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Abstract

The problem of the construction of strong approximations with a given order of convergence
for jump-diffusion equations is studied. General approximation schemes are constructed for
Lévy type stochastic differential equation. In particular, the paper generalizes the results from
[3] and [2]. The Euler and the Milstein schemes are shown for finite and infinite Lévy mea-
sure.
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1 Introduction

The problem of approximation construction for solution of stochastic differential equation
is widely studied throughout many papers. The authors’ attention is focused mainly on the
equation of the form:

t
Yi=Yo+ [ f(¥i)izs (L.1)
0

where Y} is a random variable with known distribution, f-some regular function and Z-a driv-
ing process. There are many approximation methods for the solution of (1.1) depending on
the driving process and the optimality criteria imposed on the approximating error. The case
when Z is a Wiener process the problem is comprehensively studied in the book [3]. Variety
schemes for the so called weak and strong approximations are presented, in particular their
dependence on the mesh of the partition of the interval [0, 7]. Denoting by Y the approxi-
mation, the optimality criteria for weak solutions have a form: E[g(Y7) — ¢(Y7)] — min,
where g is some regular function, while for strong solutions: Esup, |Y; — Y;|? — min.
The schemes use the increments of time, increments of the Wiener process and, for higher
order of convergence, some normally distributed random variables correlated with the incre-
ments of the Wiener process. Thus for practical implementation we have to generate normally
distributed, correlated random variables.

The simplest approximating scheme for the equation (1.1) is the Euler scheme which has
the following structure:

}_/b = Yb, Y(H»I)T = f(Y%)(Z(H»l)T — Z%),
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where {%,z = 0,1,...,n} is a partition of the interval [0,T]. In the case of the Wiener
driving process it is easy to construct. However, for a general Lévy driving process it is no
longer so simple. This is because of the difficulty of practical construction of the increments
of Z when the Lévy measure is infinite, i.e. when the measure of a unit ball is infinite. If
the increments can not be simulated, then they themselves have to be approximated in some
sense and the accuracy of such construction should be studied. This way of approximating is
presented for example in [7] and [5]. The main idea in these papers is to reduce the problem
by replacing increments of Z by suitable increments of the compound Poisson process, which
can be practically simulated. It should be pointed out that our approach is more general since
a significant majority of papers consider approximation problem using different modifications
of the Euler scheme.

In this paper we work with a stochastic differential equation of the form:

t t t
Y, =Y, +/ b(Y,_)ds —|—/ o(Y,_)dW, +/ / F(Y,_,z)N(ds,dz)
0 0 0 Jlz|<1

t
—|—/ / G(Ys_,z)N(ds,dz),
0 Jz|>1

where b, 0, F, G are some regular functions, W- a standard Wiener process and N, N -a
Poisson random measure and its compensated measure respectively. We focus on the strong
approximations, i.e. the error is measured by E sup, |Y; — Y;|2. The strong approximation is
of order v if Esup, |Y; — Y;|? < §27, where § is the mesh of partition of the interval [0, 7).
Our aim is to construct the strong approximation for a previously fixed number v > 0. The
idea is to apply the Itd formula to the process Y many times, i.e. to the process Y and then
to the coefficients in its expansion. The approximation is built of some of the coefficients
which are chosen appropriately. The main result is Theorem 4.1 providing the description
of the approximation. This theorem is a generalization of the results from [3] for diffusion
processes and [2] for diffusion processes with jumps generated by a standard Poisson process.
For v = % we obtain the Euler approximation but we can also built approximations of higher
order. The approximation given by Theorem 4.1 has one limitation - in case when the Lévy
measure of a unit ball is infinite, some ingredients are hard to simulate. This difficulty con-
cerns the possibility of simulating integrals with respect to the compensated Poisson measure
on unit balls. This problem hasn’t appeared in [3] or [2] since there were no jumps or were
equal to 1 only. To overcome this problem we modify the approximation by replacing all
unit balls with e- discs which are obtained by cutting e- balls from unit balls. This procedure
causes that the error depends not only on § but on € as well. Theorem 5.3 provides the error
description. It is a sum of §*7 and some function of ¢ which tends to zero when ¢ — 0. The
speed of convergence of this function depends on the behavior of the Lévy measure near 0.
Concluding, if the Lévy measure is finite then the approximation is given by Theorem 4.1, if
it is not - by Theorem 5.3, but then the error depends on ¢ also. Note that in the first case we
are able to construct strong approximations of higher order than the Euler scheme.

The paper is organized as follows, in Section 2 we present known facts concerning Lévy-
type stochastic differential equation and describe the procedure of solution expansion with
the use of the Itd6 formula. Section 3 contains precise formulation of the problem which is
beeing successively solved in Section 4. This section consists of three preceding lemmas
which are used in the main Theorem 4.1. In this section we adopt some ideas and estimation
from [3] to the present jump-diffusion settings. Section 5 is devoted to the modification of
the approximation in the case where the Lévy measure is infinite. Section 6 consists of two
examples of strong approximations schemes for v = % and v = 1, i.e. the Euler and Milstein
schemes.



2 Basic definitions and facts

Let (92, F3;t € [0,T], P) be a probability space with filtration generated by two independent
processes: a standard Wiener process W and a random Poisson measure N. The Poisson
random measure defined on R x (R\{0}) is assumed to have the intensity measure v which
is a Lévy measure. By N we denote the compensated Poisson random measure. Since we
will consider stochastic integrals of different types, the class of integrands should be specified.
While the integrals with respect to time and the Poisson measure are well understood, the class
of integrands with respect to W and N should be precised.

Definition 2.1 A mapping g1 : Q x [0,T] — R is integrable with respect to W if it is
predictable and satisfies the integrability condition: E fOT g3(s)ds < oc.

Definition 2.2 Let E be a subset of R. A mapping go : Q x [0,T] x E — R is integrable
with respect to N if it is predictable and satisfies the integrability condition:

EfOT S5 93 (s, x)v(dz)ds < oo.

In these classes of integrands both integrals are square-integrable martingales and the follow-
ing isometric formulas hold:

B( / Tm(s)dws)z _E / " g2(s)ds

0
E(/OT/Egz(s,x)N(ds,dx))Q E/OT/Egg(s,x)u(dm)ds.

Throughout all the paper we will work with a stochastic differential equation of the form:
t t t
Y, =Yy + / b(Y,_)ds + / o(Ys_ )dW, + / / F(Y,_,x)N(ds,dx)
0 0 o JB

t
_|_// G(Ys_,z)N(ds,dx), (2.2)
0 JB

where t € [0,T), B = {z : |z| <1}, B' = {x : || > 1}. For simplicity the initial condition
is assumed to be deterministic, i.e. Yy € R. Coefficientsb: R — R, ¢:R — R, F':
RxR— 1R, G:R xR — R are measurable and satisfy the following conditions.
(A1) Lipschitz condition: there exists a constant K7 > 0 such that:

| b(y1) — bys) [P+ | o) — owa) [* + /B | Py, ) — Fly ) 2 v(da)

+/ | G(y1,7) — G(yz,z) Pv(de) <Ky |y1 —y2 | Yyi,y2 €R.
BI

(A2) Growth condition: there exists a constant K5 > 0 such that:

b(y) 2+ | o(y) |2 + /B | F(y,2) 2 v(da)

[ 16w Prdn) <Kl 1492] vyer
B/
Theorem 2.3 Under assumptions (A1) and (A2) there exists a unique, adapted, cddldg solu-
tion of (2.2). Moreover, the solution satisfies:
E|Y; P<Ci(1+Y]) Vtelo,T], (2.3)

where C7 > 0.



Theorem 2.3 is a consequence of Theorem 6.2.3, Theorem 6.2.9 and Corollary 6.2.4 in [1],
where the Lipschitz and the growth conditions are imposed on the coefficients b, o, F’ only and
G (-, x) is assumed to be continuous. The estimation (2.3) itself is a consequence of Corollary
6.2.4 in [1] and the proof of Theorem 6.2.3, where the inequality:

E|Y, P<Ct)(1+YE) Vtelo,T], (2.4)

is shown for equation (2.2) but without the term fot Jg G(Ys_,x)N(ds,dz). Under assump-
tions (A1), (A2) the same estimation can be obtained for (2.2) with the use of similar ar-
guments. Moreover, C(-) is a continuous function and as such it is bounded on the interval
[0, T] and thus (2.3) holds.

In the sequel the proposition below will be used and for the reader’s convenience we provide
the proof.

Proposition 2.4 Under assumptions (A1) and (A2) the solution Y of (2.2) satisfies the esti-
mation:

E sup |Y; < Co(1+YE)
0<s<T

for some constant Co > 0.

Proof: We write the solution in the form:

Y, = Yo+ / b(Yy)du + / (Yo )W, + / / F(Y,_ )N (du, dz)
0 0 0 B

+/Os /B G(Yu,x)N(du,dx)—i—/Os /B G(Yy_,z)v(dz)du,

and thus:

y? < 6(Y02 + (/O b(Yu,)du)2 + (/O a(Yu,)qu)2 + (/0 /BF(Yu,,x)zif(du,d:c))2
+ (/0 /B G(Yu,,x)N(du,daz))QJr (/0 /B G(Yu,x)y(dx)du)2>.

Using the Doob and Schwartz inequalities as well as isometric formulas for stochastic inte-
grals we obtain:

T T T
E sup Y7 §6(Y02+TE/ bZ(Yu,)du+4E/ aQ(Yu,)du+4E/ / F2(Y,_,2)v(dr)du
0 0 B

0<s<T 0

+4E/OT /B G2(Yu_,x)u(dm)du+T1/(B/)E/OT /B G2(Yu_,x)y(dx)du>.

Using assumption (A2) we obtain:

T
E sup Y? < 6(Y02 + Ko(T + 12 +TV(B/))/ (1+ EYf)du).
0<s<T 0

By (2.3) we have:

T
E sup Y2 < 6<Y02 + Ky(T + 12+ TV(BI))/ (1 +Ci(1+ YO))du),
0<s<T 0



and finally we have the desired estimation:

E sup Y2 <Cy(1+Yy).
0<s<T

O
For the process Y beeing a solution of (2.2) and for a real function f of class C? we have the
following form of the Itd formula:

f(¥) = f(¥o) + /O F (Yo )b(Ye_)ds + /0 £ (Y o (Ve )W, + /O (Ve )0 (Vi )ds
+/O /B {f(Yo_ +G(Y,_,2)) = f(Y. )} N(ds, dx)

+/0 /B{f(Ys_+F(Ys_,x))ff(Ys_)}N(ds,dz) (2.5)

t

[ [ o s pa e - s - P
o /B

Introducing the following operators:

Lfw) =5 W) + 51 Wo / {f(y+ Fly.2)) — fy) - F(g,2)f () }w(de)

(Ys_)} v(dz)ds.

L'fy)  =f W)
L*f(y.x) = f(y+F(y.2) - f(y)
L’f(y,x) = fly+Gy.z)— f(y),

we can write (2.5) in the operator form:

F(¥) = F(Yo) + / LOf(Y)ds + / LY (Y, )dW,

//L2 Y,_,z)N(ds, dzx) //L3 Y,_,z)N(ds,dz).

We would like to apply the Itd formula not only to the function f, but to the coefficient
functions: L°f,L'f,L2f,L3 f or in general to any function which is smooth enough as well.
Since functions L? f and L3 f depend on two arguments (, %), we admit the following rules
of acting operators on the multiargument real function g(y, 1, g, ..., x;):

0 102
Log(y, x1,...,z1) == a—yg(y,xl, o x)b(y) + 30,7 59y, Al (1)

+ / {g(y + F(y,x), 21, ..., x1) — g(y, 21, ..., 1) — F(ym)(%g(y,xl, ...,xl)}l/(dx)
B

0
ng(ya HO PP xl) = aiyg(yvxla "'7xl)0-(y)

LQQ(?/; Ty eeny mlny»l) = g(y + F(yva»l)vxl» "'7xl) - g(yvxla "'7xl)

ng(ya Tlyeeny ml7xl+1) = g(y + G(y7xl+1>7xl7 ...7.'I,'l> - g(ywrl? --.7.7/'1).



To describe the higher order 1t6 expansion of f we will use the notion of multiindices and
multiple stochastic integrals. A multiindex o = (aq, ..., 0y(q)) is a finite sequence of
elements such that «; € {0,1,2,3} fori = 1,2, ...,I(c). The number of all elements equal to

a) 0 will be denoted by s(«),
b) 1 will be denoted by w(«),
¢) 2 will be denoted by 7(«),
d) 3 will be denoted by n(«).

The length () of « is thus given as () = s(a) + w(a) + n(a) + n(a). For the sake of
convenience we also define k(«) := n(a)) + n(a). For technical reasons we also consider
the empty index denoted by v with length 0, i.e. I(v) = 0. For a given multiindex a@ =
(a1, 2, ...,y ) let us define:

a— = (1,2, ..., (a)—1)
—a = (a2, ..., qa))-
Definition 2.5 A set of multiindices A is called a hierarchical set if Vo € A :
lla) <oo and a€ A\{v} = —ac A

A set of multiindices B(A), where A is a hierarchical set, is called a remainder set of A if
Vo € B(A)

a¢ A and —acA

Assume that g(s, z1, To, ..., ;) is a regular stochastic process, i.e. such that all the stochastic
integrals written below exist in the sense of Definitions 2.1 and 2.2. Let p and 7 be fixed
points in the interval [0,77] s.t. p < 7. A multiple stochastic integral on the interval [p, 7]
with respect to any multiindex « s.t. k(«) < [ is defined by the induction procedure. First,
we define the integral with respect to the empty index:

I’U[g];(xla "'7xl) = 9(7—7$1, ...,xl).

Now, assume that [,,_ [g];(xl, X3, ..., 2} ) depends on k parameters, where 0 < k < [. Then
we define the multiple integral as follows:

1) if ay(o) = O then
Lalgly (1, .y 2k) = /pT Io—[9]5 (z1, ..., 7k )ds,
2) if ay(q) = 1 then
L9l (z1, ) = /pT Io-[g]; (z1, . 2k ) AW,
3) if aya) =2and k > 1 then

o, Tk )N (ds, dxy,),

b\
SE
il
=
< ®»
5
=

t

Ia[g];(xla--qu,l) frd
4) if ay(a) = 3and k > 1 then

Lafgl,(z1, .y zp—1) = /T /B/ Io-[g]y (z1, .., 21) N (ds, dg).

@)



Let us notice that it follows from the description above that I, [g] depends on | — k() param-
eters, i.e. In[g]], = Lalg]} (71, 72, .o T1_k(a))-

Example Let g = g(s, z1, 22, x3). Then:

T

I(l)[g];(l'l,l‘g,%:g) = / g(S—,J?l,l'Q,J)?,)dWS,

P
t S1— So—

T lalb(a1) = / / / / 9(s3— 21, 29, 23) N(dss, des) dWs, N(ds1, dey).
0p 0 0 B

The processes which serve as integrands in multiple integrals in the expansion of f(Y") will
be obtained with the use of coefficient functions f,, where « is a multiindex. We define the
coefficient function with respect to any multiindex « by the induction procedure:

fo(y) = (),

foc(y; L1, "'axk(a)) = L™ f—a(ya ¢ PRE ka(,a)) (y"rh 7xk(a))
Example For a given function f = f(y) we get:
f(lO) (y) = L1L0f7

f2013) (Y, 1, 2) = LPLOLYL3f.

For simplicity we omit here the dependence on arguments on the right hand side.

Notice, that the coefficient function f, = fo(y, 21, ..., Tr(a)) depends on k(a) parameters,
i.e. on 1, T, ..., Ty(a). However, the multiple integral I [fo]], = Lalfa (¥ T1, s Tr(a))]]
does not depend on any parameter.

We have the following analogue of Theorem 5.5.1 in [3] which is also called the It6 - Taylor
expansion. It is a consequence of the It6 formula and definitions of the hierarchical and
remainder sets.

Theorem 2.6 For any hierarchical set A and a smooth function f we have the following
representation:

f(YT) = Z Ia[foz(ypyl'la ,mk(a))]; + Z Ia[foz(Yo—axly -~'»xk(a))];7 (26)

acA aeB(A)
assuming that all the integrals above exist.

Notice that the first sum in (2.6) consists of all integrals for which the integrands do not de-
pend on time while the second sum contains all integrals with the integrands dependent on
time. Since we are interested in the approximation of the process Y itself, to the end of the
paper we will consider the identity function only, i.e. f(y) = y.

In the sequel we use two auxiliary lemmas.

Lemma 2.7 (The Gronwall lemma) Let g, h : [0,T] — R be integrable and satisfy:

0<g(t) <h(t)+ L/o g(s)ds



fort €[0,T) and L > 0. Then:

g(t) < h(t) + L/Ot et (s)ds

fort e [0,T).

Lemma 2.8 Let g be a cddldg function on the interval [0, T). Then for any (p, 7] C [0,T] we
have:

sup g(s—) < sup g(s).
s€(p,7] s€(p,]

Proof: Let (s,)n=12.. be a sequence such that s, € (p,7] for n = 1,2, ... satisfying
9(8n—) — SUP4¢(, - 9(s—) := K. Since g is cddldg, for any ¢ > 0 there exits a sequence
(85 )n=1,2,... such that s5, € (p, 7] forn = 1,2, ... and satisfies:

g(s;) > g(spn—) —e forn=1,2,..

and thus:
lim g(s5) > K —e.
Letting ¢ — 0 we obtain sup,c(, 19(s) > K. O

3 Problem formulation

Our approximation of the process Y, which is the solution of (2.2), will be based on a fixed
partition

O=mo<mm<..<71, =T

of the interval [0, T']. For the sake of simplicity all the partition points are assumed to be non-
random. The diameter of this partition is assumed to be smaller than d, i.e. max;—o 1,... n—1(Ti41—
7;) < 8. The approximation denoted by Y is obtained from the first sum of multiple integrals

in the Itd-Taylor expansion (2.6). The procedure can be described as follows. Starting from

the known value Yy, which can be equal to Y, we calculate the value Y}’ for t € (0, 7] using

the first sum in (2.6). Using value Yfl we repeat the procedure for ¢ € (71,72 and so on.
Denoting n; = max{k : 7, < t} we define process Y as:

YO =3 LalfalYS, @1, Tr(a) )L, - (3.7)
acA

The motivation for the form of the approximation is justified by the possibility of practical
calculation multiple integrals for which integrands does not depend on time (at least for low
order integrals). In fact, in the case of integrals with respect to the compensated Poisson
measure additional difficulty occurs which is related to the property of Lévy measure. It is
discussed in Section 5. We focus on the problem of finding a strong approximation of order
~v > 0, i.e. such that

E sup |Y; —Y? |2< €8> (3.8)
t€[0,T]

for some constant C' > 0. The rate of convergence ~ is fixed and in practical application it is
the multiplicity of %, ie. y= %, 1, %,

Thus our goal can be summarized as follows: for a fixed v > 0 find a hierarchical set .A such
that the approximation Y defined by (3.7) satisfies (3.8).



4 Construction of the strong approximation

Before formulating the main theorem let us introduce the following notation. For any multiin-
dex «r s.t. k(«) > 0 we denote by S(«) a multiindex which is obtained from « by deleting all
the coordinates equal to 0 or 1. Then the sets BY fori = 1,2, ..., k(«) are defined as follows

. B ifﬁ(a)k(a)+1,i =2

PO BBk i = 3.

The following result is a generalization of Theorem 10.6.3 in [3] and Theorem 7 in [2].
Theorem 4.1 Let us assume that coefficients in equation (2.2) satisfy conditions (A1),(A2).

Let YO be the approximation of the form (3.7), for the solution' Y of (2.2), constructed with
the use of the hierarchical set A, where:

A, = { o)+ s(a) <2y or l(a)=s(a)=v+ % } . (4.9)

Moreover, assume that coefficient functions f,, satisfy:
(A3) for any o € A, holds:

[ [ 1t cone) = falusors ) P ol v(dar)

By Bs By,

SKa|y1_y2 ‘2

)

(A4) for any oo € A, U B(Ay) holds:
/ / / | fa(y, 21,22, 0y Zp(ay) |2 v(dxyay).v(der) < Lo(1+ y2),
v/ B B

where K, L., are some constants.
Then for § € (0, 1) the inequality:

E sup |Y, Y’ *P< Ei(7,T)|Yo—Y{ > +Ea(7, T, Yo)0
s€[0,7]

holds.
The proof is presented at the end of this section. First we present three auxiliary lemmas and

a proposition.

Lemma 4.2 Let p, T be two fixed points in the interval [0, T s. t. p < 7, 7 — p < 4. If all the
integrals below exist then we have:

s 2
E sup {/ g(u,xl,xg,...,xl)du} §52E{ sup gz(u,wl,xg,...,xl)}, (4.10)
1 ~Jp

s€(p,T u€(p,7]

S 2 T
E sup {/ g(u,xl,xQ,...,xl)du} Sé/ E{g2(u,x1,x2,...,xl)}du, 4.11)
1 ~Jp

s€(p,T p

s 2
E sup {/ g(u,xl,xg,...,zl)qu} §45E{ sup gz(u,xl,zg,...,xl)}, (4.12)
o

se(p,7] u€(p,7]

S 2 T
E sup {/ g(u,xl,xg,...,xl)qu} §4/ E{gz(u,xl,xQ,...,xl)}du, (4.13)
P P

s€(p,7]

=]



E sup {/S/ g(u,xl,...,zl)N(du,da:l)}z <
s€(p,T] p JB
2(4 + 6v(B)) /T/ E{¢*(u, 21, ..., ;) }v(dz;)du.
B/
’ 4.17)

Note, that due to Lemma 2.8, the lemma above remains true if we replace the upper limit "s"
in the left hand side integrals with ”s —”

Proof: All these inequalities are proved with the use of the Schwartz and Doob inequalities,
the isometric formula for stochastic integrals and Fubini’s theorem.
4.11)

S 2 S
E sup {/ g(u,xl,xg,...,xl)du} <E sup 5{/ gQ(u,x17x27...7xl)du}
1 ~Jp p

s€(p,T s€(p,T]

§5E{/ gQ(u,xl,x27...7xl)du}:6/ E{gQ(u7x1,x27...7ml)}du
P P

(4.10)
S 2 T
E sup {/ g(u,xl,xg,...,xl)du} §5/ E{g2(u,x1,x2,...,xl)}du
s€(p,T] p p
352 E{ sup 92(u7x17$2a"'71l)}
u€(p,7]
(4.13)
s 2 s 2
E sup {/ g(u,xl,xg,...,zl)qu} <4 sup E{/ g(u,xl,zg,...,ml)dmt}
se(p,r] “Jp s€(p,7] p

=4 sup E{/ g2(u,z1,x2,...,xl)du} §4E{/ gQ(U,Il,IQ,...,l’l)dU}
s€(p,7] p P
= / E{QQ(uaxlawa'wxl)}du
p

10



4.12)

s ) T
E sup {/ g(U,wlaan'“axl)qu} §4E{/ 92(u3x17x27“'7xl)du}
] P P

s€(p,T

<40 E{ sup gQ(u,xl,xQ,...,xl)}

u€(p,7]
4.15)
s - 2 S - 2
E sup {/ /g(u,xl,...,xl)N(du,dacl)} <4 sup E{/ /g(u,xh...wl)N(du,dml)}
s€(p,7] ~Jp JB s€(p,T] p JB

=4 sup E{/ /gQ(u,ml,...,xl)V(dml)du} §4/ /E{gQ(u,xl,xQ,...,xl)}y(dﬂcl)du
p JB P B

s€(p,7]
(4.14)

~ 2 T
E sup / / u, xl,...,xl)N(du,dml)} §4E{/ /gz(u,xl,xg,...,J:l)u(dxl)du}
se(p,T] p JB

§4E{5 sup /g2(u,x1,x2,...,xl)l/(dml)}§45E{/ sup gQ(U,xl,xQ,...,xl)u(dxl)}
B B

ue(p,7] u€(p,7]

—4(5/ sup g uml,...,xl)}u(da:l)

u€(p,7]

4.17)

s . 2
E sup {/ / g(u,xl,...,xl)N(du,da:l)}
s€(p,r] ~Jp JB
s 2
=E sup / / (u xl,...,xl)N(du,dxl)—F/ / g(u,xl,...,xl)u(dxl)du}
s€(p,7] p JB'
2 2
E sup // (u, 21, ...,z (du dxl)} +E sup // (u, 1, ...,z (dxl)du} }
SE(pT sE(pT

(4.18)

The first component is bounded by analogous expression as in (4.15). For the second we have
the following inequalities:

E sup / / Uy X1y ey T (dml)du}
s€(p,T]
S S 2
<E sup {// 1V(dxl)du-/ / gz(u,ml,...,xl)y(dxl)du}
se(p,r] ~Jp JB' p JB

/ / E{¢*(u,z1, ..., ) }v(dw;)du.
As a consequence we obtain:

E sup // u, 21, .y )N (du, da:l)} < 2(4+6v(B //E{g w21, ooy 1) b0 (day) du.

s€(p,T]

11



(4.16)
For the second term in (4.18) we have the following inequalities:

E sup / / (u xl,...,xl)u(dxl)du}Q < (5V(B/)E{ /pT /B/ g2(u,x1,...,xl)1/(dxl)du}

s€(p,T]

< 52u(B/)E{ sup //92(u7x1,...7xl)u(d$cl)} < 62V(B/)E{/B sup gQ(u,xl,...,xl)u(dscl)}

u€(p,7] /B " ue(p,T]

v(B) / sup g (u,xl,...,xl)}u(dxl).

u€(p,7]
Taking into account (4.18), the inequality above and (4.14) we obtain:
2 /
E sup // U, 1, ..., 2 ) N (du, dzl)} <26(4+v(B)) /E{ sup g2(u,z1,...,xl)}u(dzl).
s€(p,T u€(p,T]
B/

O

Lemma 4.3 Let p, 7 be two fixed points in the interval [0,T] s.t. p <7, T—p < dand a # v
be a fixed multiindex. If all the integrals below exist for the process g = g(u, 21, ..., x;), where
I > k(«), then we have:

) L@
E{ sup I2[g)5(1, s 2y o)} g5l<a>+8<a>—14w<a>+n(a>{2(4+5;/(3 ))} :

s€(p,T]
/ / / / (u, 21, @2, ..xp)v(day) v(do—1) ... v(dz_g(a)41)du.

B¢ Bg By,
(4.19)

Proof: We will apply the induction procedure with respect to the length of . If I{(«) = 1 then
(4.19) follows from inequalities (4.11), (4.13), (4.15), (4.17) in Lemma 4.2 applied to o = 0,
a =1, a =2, a = 3 respectively.

Now assume that (4.19) is true for a— and let us show that it is also true for a. We will
consider several cases.

a) o) = 0; In this case k(a—) = k(a) and By~ = By fori = 1,2, ..., k(a). By (4.10),
Lemma 2.8 and the inductive assumption we have:

s 2
B{ sup Zlgly(or,tiso)} =B{ swp [ Lclol} (@1, gganyu}
P

s€(p,7] s€(p,7]

<0?B{ swp I2_[g]i" (01,1 ko)

u€(p,7]

~ ’ n(af)
< 625l(a—)+s(a—)—1411)(a—)+n((x—){2(4+ (5Z/(B ))} .

/ E/ / / g (u, 1, 2o, ..., x)v(dry) v(dr;—1) ... v(doi_p(a—)41)du
o

BYT B3 Bilao

12



n(a)

= gttt {54 1 5u(5))}
/ / / / (w, z1, 22, .. 2)V(dry) v(dwy_1) ... V(dT)_j(a)41)du.
By By B,

b) aya) = 1; In this case k(a—) = k() and Bj'~ = Bf* fori = 1,2,...,k(a). By (4.12),
Lemma 2.8 and the inductive assumption we have:

2

S
E{ sup Ii[g]j}(xl,...,xl,k(a)):E{ sup / Ia,[g]qp“(xl,...,xl,k(a,))qu}
s€(p,7] s€(p,m)Jp

§4(5E{ sup sz[g]qp‘_(acl,...,xl,k(a,))}

u€(p,7]

_ / (a=)
<45 5l(a7)+s(a7)714w(a7)+n(a—){2(4 + 51/(3 ))}n @ .

/ E/ / / % (u, 1, T, ...x;)v(da)) v(dxi—1) ... v(dz;_pa—y41)du
p

BYT B3T By

n(a)

— 6l(a)+s(a)—14w(a)+ﬁ(o¢) {2(4 + (SZ/(B,))}
/ / / / (u, z1, 22, ...p)v(day) v(dzi—1) ... v(d;—g(a)41)du.
By By B,

¢) (o) = 2; By (4.14), Lemma 2.8 and the inductive assumption we have:

~ 2
E{ sup I3[g]5(x1, .. 21— (o))} :E sup / / a-lgly " (w1, ... 7xl—k(a)-ﬁ-l)N(duadxl—k(a)+1>}
s€(p,7] se(p,

§45/ E{ sup Iif[g]g_(xh~-,xz—k(a)+1)}V(d$z—k(a)+1)

u€(p,7]

~ 7 n(ai)
< 4§ §lam)+s(an)~1 w(a-)+i(a=) {2(4 +ou(B ))} :

// / / / (w, z1, 22, ..p)v(dry) v(dwy—q) ... v(dz_a—y4+1) du v(dT;—ka)+1)

@ — @ — o —
BT BT Bi.,

) ;Y@
_ 5z<a>+s<a>—14w(a>+n<a>{2(4 + ov(B ))} :

/ E// / 9 (u, 21, 2, ..xy)v(day) v(da 1) ... v(dz k(o)1) du.
p

By By Bia

13



d) Qy(q) = 3; By (4.16), Lemma 2.8 and the inductive assumption we have:

2
E{ sup Iz[] (21, ... ,xl_k(a))}:E sup / / %~ xl,...,xl_k(a)H)N(du,dxl_k(a)+1)}

s€(p,7] s€(p,T

2(45+52V(B/))//E{ Sup. T2 [g]1 (21, T () 41) (AT (1)
B

u€e(p,7]

n(a—)

2(46 + §%u(B')) sl +slam)—1 gw(a= >+ﬁ<a*>{2(4+5y(3’))}

// // / 2(u, 21, @, oot )o(dt) A(d@1-1) oo (ATt 1) du (@21 1)

By By~ BZ(; )

_ @)
— 5Z<a>+s<a>—14w(a)+n<a>{2(4 +6u(B ))} .

/ / / / (u, w1, T2, )V (dy) v(dwi—1) ... V(dT)_p(0)41) du.

B¢ B B,
]

For any multiindex o # v and a process g = g(s, 21, ..., Tp(q)) We define two auxiliary
functionals:

ns—1 2
Filg] :=E sup (ZI T1+1+Ia[g]ins> ) (4.20)

s€[0,t] \ ;=0

36[1)77—]

Gg,r[ =E sup // / S sy Ly ooy T (a))V(da?k(a))...V(d{lfl). (421)

k(ﬂ)

Lemma 4.4 For any multiindex o« # v and a process g s.t. G&t[g] < o0 we have the
following inequality:

£ 0= (06 [g) du i Ue) = s(a)
Flgl <
C(a,t) se)+s(e)= f G§ gl du if l(a) # s(a).

Proof: We consider several cases:

a) (o) = s(a),

b) { w(a) > 0orn(a) >0} and
bl) i) =0
b2) aya) =1
b3) al(a) = 2,
bd) ) =3

¢) n(a) > 0and w(a) =n(a) = 0.

14



a) l(a) = s(a)

By the Schwartz inequality and Lemma 4.3 we have:

Folg) =B sup (A Tl du)’ < B sup [5/0 12 (o)t du] gt/OtE<1§_[g]¢M)du

s€[0,t] s€[0,t]

u

t
St/ E sup (Iif[g]m du<t/ slla)+stam)— 1/ Eg*(s)ds du
0

SE(Tny, »u) Thay

t u t u
< t/ slam)+s(a—)—1 / E sup g*(w)dsdu< t/ sllam)tsla—)—1 G2, slglds du
0 T 0

N we["-nuvs] Trq

‘ t
t/o gllemttste)=l5Ge | [gldu < té““”“a)”/o 0.ulg]du.

bl) { w(a) > 0 ori(a) > 0} and ayoy) = 0
The following inequality holds:

ns—1 2 9
Felg <2 suwp | > Llglnt ) +2B suwp (Llgl, )
SE[Ot i=0 56[07t] s

Notice that the process > . '1, [g]=t" is a martingale because it contains integral with
respect to the Wiener process or with respect to the compensated Poisson measure. First let

us consider the first sum.

ns—1 2 ng—1 2
E sup (Z Ia[g]:j“) <4 sup E <Z I ”+l>

s€0t] \ ;=9 s€[0,t] =0

ns—2 2
=4 sup E (Z I [g]7i+ +Ia[g]::::_l>

s€[0,t]

Nng—2 ns—2
=4 sup E (Z Ia[g}:;r“) +2 Z Lalg)7 Lalglme ., + 2lglme
1=0

s€[0,t]

ns—2 2
<4 sp E<zfa[g]:;+l) VB s Pl

SE[Oyt] i=0 UE(TnS—l,TnS]

n(a)

ns—2 2
<4 sup {E <Z Llg fr1+1> +5l(a)+s(o¢)fl4w(a)+ﬁ(a){2(4+6V(B/))}

s€[0,t] i—0

/ // / (121, 2, (o) () V(T y1) - V()
Tng—1

k(a)

15



ns—2 2
- _ /o nla)
< 4 sup { < E I T“rl) + 5l(a)+s(a)—14w(a)+n(a) {2(4 + (SI/(B ))} .

s€[0,t]
Tng
(7
. / G7n5717udu
Tng—1

na—3 2
: i /e
<4 sup {E < > Ia[g]Z:i“> ottt gu@ae) fo(4 4 5u(B ))}n "

s€[0,t] =0
Trg—1 Trs
(03 «
. / Ge udu—i—/ Ge . du
Tng—2 Tng—1

n(a)

<4 sup {5l<a>+8<a>14w<a>+ﬁ<a>{2(4 + 5V(B'))}

s€0,t]
(/ Gmudu—i—/ G udu+...+/ Ca . du>}

ng—1

< 6l(a)+s(a)—14w(a)+ﬁ(a)+1{ (4+5u(B n(a / G
For the second sum we have the following inequalities:

2 S S
E sup (Ia[g]‘f;ns) <JE sup/ I2_[g" _du<JE sup/ sup 12 _[g]“ " du

Tns
se[O,t} SE[O,t] Tn 56[0 t] ns ’we(Tnb,,’LL]

t t
<é E/ sup [?_[g]fnf du=29 / E sup I2_[g]Y du
0 “ 0 we e

WE(Tn,, U] (Try »ul

n(a—)
<6 / 5lo¢ )+s(a—)— 14w(a )7 (o— ){ (4+5y( ))} .

/ // / (w, @1, T2, - Tp(a) W (dTh(a)) V(dT(a)—1) - v(dw1)dw du

Bf By By,

< 55l(a7)+s(a7)714w(a7)+ﬁ(a7){ (4+51/ / / Tn 7w dw du
2 sl(a—)+s(a—)—1 jw(a—)+n(a—) , n(a—) t N
<&s 4 {2a+awB))} G lgldu
0

_ sy [t
_ 5l(a)+s(a)fl4w(oé)+n(ll){2(4 + 6v(B ))} / &u[g] du.
0
Finally we obtain:

_ /oy nla) ¢
Felg) < 20470 {oa s a5 )}t [ g] du
0
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b2) { w(a) > 0or 7(a) > 0} and oy(q) = 1
By Doob’s inequality, the isometric formula for Wiener integrals and Lemma 4.3 we obtain:

S 2 S 2
F*[g] = Esup ( / Io—[9]7,. dm) <4supE ( / I_[g]“ qu>
s<t \Jo u s<t 0 i

s t t
:4supE/ Ii_[g}ﬁ;du:él/ E(Ii_[g}ﬁ;)du<4/ E sup 12_[g]$’" du
0 0 0 we

s<t (T’ﬂu »ul

<4/ gila—)+s(a—) =1 w(a—)+n(a— >{ (44 év(B n(a )/ G2 slglds du

Trg U

~ sy nla—) ¢
< 4§l(a—)+s(o¢—)—14w(a—)+n(0¢—){2(4-|-§1/(B ))} 5/ G2~ lg] du
0

:5l(a)+s(a)—14w(a)+ﬁ(a){ (4+(5V na / G

b3) { w(a) > 0 or (a) > 0} and oy(q) = 2
By Doob’s inequality, the isometric formula for integrals with respect to the compensated
Poisson measure and Lemma 4.3 we obtain:

F*g Es:i;;(// 914 (x N(dmdxl)) <4s:£E(// g4 (x N(du,dm1)>2
cuagn([ o i) ([ 1o vt

t
<4 / / E sup  I2_[g)"" (a1)v(der)du
0 B

WE(Th,, »u)

~ ’ TL(OL—)
< 4//51 a—)+s(a— 14w(a7)+n(a7){2(4+51/(3 ))} .

.=

Ny

/ / / (w, w1, T2, ... Tp(a))V(ATh(a)) V(ATh(a)—1) - v(do2)dw v(dzy)du
- BS

5 Bl(:(; )

~ ’ n(a_)
< Zjl(sl(af)Jrs(ocf)fl4w(ozf)+n(ocf){2(4+ 51/(B ))} .

/ / // / (w, 21, %2, ..Tk(a) V(A1) V(dTp(a)-1) - v(dw2)v(dwr)dwdu

k(a)
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~ ’ n(af)
< 4al<a*>+5<a*>*14w<a*>+n<a*>{2(4 +ouv(B ))} :

/ / Ses:jf)w]// / (8,215 -+ Z(a) W (ATh(a)) V(ATh(a) 1) - V(d22)v(d21)dwdu

Ny
B

< 45l<a—>+s<a—)—14w<a—>+ﬁ(a—>{2(4 + 5u(B/))}"(“’).

/ sup / / / (5,01, @, o))V (A5 ) V(i) 1) o v{daz)(dar)du

se[‘rnu,u]
Bl

~ ’ n(o‘_) t
:455“&->+S<a—>—14w<a—>+"<a—>{2(4+5V(B ))} /G”‘ Jlgldu
0

Try s

S 5l(a)+s(a)—14w((¥)+ﬁ(a){ (4+6V n(a / G

b4) { w(a) > 0or i(a) > 0} and () = 3
We have the following inequality:

rrin =B ([ [, o bl i)
~ B ( [ [ et eostnan + [ [ 1la <x1>u<dx1>du)2
<2 Esslgt) </OS /B/ Io-lgl7, (xl)N(du,d:ﬂl)) +2 Eig) </ / lg]7,. (@ )V(dxl)du>2 .

The first term is bounded as in the case (b3). For the second term we have the following
inequalities:

Baup ( /O S /B _lgl (xl)u(da:l)du>2
< Es;g) (/0 /B 1 V(d:cl)dw/os /B I3 lgle (xl)y(dxl)du)

// g; Il)) (d$1 du < 5V // ?up 12 [g};un; (Il)V(del)du
WE(Th,, ,ul
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n(a—)
/ / 5l(a )+s(a—)— 1471)(04 )+ (a— ){ (4+5l/( ))} .

u
/ E/ / / 92 (w, 1, T2, ... T )V (dTk(0)) V(ATp(a)—1) - v(dD2)dw v(dzy)du

BYT BYT By

’ n(af)
= v ( )5l —)+s(a—)— 1410(04 )+n(a— ){ (4+(5V(B ))} .

/ / // / (W0, 21, T2, . T(a) )V (ATh(a)) V(ATh(a) 1) - V(dT1)dwdu...

a B k(cy)

and omitting identical operations as in (b3) we obtain:

' ~ n(a )
< 521/(3 )51(a—)+s(a—)—14w(a—)+n(a—){ (4—|—(51/ / G

= ey e foa s )} / Gs,
Finally, for this case we have:

Frlg) < 2 81051 gu@ 5@ {4 1 5u(5 )} / as.
+26l(a)+s(a)—16V(B’>4w(a)+ﬁ(@){ (4 + ov(B n(a / G

; S e
< g tgultn@ o 1 op(B) ) {8+ 300(B / G

c)n(a) > 0and w(a) =n(a) =0

In this case the multiindex a consists of 0 and 3 only. If o) = 3 then the desired inequality
follows from (b4). In opposite case let us denote r(«) := max{i : «; = 3}. For simplicity of
exposition we show the case when r(a) = I(a) — 1. The idea for other cases is exactly the
same. We have the following inequality:

Fg] <2 Es:g)(/ // a——l9l7 (z N(dzy, dw) du>2

Tny B’

+2Esup (/0 7/1(1[913‘1; (1) (dz: ) dw du)2.

’
Tnu B

Calculations for the first term in the sum above are covered by (bl). Applying the Schwartz
inequality and Lemma 4.3 for the second term we obtain:

Baup (/O 7_/Ia[g]¢%,; (1) (dr ) duw du)2 <IE /Ot ( 7_/1(1[9};{; (xl)z/(dxl)dw>2du

’ ’
Tnu B Tnu B
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2
§t/ sup (// a——[g]7, ( )I/(dxl)dw> du
0 SE(Thy Ul )

Tny B

< tév(B / / /E12 _[91%, (z)v(der)dw du

Tny B’

< tov(B / / / sup  I2__[g]5 (z1)v(dzi)dw du
SE(Tny W] o

7 ’ n(aff)
< tov(B )5l<a——)+s<a——>—1{2(4 +ou(B ))} :

-/Ot /u/ /wE / / g2(37x1,...,xk(a))u(dxk(a))...V(dmg)ds v(dzy) dw du

’ _— _—
Tny B’ Tnu  BY B

’ ’ n(o‘__)
< tolle=)tsle==)y(p ){2(4+5V(B ))} :

/ // / / (8,21, ooy T(a) )V (ATh(a ) - v(d21) ds dw du

Tnu Tnu  BY B,

’ ’ n(a——
< ato= =By a4 4 au(B)) ) //50@ dw du

’ / __)
< t5l(a——)+s(a——)V(B ){ (4+ 5V n o / 52G T’nu Ldu

’ / 71(&) 1
< tolle)+s(@)-1,(g ){ (4+ 6v(B / G
Finally we have:

, n(a)—1
F2lg] < g@)Fs(e)-1 {2(4 + 0v(B ))} 8 + 2tv(B / G

Proposition 4.5 Let A be any hierarchical set. If for each o € A the condition:
/ / / | fa(y, z1, 22,0y Tpo(a)) > v(dxgay).-v(dzy) < Lo (14 v (4.22)
i /By B

holds, then the approximation Y given by (3.7) satisfies:

E sup |[Y22P<Cs(1+|YPP?) Vtelo,T],
0<s<T

where C3 > Q.
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Proof: Due to (3.7) we write the approximation in the following form

ng—1
}/55 = Y—OCS + Z (Z Ioz[fa(YTi7$1, wrk(a))]::Jrl + Ia[fa(Y-,isyzla "'axk(a))]f'ns> :

acA\{v}

By Lemma 4.4 and assumption (4.22) we have the following inequalities:

0<s<T

ng—1
Esu YS‘S2 {Y 24 E su ( 1, aYT‘S,,x7.. Trio)) | DTt
é“ Y5 1? + 2: p ; [falYr @1, s Th(a))]T:

LV, o)), )

%W+Z/E£&// /ﬁﬂl.nmwmwpmm@}

acA
Bi e
{|YO 1> + Z / E sup / / / A2, ay, oy Th(a) V(AT () - (dy) ds}
acA u€[0 s]
Bie
%5+Z/EMM1HWU}
acA u€l0,s]
< #(A) {|YO +T Z Lo + Z L, / Esup|Yu‘5|2ds}.
aEA aEA uss
By applying the Gronwall lemma 2.7 we obtain the required result. O

Now we are ready to present the main result’s proof.

Proof of Theorem 4.1: We write the solution Y of (2.2) and its approximation Y in the
forms:

ns—1

YS = Yb =+ Z <Z Ia[fOé(Ymela" xk(a))] s +I [fa( Tng y L1y - xk(a))}7n5>
acA\{v} \i=

(4.23)

ns—1
Z (Z I foz o— L1y -y zk(a))]TlJrl + 1o [foz( o— Ila"wzk(a))]iﬂ,s>7

a€B(Ay)

ns—1
th :YO5_|_ Z (Z ]a[fa(Y7fi7x1,..., (a))]7'7+1 + I, [fa( o, xlﬁ"'vxk(a))]'srn5>'

a€A,\{v}

Due to Proposition 2.4 and Proposition 4.5 the error of the approximation
Zy:=Esup,; | Yy — Y9 |? is finite and satisfies the inequality:

Zi<DiM (1 Yo-Ys P+ > R+ Y U, (4.24)
ac A N\{v} a€eB(Ay)
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where

Dy () = ﬁ{A'y U B(Av)}y

ns—1
Ti4+1
R = Esup ( d I [fa(YTi,xl, oo Tha)) — fa(Yg,xl,...,xk(a))} (4.25)

s<t i—0 Ti
s 2
+ 1, |:fOL(YTn,S7:E13""'Ik((X))7f(X(Y7fSnsﬂ‘T1?"'?ka((X)):| > )

ng—1 2
U = Esup ( Z Io[fa(Yeo, 21, oy p(a))] 7! —&—Ia[fa(Y.,x17...7mk(a))]ins> )

SSE\ =0

(4.26)

Let us denote D(a,T) := sup,epo 7 max{t, C(a,t)} where C(a,t) is a constant from
Lemma (4.4). Since §/(®)+s(e)—1 « §l(e)+s(a)=2 < | by Lemma 4.4 and assumption (A3)
we have the following inequality for any a € A, \{v}:

t
Ry < D(a,T)/ Esup {fQ(YTHS,xl, oy Th(a)) — fQ(YT‘iS,xl, s Th(a)) | du
0

s<u

t
SD(a,T)/ Esup//... / [fa(Ys,xl,...,xk(a))
0 s<u
B®Bg B

k(o)
s 2
— fo (Y2, 21, ...735;6(&))} v(dzyay)...v(dzy) du

t t
< D(a,T)Ka/ Esup | Y, - Y? |? du= D(a7T)Ka/ Z,, du.
0 0

s<u

For any o € B(A,) inequality: I(a) + s(a) — 1 > () + s() — 2 > 2+ is satisfied. Due to
this fact, assumption (A4), Proposition 2.4 and Lemma 2.8 we have the following inequalities:

t

U < D@ ) [ G [falYor i, otngo)
0
t

s<u

2
§D(a,T)527/ Esup//... / [fa(YS,,xl,...,xk(a))] v(dzy(a))..-.v(dey) du
0
BBy B

)(:(Ot)

t t
< D(a,T)cSzWLa/ Esup | 1+Y2 | du < D(a,t)éQVLa/ (1+ Co(1+Y)) du
0

0 s<u

<0P'D(a, T)LoT(1 4+ Co(1 +YE)).

Finally, denoting shorter relevant constants we have:
t
Ry < Dg(a,T)/ Zydu, U < Ds(a,T,Yy)s>.
0

Coming back to (4.24) we obtain

t
Zt S Dl (’Y) | }/0 - Y06 ‘2 +D2(77T)/ Zudu + D3(7>T7 Y0)6277 (427)
0
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where Dy(v,T) := D1(7) e a (o) D2(a, T) and
Ds(7,T,Yy) := Dy (7) >aeBa,) Ds(a, T,Y,). Applying the Gronwall lemma 2.7 to (4.27)
we obtain:

Zt S EI(WJT) | }/b - Y06 ‘2 +E2(77 T7 Y0)52’Y’
where:

Ei(7,T) = Di()e?20"DT Ey(v,T,Yy) = Ds(v, Yo, T)eP20r 17T,

5 Infinite Lévy measure

The strong approximation described by Theorem 4.1 can not always be easily constructed
in practice even for low order of convergence. In case when v(B) = oo the integrals with
respect to the compensated Poisson measure are difficult to obtain even for simple integrands.
In this section we formulate alternative theorem which describes approximation with the use
of integrals which can be practically derived.

For a fixed ¢ € (0,1) we split the unit ball B into the ball B, with radius ¢ and the disc
D. = B\B.. Our idea is to modify the approximation given by Theorem 4.1 by exchanging
all the integrals on unit balls with respect to the compensated Poisson measure for integrals
on discs D..

For the use of this section we extend the inductive definition of multiple stochastic integral
introduced in Section 2. To this end for any multiindex « let us define a set of subscripts IT(«)
consisting of vectors m(a) = (71 (), ma(), ..., Tr(a)(@)) of length 7)) with coordinates
equaltoOor1,ie.

mi(a) =0orm(a) =1fori=1,2,...,0(a) ifn(a) >0

v if n(a) = 0.

m(a) € II(a) < {

The empty subscript v, i.e. the subscript of length zero is introduced for technical reasons.
The subscripts for the multiindices « and a— are related in the following way:

7T(Ck) ifal(a) = 071,3
(@), m2(), .., Tr(ay—1(a))  if oy = 2.

For a process g = g(s, x1, ..., 2;), a multiindex « s.t. k(o) <[ and a subscript 7(«) € II(«)
we define the multiple integral by the induction procedure.
If n(«) = 0 then

15 9] (w1, s m0) = Lalgly (w1, s 1)

Assume that 1€ [g];(xl, Zg, ..., ) depends on k parameters, where k < [. Then:

A= (a—)

1) if Qa) = 0 then

IZ"(Q)[g];(xl,...,xk) :/p Ia_w(a_)[g]‘;_(arl,...,xk)ds,
2) if ay(q) = 1 then

15 lgln (@, ) = / Lo [0 (@1, s )V,



3) if () = 2 and 7o) () = 0 and & > 1 then

@m@mmwaa:ALLLhm>myuh. )N (ds, dzy),
4) if Qo) = 2 and Ti(o) (Oé) = land k > 1 then
15 ol e o) :/ / Tne oo (05 @1, oo k) N (ds, dazy),
p JD.

5) if qqq) =3 and k > 1 then
15 oo (@, @) = / // Lo o195 @1y oy 21k )N (ds, day,).
p B

Example Assume that g is of the form g(s, 1, x2, ). Then:

I(212) 4, 9] // / // s3—, 1, %3) N(dss, dzs) dW,, N(dsy,dx,).

For any hierarchical set A let us denote by A2 a subset of multiindices containing at least one
element equal to 2, i.e. o € A? iff « € A and () > 0.

Remark 5.1 Let ¢ > 0. For any o € A? and a process g = g(s, 1, T2, o Th(a)) the
following equality holds:

Llgy= Y I la.

mell(a)

Remark 5.2 Ifwe replace in the formulas (4.20),(4.21) the unit balls in integrals with respect
to the compensated Poisson measure by £-balls or e-discs, then Lemma 4.4 remains true. As
a consequence, for a process:

YS&E: Z [fa( "'n xk(a Tn + Z Q1,1,...,1) ( gi’xl"“"rk(a))]f—m
ac A\ A? acA?

we obtain analogous estimation as in Proposition 4.5, i.e.

Esup [V < Ci(1+[Y9)2) Vi e (0,7,

s<t

where Cy > 0, assuming that (4.22) is satisfied.

Theorem 5.3 Assume that coefficients in equation (2.2) satisfy conditions (A1),(A2). Let A,
be a hierarchical set given by (4.9) and assume that (A3),(A4) hold. Assume that for any
o€ A% there exists a constant L¢, such that for every i s.t. o,; = 2 holds:

/ / | fa(y, 21,22, 0y Tpo(a)) |2 v(dxy(ay).v(der) < LE(1 + %), (5.28)

Bi! Ba k(a)

where B is on the position k(o) — i+ 1 and L, f— 0.
Then the approximation defined by the formula:

Yts&,s: Z Ioc[foz(y'r(sn7 T xk(a Tn + Z Q(1,1,...,1) (Y(s "’xk(a))]f’ns

acAy\ A2 acA?
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satisfies:

E sup | Y; - YSCS’E |2§ N1(77T) ‘ YO - YE)&E |2 +N2(73 T7 }/’())(52’y + N3(7a T7 YO(S’Eae)a
s€[0,T]

where N3(v, T, YO‘S’E,E) — 0.

e—0
Proof: We write the approximation in the form:

YO = 3 LalfaY25 20, an@), = Y Talfa(V5 @1, o )5,

acA, ac A2

5,5 s
Z o e (Y2 T s Taga) ()7,

ns—1
:YO&E_i_ Z (Z [ fa .1‘1,..., (a))]nJrl + 1, [fa( 7_n xl,...,xk(a))]:ns>

acA\{v}

ns—1
- Z <Z I fa axla"w k(o ))]Zz+l +Ia[fa<Y7§7iawl7"'7:1716(04))}‘73—"5)

acA2

ns—1
Z <Z (1,1, Y ’xl"“’xk( ))]THI +I§‘(1 1,..., 1)[f0‘(Y7§7i’x17""xk(a))}f'"s> .

acA2

By Remark 5.2 and Proposition 2.4 the error Z; := Esup <, |Ys — 2 is finite. Taking

into account (4.23) we have:

Zy< M) (1 Yo-Y9 P+ >0 Ry+ > Uur+ > S, (529
ac A \{v} a€eB(Ay) acA2

Mi(y) = t{A} + 8{B(A)} + { A},

RY is defined by (4.25) with Y replaced by Y and U by (4.26) and

ns—1
Sy = ESUP( > (Ia[fa(YT‘f-’E, @)t = Ia g, eV 2, l’k(a))]““)

s<t i—0

2
Ia[foé(quiiaxh 7xk(a))]f'n& - Icsv(l'l ’’’’’ 1) [fa(Y;ii)xla B xk(a))]‘srnﬂ) .
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Due to Remark 5.1 we have:

=1

S¢ = Esup
s<t

( ( oo oV 15
=0\ r(a)el(a),m(@)£(L1,...,1)

“(
(@) €T(e) () (L, 1,....1)

ns—1
<(men-1) > ES“"<Z e Vol V2 ot

rell(a),mrA(LL,.1) S

2
Izw(a)[fa(yéivxl sUk(oz))}‘rns)>

2
15 oY --fok(a))}inrs) '

In the sum above each integral contains at least one integral on e-ball. Using assumption
(5.28) and Remark 5.2 we obtain:

S < (ﬂ{H(a)}—l) 3 C(a,t)LE/ Esup(1 + [V2¢]2)du

r(a)ell(a),m£(L,1,...,1) ssu

< (@)} ~ 1)) "Dla, TILET( + Cal1 + [Y3#) =: L, - Daor T, V),

Coming back to (5.29) and using notation of constants from the proof of Theorem 4.1 we
obtain:

t
Zy < My(9) | Yo — Y [* +Ma(v,T) / Zydu + My(v, T, Y0)0%" + My(y, T, Y{F €),
0

where Ms (77 T) = M (7) ZQEA-Y\U D, (Oé, T)’ M3(’Y7 T7 YO) = M (’7) ZQEB(AV) D3(O{, Ta }/0)
and My(~, T, YO(S’E, €)= Mi(7) > qeae Li - Da(at, YO(S’E). Finally, applying the Gronwall
lemma 2.7 we obtain:

Zt S NI(PYaT) | }/0 - YO(s’E |2 +N2(/7>T7 YO)(;QW + N3(7>T7 Y06’6>E)7

where N; (77 T) = M (7)6M2 (’Y7T)T; Ny (’Ya T7 YO) = M;s (77 T7 Yb)eM2(77T)T; N3 (77 Ta YV(]6767 5) =
My, T, Y2 o) MO — MDA (3) 3, o L - Dl t, Y4,

6 Examples
We present the Euler (v = %) and Milstein (v = 1) schemes in for linear coefficients, i.e.

b(y) = by, o(y) = oy, F(y,r) = Fyp(z), G(y,r) = Gyq(z)

where o, b, F, G are constants and functions p(-), ¢(-) satisfy integrability conditions: [, p*(x)v(dx) <
00, [ ¢*(2)v(dx) < oc. Then assumptions (A1),(A2) are satisfied.

For finding integrals with respect to the Poisson random measure we use the representation of
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random measures given by Theorem 7.2 in [4] applied for a set F s.t. v(E) < oco. It states
that the random measure N (-, -) can be represented as

N(t7E) = Z 1[0,t]><E(nn7£n)7

n>0

where 1, = r; + ro + ... + 1, and {&,}, {r,,} are mutually independent random variables
with distributions:
v(ANE)

— —IJ(E)S >
() , VA € B(R), P(r, >s)=ce , s>0.

P(gneA):

In the following constructions we assume that v(B) < oo and as a consequence that N ((7;, 7;41], BU
Bl) =: K (i) < oo. Then all the moments of jumps generated by the Poisson random measure

N in the interval (7;,7;41] form a sequence: 7y < 72 < ... < N (;). We omit the depen-

dence of this sequence on ¢ to simplify notation. For the sake of clarity we use the following
notation:

Tn, = min{ng : g > 1y, and & € B,} A Tit1,

ﬂn = min{nk Nk > Mn and é-k; S B} A Tigp1.

Condition v(B) < oo guaranties that all the formulas below can be practically derived. If it
is not satisfied, then we apply Theorem 5.3 by replacing all unit balls in the approximation
by e- discs. In this case K (¢) and n,, are defined with the use of D. instead of B. Since

N((4,7i41], D U B") < oo the modified approximation can be calculated. We also find the
dependence of the approximation error on €.

Notational remark: if the range of indices in the sums below is empty, then the sum is assumed
to be zero.

The Euler scheme

The hierarchical set and the remainder sets are of the form A; = {v,0,1,2,3}, B(A;) =
{00, 10, 20, 30,01, 11, 21, 31,02, 12, 22, 32,03, 13, 23, 33}. It can be easily checked that con-
ditions (A3), (A4) are also satisfied. The approximation has the following form:

V2 =Y+ Llfo(Y)T + LIAYIT + L fo (Y], @) + Is[ (Y2, )7

where:

Ti+1
Tolfo(Y))]7 = / bY; ds = bY? A\,

i

Ti+1
LAY = / oY dW, = oY AV,

Ti

Ti+1

L[fo (Y2, z)|Tit = / /F Y2 p(x)N(ds,dz),
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K(2)

> Lapl6n) ~ 21 [ plaiwtds) |

B

Tit1 K (4)
Ig[fs(YT‘iﬁv)]Z:i“://G.qu(x)N(ds,dx =GY? 21 ,

Ti B’

w
Ai:Ti+1_Ti, A W

Ti+1

—W,,.

If v(B) = oo we apply Theorem 5.3. Notice that condition (5.28) is satisfied since

/ | ol P olde) = F? [ p(opulde) — 0

B.
so L%, = f p?( ). It follows from the proof of Theorem 5.3 that:
1
N3(§,T, V<o) = K1) [ pP(apwtda),

BE

where K (T, YY) > 0.

The Milstein scheme

The hierarchical and remainder sets are of the form:

Ay = {v,0,1,2,3,11,21,31,12, 22, 32, 13,23, 33},
B(A;) = {00, 10,20,30,01,02,03,011, 111,211, 311,021, 121, 221, 321, 031, 131, 231, 331,
012,112,212, 312,022, 122, 222, 322, 032, 132, 232, 332,013, 113, 213, 313,
023,123,223, 323,033, 133, 233, 333, }.

Assumptions (A3), (A4) are satisfied. The approximation is of the following form:

V2 =Y 4+ Llfo(Y)IZt + LA YDIE + Lf2(Y], )]0+ + Is[ f5(Y7, 2)] 7+

Ti+1

+ I [fri(YOIFH + D [faa (YOITH + st [fa1 (Y2, @) 7+
+ Do [fra(Y2)I7H + Doa[ oo (Y2)ITH + Isa[faa (Y, )] 7

+ Ds[ frs (Y7 + Dog[ fos (YT + Isg[ f3s (Y7, )] 7,

where Io[ fo (Y27 L[ AL(Y2)7 B f(Y2, 2)|5t, I f3(Y,2, 2)]7 " arelike in the Eu-
ler scheme and

1
TV = 507V2 (A1) - 29),

113[f13(Y )7 = GoYr, /LH/ Y(Ws — W, )N(ds, dx)
K ()
=GoYy, Y (&) Wy, — Wr)ly (&),
n=1
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112[f12(YT(§, T)| Tt = FUYT,</TH1/ Y(Ws — W,,)N(ds, dx)

/ o / V(W — W)y (dx)ds)

K (i)

—Fov,, |3 pla) (W, — Wo)1n(€) — / p(ay(dr) - A7 |

n=1 B

where AZ = [T (W, — W, )ds is a random variable with distribution N (0, $A%), corre-

lated with A, i.e. E(AW AZ) = A2, The pair AV, AZ can be generated by transforma-
tion of two independent random vanables U,,U; with dlstrlbutions N(0,1) in the following

way: AW = U/A;, AZ = %A?(m + %UQ), for more details see [3].

Ti+1 s—
Isi [ f31(Y,, 2)]+ = GoYy, / / / q(2) N (du, dz)dW,
Ti Ti B/

K(i)
= GoYr D { D al@)1p (&)} (W, —WW,)

n=1  0<k<n

Tit1l s—
il (v, = Fov ([T [T [ e (an,anaw,
Ti Ti B

/W /7/ v(dx) dudW)

_FUYTL(Z{ Z (€r)15(Ek) }( n,. - Wa.)

n=1 0<k<n

_ /Bp(x)y(dz) (AW A, - Af))

Ti+1

Iss[f3(Yr,, xl’x2)71+1 GQYE//// x1)q(z2)N(du, dxs) N(ds,dxy)
Ti B’ Ti
K(3)

= 3 {20 ale)1y (60 fale) 1 ()

n=1 0<k<n
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Iso[f32(Yr,, 21, 22)] —FGY //// x1)q(z2) N (du, dxo)N(ds, dxy)

TTTTT

//// 21)q(x2) N (du, dzg)v dxl)ds)

—FGY (Ii){ Z flc 13 (gk)} (f )lB(gn)
n=1  0<k<n
K (%)
- [pemtdz) - S {3 a(@ta) o, )
P n=1  0<k<n
Ins[fas(Ys,, 21, 2)]| 7t = FGY,, 21)p(x2) N (du, dxs )N (ds, dz)
31J23 (/B//Zq
— ]///q(xl)p(xg)duu(dxg) N(ds,dxl))
n B T B
K ()

= PGV, (3 X a@1n(@) ey (&)

n=1 0<k<n

K (i)

- [ pleaasa) - S - mate s 6)
Ino[foo(Yr,, 21, x2)] +1 = 2y, (////p x1)p(x2) N (du, dxs) N (ds, dx1)
B B

- f / / / (a1 )p(x2)(dzs)du N(ds, dzr)
7 B 7. B
_ [ / /_ / p(@1)p(w2) N(du, das) v(dz1)ds

Tit1  s—

o [ [ ] [ otwipten vasiau s
7 B 7 B
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=P (S { X seons@) et

K(4)

= [ anwide) - Y = mdpl 156

n=1

/ v(dzry) Z{ Z (§x)1B (&) }( = M)

n=1 0<k<n

+;/Bp(xl)y(dxl)/Bp(azg)z/(dﬂcz)ﬁzz>

It is easy to check that all of the integrals below:

/B 1oty ) Pv(d), /B 1fialy ) w(), /B Afanly )P ()
T1,X2 2V X |V xl, 292 ,wl,xg 2V T2 )V (ax1
/E/B|f22<y, ) Pu(dea)(d )/B/Elf (21, 22) P (dea)o(di)

/ / [ Fas (g, 21, 22) 2w (da (), / [ Vintor, o) Putdoayu(aoy),

are bounded above by K y f B. Jv(dx) where K is some constant, so we can assume

that LS, = L° = [5 p B. (da:) for all @« € A?. The part of the error of the modified
approximation connected Wlth the procedure of e-balls cutting satisfies:

Na(L T, YP< ) < K(T, ¥¢) / P (2w (de),

BE

where K (T, %) > 0.
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