (x1, x2) =

1

4
∇
(
ψ1(2

j1x1 − k1)ψ1(2
j2x2 − k2)ψ1(2

j3x3 − k3)
)

=

∣∣∣∣∣∣

2j1ψ0(2
j1x1 − k1)ψ1(2

j2x2 − k2)ψ1(2
j3x3 − k3)

2j2ψ1(2
j1x1 − k1)ψ0(2

j2x2 − k2)ψ1(2
j3x3 − k3)

2j3ψ1(2
j1x1 − k1)ψ1(2

j2x2 − k2)ψ0(2
j3x3 − k3)

These wavelets generate a basis of the space Hcurl 0(R
3) which will be completed into a

basis of (L2(R3))3 with the following complementary functions (linearly dependent since∑3
i=1 2ji−1[3]ΨN i

j,k = 0):

ΨN 1
j,k (x1, x2, x3) =

∣∣∣∣∣∣

2j2ψ0(2
j1x1 − k1)ψ1(2

j2x2 − k2)ψ1(2
j3x3 − k3)

−2j1ψ1(2
j1x1 − k1)ψ0(2

j2x2 − k2)ψ1(2
j3x3 − k3)

0

ΨN 2
j,k (x1, x2, x3) =

∣∣∣∣∣∣

0
2j3ψ1(2

j1x1 − k1)ψ0(2
j2x2 − k2)ψ1(2

j3x3 − k3)
−2j2ψ1(2

j1x1 − k1)ψ1(2
j2x2 − k2)ψ0(2

j3x3 − k3)
(1.16)

ΨN 3
j,k (x1, x2, x3) =

∣∣∣∣∣∣

−2j3ψ0(2
j1x1 − k1)ψ1(2

j2x2 − k2)ψ1(2
j3x3 − k3)

0
2j1ψ1(2

j1x1 − k1)ψ1(2
j2x2 − k2)ψ0(2

j3x3 − k3)

9



The operation for obtaining the coefficients associated to ΨN i
j,k and Ψcurl

j,k from the stan-
dard wavelet coefficients uses the same matrix (1.11) as for the divergence-free wavelet
transform.

In dimension n ≥ 4, we will call wavelets that are a gradient of a potential function
curl-free. Therefore the n-dimensional curl-free vector wavelets are constructed by taking
the gradient of the tensor-product wavelets of the MRA (V 1

j1
⊗ · · · ⊗ V 1

jn
):

Ψcurl
j,k (x1, . . . , xn) =

1

4
∇
(
ψ1(2

j1x1 − k1) . . . ψ1(2
jnxn − kn)

)

=

∣∣∣∣∣∣∣∣∣∣∣∣

2j1ψ0(2
j1x1 − k1)ψ1(2

j2x2 − k2) . . . ψ1(2
jnxn − kn)

...
2jiψ1(2

j1x1 − k1) . . . ψ0(2
jixi − ki) . . . ψ1(2

jnxn − kn)
...
2jnψ1(2

j1x1 − k1)ψ1(2
j2x2 − k2) . . . ψ0(2

jnxn − kn)

(1.17)

In this case, the complementary wavelets (which will correspond to imperfect divergence-
free wavelets) are defined like the anisotropic divergence-free wavelets, simply by exchang-
ing the 0’s and the 1’s in the wavelet indices .

2 Orthogonal wavelet Helmholtz decomposition: convergence of an it-

erative algorithm

The objective now is to compute the Helmholtz decomposition of any vector field u, using
divergence-free and curl-free wavelets. More precisely, let P be the Leray projector and Q
the orthogonal projector onto the curl-free vector functions; we want to rewrite equation
(0.1) as:

u = Pu + Qu , Pu = udiv , Qu = ucurl (2.1)

such that udiv and ucurl will be expanded into the divergence-free and curl-free wavelet
bases:

udiv = Pu =
∑

j,k

ddiv j,kΨdiv
j,k and ucurl = Qu =

∑

j,k

dcurl j,kΨcurl
j,k (2.2)

However, the divergence-free wavelet basis as well as the curl-free wavelet basis are not
orthogonal bases, therefore their associated projectors are oblique and depend on the
choice of the supplementary spaces HN = Span{ΨN} and HN = Span{ΨN } introduced in
Section 1. Below we will introduce an iterative algorithm to provide such a decomposition.

2.1 Iterative computation of divergence-free and curl-free components of any
vector field

The iterative algorithm will be based on the following two non-orthogonal decompositions:

(L2(Rn))n = Hdiv 0 ⊕ HN and (L2(Rn))n = HN ⊕ Hcurl 0 (2.3)

and we will let, for a vector field u ∈
(
L2(Rn)

)n
,

u = Pdiv u + QNu (2.4)

10



be its decomposition into the divergence-free wavelet space plus its complement in HN,
and

u = PN u + Qcurl u (2.5)

be the decomposition into the curl-free wavelet space and its complement HN .

Iterative algorithm :

The decomposition (2.4) allows to extract the divergence-free part of the field u,
whereas the decomposition (2.5) allows to extract its curl-free part, both in an approx-
imate way. We propose to apply them successively until the residue become sufficiently
close to 0. We expect the convergence of the residue to proceed as indicated in figure 1.

H

H

H

HN

u

u

0

div

n

n

N

div 0

u

udiv
1

1 urot rot rot 0

0

u
u u

u2

0 =
u= 1/2

0

0

1

Figure 1: Idealistic schematization of the convergence process of the algorithm with HN =
vect{ΨN

j,k} and HN = vect{ΨN
j,k}.

Using the same notation as above, and starting from u0 = u, the first step of the
algorithm gives: 




u1/2 = u0 − Pdivu
0 = QNu0

u1 = u1/2 − Qcurl u
1/2 = PN u1/2

Then the next steps are defined by:





u1 = PN QNu0

up+1 = PN QNup ∀p ≥ 1
(2.6)

The sequence up defined like this satisfies:

up = Pdiv up

︸ ︷︷ ︸
u

p

div

+ Qcurl QNup

︸ ︷︷ ︸
u

p
curl

+ PN QNup

︸ ︷︷ ︸
up+1

(2.7)
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Asymptotically, if the sequence (up)p∈N converges to 0, then the decomposition (2.1) holds
with:

udiv =

+∞∑

p=0

up
div and ucurl =

+∞∑

p=0

up
curl

Ideally, this algorithm will converge in the same way as the sequence (up) tends to 0 in
Figure 1: in the next chapter, this convergence will be demonstrated in every dimension,
for the particular case of Shannon wavelets which have infinite support but whose Fourier
transforms are optimally localized. This convergence has also been tested and observed
on various two-dimensional and three-dimensional fields (regular or irregular, random or
arising from numerical simulations) with spline wavelets [5].
However, a brief analysis of figure 1 gives a clear idea of what it is crucial for convergence:
the closeness of the spaces HN spanned by the set {ΨN

j,k}, and HN spanned by the set

{ΨN
j,k} to respectively Hcurl 0 and Hdiv 0. Hence, the oblique wavelet projectors Pdiv and

Qcurl have to be as close as possible to the original orthogonal projectors P and Q.

2.2 Convergence of the algorithm

The wavelet algorithm of Section 2.1 was originally designed in dimension two and three
[7]. We prove its convergence for the Shannon wavelets, and for all dimensions.

The Shannon wavelet ψ is compactly supported in Fourier space, thus it has infinite
support in physical space:

ψ̂(ξ) = e−iξ/2 χ[−2π,−π]∪[π,2π](ξ) , ψ(x) =
sin 2π(x− 1/2)

π(x− 1/2)
−

sinπ(x− 1/2)

π(x− 1/2)

where χ stands for the characteristic function, i.e. χE(x) = 1 if x ∈ E,χE(x) = 0 if x /∈ E.
The corresponding scaling function is:

ϕ̂(ξ) = χ[−π,π](ξ) , ϕ(x) =
sinπx

πx

Then
∀j, k ∈ Z, supp(ψ̂j,k) = [−2j+1π,−2jπ] ∪ [2jπ, 2j+1π]

Theorem 2.1 Let u in
(
L2(Rn)

)n
, and let the sequence (up)p≥0 be defined by (2.6):

u0 = u and up+1 = PNQN up, p ≥ 0 (2.8)

where QN and PN are the complementary projectors associated respectively to divergence-
free wavelets (2.4) and curl-free wavelets (2.5). We assume that the wavelet ψ1 used
for constructing the divergence-free and curl-free wavelets of Section 1.2 is the Shannon
wavelet.

Then the sequence (up) satisfies, in L2 norm:

‖up‖ ≤

(
9

16

)p

‖u‖

12



and converges to zero in L2.
Moreover, the Helmholtz decomposition (0.1) of u is given by:

udiv =
∑

p∈N

Pdiv up, ucurl =
∑

p∈N

QcurlQNup

Proof: Let ψ1 and ψ0 be two wavelets linked by derivation like in Proposition 1.1 of Section
1. Then for j, k ∈ Z:

̂ψ1(2j · −k) = 4
2j

iξ
̂ψ0(2j · −k), which gives ψ̂1,j,k =

4ω

iξ
ψ̂0,j,k

with ω = 2j .
For each j ∈ Zn, we consider the level j of the wavelet decomposition of a vector field u:

uj =

∣∣∣∣∣∣∣∣∣∣∣∣

uj 1 =
∑

k∈Zn d1,j,k ψ1,j1,k1(x1)ψ0,j2,k2(x2) . . . ψ0,jn,kn
(xn)

...
uj i =

∑
k∈Zn di,j,k ψ0,j1,k1(x1) . . . ψ1,ji,ki

(xi) . . . ψ0,jn,kn
(xn)

...
ujn =

∑
k∈Zn d1,j,k ψ0,j1,k1(x1) . . . ψ0,jn−1,kn−1(xn−1)ψ1,jn,kn

(xn)

Applying the Fourier transform yields for 1 ≤ i ≤ n, with ωi = 2ji :

ûj i =
∑

k∈Zn

4ωi

iξi
di,j,k ψ̂0,j1,k1(ξ1) . . . ψ̂0,ji,ki

(ξi) . . . ψ̂0,jn,kn
(ξn)

Then we obtain the complementary part (the residue after the oblique projection on the
divergence-free wavelet space) by applying the orthogonal matrix (1.13) to the wavelet
coefficients, and considering the last component:

Q̂Nuj =
∑

k∈Zn

(
n∑

i=1

ωi

|ω|
di,j,k

)
1

|ω|
Ψ̂N

j,k

=
∑

k∈Zn

(
n∑

i=1

ωi

|ω|
di,j,k

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω1
|ω| ψ̂1,j1,k1(ξ1)ψ̂0,j2,k2(ξ2) . . . ψ̂0,jn,kn

(ξn)
...

ωℓ

|ω| ψ̂0,j1,k1(ξ1) . . . ψ̂1,jℓ,kℓ
(ξℓ) . . . ψ̂0,jn,kn

(ξn)
...

ωn

|ω| ψ̂0,j1,k1(ξ1) . . . ̂ψ0,jn−1,kn−1(ξn−1)ψ̂1,jn,kn
(ξn)

Q̂Nuj may be express in terms of ûj:

(
Q̂Nuj

)
ℓ

= ωℓ

|ω|2

(
4ωℓ

iξℓ

)∑n
i=1 ωi

∑
k∈Zn di,j,k ψ̂0,j1,k1(ξ1) . . . ψ̂0,jn,kn

(ξn)

=
ω2

ℓ

|ω|2ξℓ

∑n
i=1 ξiûj i

(2.9)
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and we can write: Q̂Nuj = ANûj, where

AN =




ω2
1

|ω|2ξ1
...

ω2
n

|ω|2ξn


× [ξ1 . . . ξn]

Similarly, we can express the Fourier transform of PN uj as AN ûj with:

AN = Id−



ξ1
...
ξn


×

[
ω2

1

|ω|2ξ1
. . .

ω2
n

|ω|2ξn

]
(2.10)

Since the wavelet basis we use for the projection PN differs from the one we use for
the projection QN, the level j of the wavelet decomposition uj corresponds to two different
projections of u when considering either PN , or QN. As a result, usually we can’t write:

̂PNQNuj = ANANûj (2.11)

For simplicity, we consider the special case where the component uj is the same for the
two decompositions. Then equality (2.11) holds. For Shannon wavelets, this condition is
satisfied.

We assume now that the function ψ̂1 is a Shannon wavelet. Then, the wavelet levels
ûj of the vector function u have almost disjoint compact supports. Hence up

j the level j
of the wavelet decomposition is stable under the different projections. Expression 2.11 is
valid on û(ξ) instead of uj under the condition that ξ ∈

∏n
i=1 ±(2jiπ, 2ji+1π).

Each iteration up+1 = PNQN up of the algorithm can be written in Fourier space:

ûp+1
j = ANANûp

j

where the matrix

ANAN =


Id− 1

|ω|2



ξ1
...
ξn


×

[
ω2

1

ξ1
. . .

ω2
n

ξn

]

 ×

1

|ω|2




ω2
1

ξ1
...

ω2
n

ξn


× [ξ1 . . . ξn]

is of rank one. It has thus only one non-zero eigenvalue, noted λ(ξ), which can be computed
by:

λ(ξ) = trace(ANAN) = 1 −

(
n∑

i=1

ξ2i

)(
n∑

i=1

ω4
i

|ω|4ξ2i

)

Introducing ζi = ξi

ωi
, and αi = ωi

|ω| , we obtain:

λ(ξ) = 1 − F (ζ, α) = 1 −

(
n∑

i=1

α2
i ζ

2
i

)(
n∑

i=1

α2
i ζ

−2
i

)
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Since we are using Shannon wavelets, supp(ψ̂0,j,k) = supp(ψ̂1,j,k) = ±[2jπ, 2j+1π]. There-

fore if ξi ∈ supp(ψ̂0,j,k) for 1 ≤ i ≤ n, then |ζi| ∈ [π, 2π]. We have also the constraint∑n
i=1 α

2
i = 1, and the maximization of F is no more than a Kantorovitch inequality, which

yields for a fixed ζ:

max
αi,

P

α2
i =1

F (ζ, α) =
1

4

(
min |ζi|

max |ζi|
+

max |ζi|

min |ζi|

)2

(2.12)

As F (ζ, α) ≥ 1, we have

|λ(ξ)| ≤ max
ζ

max
αi,

P

α2
i =1

F (ζ, α) − 1 =
1

4

(
1

2
+

2

1

)2

− 1 =
9

16

Hence,

∀ξ ∈
n∏

i=1

±[2jiπ, 2ji+1π], |ûp+1
j (ξ)| ≤

9

16
| ûp

j (ξ)|

As for Shannon wavelets, ‖u‖2
L2 =

∑
j∈Zn ‖uj‖

2
L2 , by adding the different scale decompo-

sition, we obtain:

‖up+1‖L2 ≤
9

16
‖up‖L2

which leads to the result.
Finally the divergence-free components and the curl-free components arising from (2.7)

are added to form the divergence-free part and the curl-free part of u in the wavelet domain:

udiv =
∑

p∈N

Pdiv up, ucurl =
∑

p∈N

QcurlQNup

Remark 2.1 In the algorithm (2.6), if we replace up+1 = up − up
div − up

curl by up+1 =
up − up

div − bup
curl with some b > 0, i.e. if we replace AN in (2.10) by:

AN = Id− b



ξ1
...
ξn


×

[
ω2

1

|ω|2ξ1
. . .

ω2
n

|ω|2ξn

]

then the eigenvalue λ(ξ) is given by

λ(ξ) = 1 − b F (ζ, αi)

and verifies, using Shannon wavelets:

1 −
25

16
b ≤ λ(ξ) ≤ 1 − b

The optimal choice for b is thus b = 32
41 , and then |λ(ξ)| ≤ 9

41 = 1 − b = 25
16b− 1.

On the other hand, in numerical experiments of section 4, we will use spline wavelets,
and for these wavelets, the optimal b is 1.24. For b = 1.24, the convergence rate is equal
to 0.41 instead of 0.56 for b = 1. This means that spline wavelets are not as optimal as
Shannon wavelets and damage the term F (ζ, α) in two ways: F (ζ, α) behaves, first, as if
it was multiplicated by 0.48, and secondly, as if max |ζi| = 2.7min |ζi| (the spline wavelets
don’t verify this compact support condition, but the algorithm behaves as if they did so).
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3 Generalization of the isotropic divergence-free wavelets construction

An important drawback of anisotropic wavelets, is that they are not well suited for adaptive
schemes. Indeed, if one refines the grid somewhere, then the anisotropic wavelets lengthen
across the whole domain instead of remaining localized (the refinement grid has to be
cartesian).

At this moment, it is preferable not to develop the total spectra of scale parameters
j ∈ Zn, but to restrict ourselves to anisotropic wavelets with a parameter j verifying
max(j) − min(j) ≤ m with m equals to one or two, without affecting the convergence of
the wavelet Helmholtz algorithm to much. For this purpose, we need the scale function ϕ
which, associated with ψ, forms an MRA.

By doing this, we show that a slight modification of the isotropic wavelets (case m = 0)
originally designed by P.G. Lemarié [12] and used by K. Urban [20] allows one to discard
the arbitrary choice of the index i for which εi = 1 as a pivotal element to form the
divergence-free wavelets. The price to pay for this modification is that the divergence-free
wavelets are redundant – and even zero in some cases. There are (2n−1)n of them instead
of (2n−1)(n−1) to form a basis in dimension n. However, we profit from this redundancy
to add a linear relation on the wavelet coefficients. This construction permits to give a
clearer understanding of the divergence-free wavelet transform in the isotropic case.

3.1 Mixed isotropic/anisotropic divergence-free and curl-free wavelets

In the following, we will define generalized quasi-isotropic divergence-free wavelets by
considering two kinds of divergence-free wavelets, with limitations on the scale parameter j.
Let m ≥ 0 be given, we will only consider scale indices j = (j1, j2, . . . , jn) such that
max(j1, j2, . . . , jn) − min(j1, j2, . . . , jn) ≤ m. Then the family will be formed with:

• usual anisotropic divergence-free wavelets Ψdiv i
j,k with 1 ≤ i ≤ n as in Section 1.2,

• modified isotropic divergence-free vector wavelets Ψdiv i
ε j,k, with ε ∈ {0, 1}n\{(0, . . . , 0)},

1 ≤ i ≤ n and with components of the type η
(ε1)
j1,k1

. . . η
(εn)
jn,kn

, with η(1) = ψ, η(0) = ϕ,
and jℓ = max(j1, j2, . . . , jn) −m if εℓ = 0.

To construct these last functions, we will introduce linear combinations of componen-
twise wavelets that are a mix between isotropic and anisotropic wavelets:

Ψi
ε j,k(x1, . . . , xn) =

∣∣∣∣∣∣∣∣∣∣∣∣

0
...

η
(ε1)
0 (2j1 x1 − k1) . . . η

(εi)
1 (2ji xi − ki) . . . η

(εn)
0 (2jn xn − kn)

...
0

where, taking into account the derivation relations of proposition 1.1, for 1 ≤ i ≤ n,

η
(εi)
ℓ =

{
ψℓ if εi = 1
ϕℓ if εi = 0

, ℓ = 0, 1,
(
η

(εi)
1

)′
(x) = 4εi

(
η

(εi)
0 (x) − (1 − εi)η

(εi)
0 (x− 1)

)
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The set {Ψi
ε j,k : 1 ≤ i ≤ n, j,k ∈ Zn, ε ∈ {0, 1}n \ {(0, . . . , 0)}, max(j1, j2, . . . , jn) −

min(j1, j2, . . . , jn) ≤ m, εℓ = 0 =⇒ jℓ = max(j1, j2, . . . , jn) −m} forms a Riesz basis of(
L2(Rn)

)n
.

The n-dimensional quasi-isotropic divergence-free wavelets are defined by: for 1 ≤ i ≤ n,

Ψdiv i
ε j,k(x1, . . . , xn)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−2ji+j1ε1η
(ε1)
1 (2j1x1 − k1) . . .

(
η
(εi)
0 (2jixi − ki) − (1 − εi)η

(εi)
0 (2jixi − ki − 1)

)
. . . η

(εn)
0 (2jnxn − kn)

...

41−εi

(∑
ℓ 6=i, εℓ=1 22jℓ

)
η
(ε1)
0 (2j1x1 − k1) . . . η

(εi)
1 (2jixi − ki) . . . η

(εn)
0 (2jnxn − kn)

...

−2ji+jnεnη
(ε1)
0 (2j1x1 − k1) . . .

(
η
(εi)
0 (2jixi − ki) − (1 − εi)η

(εi)
0 (2jixi − ki − 1)

)
. . . η

(εn)
1 (2jnxn − kn)

and the complementary wavelet by:

ΨN

ε j,k(x1, . . . , xn) =

∣∣∣∣∣∣∣∣

2j1ε1η
(ε1)
1 (2j1x1 − k1) . . . η

(εi)
0 (2jixi − ki) . . . η

(εn)
0 (2jnxn − kn)

...

2jnεnη
(ε1)
0 (2j1x1 − k1) . . . η

(εi)
0 (2jixi − ki) . . . η

(εn)
1 (2jnxn − kn)

Remark that the case m = 0 corresponds to isotropic divergence-free wavelets as
proposed by P.G. Lemarié and K. Urban [12, 20] where we have made linear combinations
among the possible cases. Note also that ΨN

ε j,k is no more orthogonal to Ψdiv i
ε j,k, except if

εi = 1.

If we denote by (di,ε j,k) the wavelet coefficients of the standard wavelet decomposition
verifying the limitations on the scale parameter j as indicated previously, then we obtain
the divergence-free wavelet and complementary wavelet coefficients by solving the following
system for fixed j,k, ε:

Mdiv




ddiv 1,ε j,k
...
ddiv n,ε j,k

dNε j,k


+

∑

i, εi=0

M
(i)
div




ddiv 1,ε j,k−ei

...
ddiv n,ε j,k−ei

dNε j,k−ei


 =




d1,ε j,k
...
dn,ε j,k

0


 (3.1)

with (ei)1≤i≤n the canonical basis of Rn. With the notations ωi = 2ji and |εω|2 =∑
i, εi=1 ω

2
i , after normalization of the wavelets:

Ψdiv i
ε j,k 7→

1

|εω|2
Ψdiv i

ε j,k, ΨN

ε j,k 7→
1

|εω|
ΨN

ε j,k,
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the expressions of Mdiv and M
(i)
div are chosen as follows (the last line indicating the desired

linear relationship between the divergence-free wavelet coefficients is arbitrary):

Mdiv =




41−ε1(1 − ε1
ω2

1
|εω|2 ) −ε1

ω2ω1
|εω|2 . . . −ε1

ωnω1
|εω|2 ε1

ω1
|εω|

−ε2
ω1ω2
|εω|2 41−ε2(1 − ε2

ω2
2

|εω|2 )
. . . −ε2

ωnω2
|εω|2 ε2

ω2
|εω|

...
...

. . .
...

...

−εn
ω1ωn

|εω|2 −εn
ω2ωn

|εω|2 . . . 41−εn(1 − εn
ω2

n

|εω|2 ) εn
ωn

|εω|

ε1
ω1
|εω| ε2

ω2
|εω| . . . εn

ωn

|εω| 0




(3.2)

and

M
(i)
div =




0 . . . 0 ε1
ωiω1

|εω|2 0 . . . 0
...

...
...

...
...

...
0 . . . 0 εn

ωiωn

|εω|2 0 . . . 0

0 . . . 0 0 0 . . . 0


 (3.3)

where only column number i of M
(i)
div is different from zero.

One can notice that for εi = 0,

ddiv i,ε j,k =
1

4
di,ε j,k

Then system (3.1) is equivalent to:

Mdiv




ε1ddiv 1,ε j,k
...
εnddiv n,ε j,k

dNε j,k


 =




d1,ε j,k
...
dn,ε j,k

0


−

1

4
Mdiv




(1 − ε1)d1,ε j,k
...
(1 − εn)dn,ε j,k

0


−

1

4

∑

i, εi=0

M
(i)
div




d1,ε j,k−ei

...
dn,ε j,k−ei

0




To solve system (3.1), we multiply the above system by the matrix:




(1 −
ε1ω2

1
|εω|2 ) −ε2ε1

ω2ω1
|εω|2 . . . −εnε1

ωnω1
|εω|2 ε1

ω1
|εω|

−ε1ε2
ω1ω2

|εω|2 (1 −
ε2ω2

2
|εω|2 )

. . . −εnε2
ωnω2

|εω|2 ε2
ω2
|εω|

...
...

. . .
...

...

−ε1εn
ω1ωn

|εω|2 −ε2εn
ω2ωn

|εω|2 . . . (1 − εnω2
n

|εω|2 ) εn
ωn

|εω|

ε1
ω1
|εω| ε2

ω2
|εω| . . . εn

ωn

|εω| 0




(3.4)

and we find that for εi = 1,

ddiv i,ε j,k = di,ε j,k −
ωi

|εω|2

n∑

ℓ=1

εℓωℓdℓ,ε j,k

and
dNε j,k =

∑

i, εi=1

ωi

|εω|
di,ε j,k +

∑

i, εi=0

ωi

4|εω|
(di,ε j,k − di,ε j,k−ei

)
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We proceed similarly as in Section 2.2 to establish the expression (2.9), then the Fourier
transform of QNuε j satisfies:

Q̂Nuε j =
1

|εω|2




ε1
ω2

1
ξ1
...

εn
ω2

n

ξn


× [ξ1 . . . ξn] ûε j

We proceed similarly for the curl-free wavelet transform.
The n-dimensional quasi-isotropic curl-free wavelets are defined by:

Ψcurl
ε j,k(x1, . . . , xn)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2j1 · 4ε1−1
(
η
(ε1)
0 (2j1x1 − k1) − (1 − ε1)η

(ε1)
0 (2j1x1 − k1 − 1)

)
. . . η

(εi)
1 (2jixi − ki) . . . η

(εn)
1 (2jnxn − kn)

...

2ji · 4εi−1η
(ε1)
1 (2j1x1 − k1) . . .

(
η
(εi)
0 (2jixi − ki) − (1 − εi)η

(εi)
0 (2jixi − ki − 1)

)
. . . η

(εn)
1 (2jnxn − kn)

...

2jn · 4εn−1η
(ε1)
1 (2j1x1 − k1) . . . η

(εi)
1 (2jixi − ki) . . .

(
η
(εn)
0 (2jnxn − kn) − (1 − εn)η

(εn)
0 (2jnxn − kn − 1)

)

and the complementary wavelets are defined for 1 ≤ i ≤ n by:

ΨN i
ε j,k(x1, . . . , xn)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−2ji+j1εiε1η
(ε1)
0 (2j1x1 − k1) . . . η

(εi)
1 (2jixi − ki) . . . η

(εn)
1 (2jnxn − kn)

...(∑
ℓ 6=i, εℓ=1 22jℓ

)
η
(ε1)
1 (2j1x1 − k1) . . . η

(εi)
0 (2jixi − ki) . . . η

(εn)
1 (2jnxn − kn)

...

−2ji+jnεiεnη
(ε1)
1 (2j1x1 − k1) . . . η

(εi)
1 (2jixi − ki) . . . η

(εn)
0 (2jnxn − kn)

After renormalization of the wavelets (Ψcurl
ε j,k is divided by |εω| and ΨN i

ε j,k by |εω|2), the
wavelet coefficients verify, for fixed j,k, ε:

Mcurl




dN 1,ε j,k
...
dN n,ε j,k

dcurl ε j,k


+

∑

i, εi=0

M
(i)
curl




dN 1,ε j,k−ei

...
dN n,ε j,k−ei

dcurl ε j,k−ei


 =




d1,ε j,k
...
dn,ε j,k

0


 (3.5)

where the matrices Mcurl and M
(i)
curl for 1 ≤ i ≤ n are given by:

Mcurl =




(1 − ε1
ω2

1
|εω|2 ) −ε2ε1

ω2ω1
|εω|2 . . . −εnε1

ωnω1
|εω|2 4ε1−1 ω1

|εω|

−ε1ε2
ω1ω2

|εω|2 (1 − ε2
ω2

2
|εω|2 )

. . . −εnε2
ωnω2

|εω|2 4ε2−1 ω2
|εω|

...
...

. . .
...

...

−ε1εn
ω1ωn

|εω|2 −ε2εn
ω2ωn

|εω|2 . . . (1 − εn
ω2

n

|εω|2 ) 4εn−1 ωn

|εω|

ε1
ω1
|εω| ε2

ω2
|εω| . . . εn

ωn

|εω| 0




(3.6)
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and

M
(i)
curl =




0 . . . 0 0
...

...
...

...
0 . . . 0 0
0 . . . 0 − ωi

4|εω|

0 . . . 0 0
...

...
...

...
0 . . . 0 0




(3.7)

where only the line number i of M
(i)
curl is non zero.

To solve the system of equations (3.5), we multiply it by matrix (3.4) and we find:

dcurl ε j,k =

n∑

i=1

εi
ωi

|εω|
di,ε j,k

which means that the Fourier transform of PN uε j satisfies:

P̂N uε j =


Id− 1

|εω|2



ξ1
...
ξn


×

[
ε1
ω2

1

ξ1
. . . εn

ω2
n

ξn

]

 ûε j

The expressions of the wavelet coefficients dN i,ε j,k are, for εi = 1:

dN i,ε j,k = di,ε j,k −
ωi

|εω|2

n∑

ℓ=1

εℓωℓdℓ,ε j,k

and for εi = 0:

dN i,ε j,k = di,ε j,k +
ωi

4|εω|2

n∑

ℓ=1

εℓωℓdℓ,ε j,k−ei

3.2 Convergence of the iterative Helmholtz decomposition in the mixed iso-
tropic/anisotropic case

Theorem 3.1 In dimension n, the Helmholtz wavelet algorithm (2.6) defined in Section
2.1 converges using Shannon wavelets, if

m >
1

2 ln 2
ln

25n2

7

in the construction of the mixed isotropic/anisotropic divergence-free and curl-free wavelets
(cf Section 3.1).

Proof: Assume that we are using Shannon wavelets, each level of the wavelet decomposition
(indexed by j ∈ Zn with max(j) − min(j) ≤ m and by ε ∈ {0, 1}n \ {(0, . . . , 0)}) evolves
independently during the wavelet Helmholtz decomposition algorithm (2.6). Hence:

ûp+1
ε j = Aûp

ε j
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with

A =


Id− 1

|εω|2



ξ1
...
ξn


×

[
ε1
ω2

1

ξ1
. . . εn

ω2
n

ξn

]

×

1

|εω|2




ε1
ω2

1
ξ1
...

εn
ω2

n

ξn


× [ξ1 . . . ξn]

This matrix is of rank one and has a single non-zero eigenvalue λ, equal to the trace of A:

λ = 1 −

(
n∑

i=1

ξ2i
|εω|4

)(
n∑

i=1

εiω
4
i

ξ2i

)

i.e., with ζi = ξi

ωi
,

λ = 1 −

(
n∑

i=1

ω2
i

|εω|2
ζ2
i

)(
n∑

i=1

ω2
i

|εω|2
εiζ

−2
i

)

which can be rewritten, if we distinguish the case εi = 1 and εi = 0 in the first sum:

λ = 1 −

(
n∑

i=1

εiω
2
i

|εω|2
ζ2
i

)(
n∑

i=1

εiω
2
i

|εω|2
ζ−2
i

)
−

(
n∑

i=1

(1 − εi)
ω2

i

|εω|2
ζ2
i

)(
n∑

i=1

ω2
i

|εω|2
εiζ

−2
i

)

For the first term, we use the Kantorovich inequality (2.12). We denote by µ the second
term:

µ =

(
n∑

i=1

(1 − εi)
ω2

i

|εω|2
ζ2
i

)(
n∑

i=1

ω2
i

|εω|2
εiζ

−2
i

)
≥ 0,

then

−
9

16
− µ ≤ λ ≤ −µ (3.8)

As for i s.t. εi = 0, ωi ≤ 2−m|εω| and for i s.t. εi = 1, ωi ≤ |εω|, µ is bounded by

µ ≤ 2−2m
n∑

i=1

ζ2
i

n∑

i=1

ζ−2
i = 2−2mn2

n∑

i=1

1

n
ζ2
i

n∑

i=1

1

n
ζ−2
i

Again, the Kantorovitch inequality yields

µ ≤
25

16
2−2mn2

Since according to (3.8), a sufficient condition for the convergence is µ < 7
16 , this condition

will be satisfied provided that

m >
1

2 ln 2
ln

25n2

7

Consequently the number m of additional wavelet transforms we have to apply after an
isotropic wavelet transform, is not excessive and allows to use the wavelet Helmholtz
decomposition in an adaptive scheme.
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Remark 3.1 Again, as it was noted in remark 2.1, we may introduce a parameter b > 0
in the algorithm (2.6): up+1 = up − up

div − bup
curl. Then, according to the previous study,

the following bounds holds for the eigenvalue λ(ξ), using Shannon wavelets:

1 −
25

16
b
(
1 + n22−2m

)
≤ λ(ξ) ≤ 1 − b

The algorithm converges for b sufficiently small. In practice, with spline wavelets, whatever
the value of b, the algorithm (2.6) diverges for isotropic wavelets (m = 0) and presents the
same profile as in figure 2.

4 Numerical experiments

The wavelet Helmholtz algorithm was applied to non divergence-free periodic vector fields
on the cube [0, 1]n (n = 2, 3), in order to observe the convergence rate of the iterative
algorithm. We used spline wavelets for the experiments: the basis functions (ϕ0, ψ0) are
splines of order two (i.e. piecewise polynomials of degree one), and the basis functions
(ϕ1, ψ1) are splines of order three (i.e. piecewise polynomials of degree two).

The reference [7] provides technical explanations for the implementation of the method.
We have already tested in [7] the convergence of the iterative algorithm, using spline wa-
velets of different orders, successfully applied to a large class of two and three-dimensional
fields. The observed convergence rates were about 0.5 (see also figure 2).

We will now compare the convergence rates obtained with several families of mixed
isotropic/anisotropic divergence-free and curl-free wavelets. We will apply the wavelet
Helmholtz algorithm to the 2D vector field

u =

∣∣∣∣
sin(2πx) cos(2πy) − 2 sin(2πx) cos(2πy)
− cos(2πx) sin(2πy) − 2 cos(2πx) sin(2πy)

discretized on 2562 grid points, and to the 3D vector field:

u =

∣∣∣∣∣∣

− sin(2πx) cos(2πy) cos(2πz) + sin(2πx) cos(2πy) − sin(2πx) cos(2πz)
− cos(2πx) sin(2πy) cos(2πz) + sin(2πy) cos(2πz) − cos(2πx) sin(2πy)
− cos(2πx) cos(2πy) sin(2πz) + cos(2πx) sin(2πz) − cos(2πy) sin(2πz)

discretized on 322 grid points. Figure 2 shows the evolution of the residue ‖up‖L2 in terms
of the number of iterations p. In figure 2 we have used four different wavelet bases:

• two-dimensional isotropic (i.e. m = 0) functions, and this choice leads to the diver-
gence of the algorithm.

• two-dimensional anisotropic (i.e. m = +∞) functions,

• two-dimensional quasi-isotropic (with m = 1) functions,

• and three-dimensional anisotropic functions.
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2−D isotropic wavelets (m=0)
Ο

2−D anisotropic wavelets (m infinite)
◊

2−D semi−anisotropic wavelets (m=1)
+

3−D anisotropic wavelets (m infinite)
×

0 2 4 6 8 10 12 14 16 18 20
−7

10

0
10

7
10

Figure 2: Convergence profiles of the Helmholtz algorithm with spline wavelets

These expriments clearly show that isotropic functions are not well suited to be used
in the wavelet Helmholtz algorithm. In all other cases (anisotropic and quasi-isotropic),
the algorithm converges. At the end of the execution, the accuracy depends on the spline
order of the used wavelets. The change of behaviour for the three-dimensional case in
the last steps is related to the spline approximation: the forcing of convergence by one
half-shifting of the velocity components was used in dimension two (cf [7]) but not in
dimension three.

Conclusion

In this article, we have constructed anisotropic divergence-free and curl-free wavelets in
dimension n, by generalization of the constructions in 2D and 3D. To obtain small orthog-
onal systems for the computation of related coefficients, we have modified the previous
constructions of divergence-free wavelets (and thus curl-free wavelets) by analogy with the
Leray projector written in Fourier domain. These new formulations have allowed us to
define an iterative algorithm for the wavelet Helmholtz decomposition of any vector field,
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and we have proved its convergence in the particular case of Shannon wavelets. Moreover
we have proved its convergence for quasi-isotropic wavelets. We have observed in numer-
ical experiments that the convergence rate of the method doesn’t depend on the space
dimension.

The interest of such wavelet Helmholtz decomposition is that it is localized in space
contrarily to a decomposition computed by Fourier transform. Moreover this algorithm
work in wavelet adaptive schemes, by using quasi-isotropic wavelets. This makes the
method very attractive for large dimensional problems and it opens new prospects, for
example for the direct simulation of turbulence using wavelet bases [5, 7]. Moreover, this
decomposition may be generalized to bounded and non periodic domains, using wavelets
on the interval in the construction of divergence-free and curl-free functions [20].

However, some questions remain open: the convergence of the iterative algorithm using
general wavelets, or how to speed up the convergence rate. For this last point, a solution
using wavelet packets has been investigated in [5].

These constructions also address the issue of numerical algorithms based on divergence-
free and curl-free wavelets for solving differential problems. Generalizations of such con-
structions to other linear differential problems prove useful and provide original wavelet
solvers (see [6]).
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