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Śniadeckich 8, 00-956 Warszawa, P.O.Box 21, POLAND
(e-mail: rolewicz@impan.gov.pl)

Abstract. In the paper a class of families F(M) of functions defined on differentiable manifolds M with

the following properties:

1F . if M is a linear manifold, then F(M) contains convex functions,

2F . F(·) is invariant under diffeomorphisms,

3F . each f ∈ F(M) is differentiable on a residual set,

is investigated.

Let (X, ‖.‖) be a Banach space over reals. Let f(x) be a real-valued convex continuous
function defined on an open convex subset Ω ⊂ X, i.e.

f
(
tx+ (1− t)y

)
≤ tf(x) + (1− t)f(y)

for all x, y ∈ Ω and t, 0 ≤ t ≤ 1.

We recall that a set B ⊂ Ω of second Baire category is called residual if its complement
Ω \ B is of the first Baire category (i.e. it is a countable union of nowhere dense sets).
Mazur (1933) proved that in the case of separable X there is a residual subset AG such
that on the set AG the function f is Gateaux differentiable. Asplund (1968) showed that if
in the dual space X∗ there exists an equivalent locally uniformly rotound norm, then there
is a residual subset AF such that on the set AF the function f is Fréchet differentiable.
The spaces X such that for the dual space X∗ there exists an equivalent locally uniformly
rotound norm are now called Asplund spaces. It can be shown that each reflexive space and
spaces having separable duals are Asplund spaces. Even more a space X is an Asplund
space if and only if each its separable subspace X0 ⊂ X has a separable dual (Phelps
(1989)).

The aim of this note is to obtain similar results for functions defined on differentiable
manifolds. The first problem is how to define ”convex function” in this case. For this
purpose we shall introduce a class of families F(M) of functions defined on differentiable
manifold M over a Banach space E with the following properties:

1F . if M is a linear manifold, then F(M) contains convex functions,

2F . F(·) is invariant under diffeomorphisms,

3F . each f ∈ F(M) is

(a). Fréchet differentiable on a dense Gδ-set provided E is an Asplund space,

(b). Gateaux differentiable on dense Gδ-set provided E is separable.
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At the beginning we recall the notion of differentiable manifolds.

Let E, F, be Banach spaces over reals. We say that a function ψ : E → F is of the
class C1,u

E,F if it is continuously differentiable and moreover that differential ∂ψ
∣∣∣
x

is locally

uniformly continuous as a function of x in the norm topology. Of course, if ψ ∈ C1,u
E,F, then

ψ belongs to the class of continuously differentiable functions, ψ ∈ C1
E,F. The converse is

true if E is finite dimensional.

If E = F we denote briefly C1,u
E,E = C1,u

E .

Now we shall determine C1,u
E -manifold in the classical way (compare Lang (1962)).

Let M be a set. An C1,u
E -atlas is a collections of pairs (Ui, φi) (i ranging in some

indexing set I) satisfying the following conditions:
AT 1. Each Ui is a subset of M and {Ui} covers M , M ⊂ ∪i∈IUi,
AT 2. Each φi is a bijection of Ui onto an open subset φi(Ui) of the space E, and for

all i, j, φi(Ui ∩ Uj) is an open subset of the space E,

AT 3. The map φjφ
−1
i mapping φi(Ui ∩ Uj) onto φj(Ui ∩ Uj) is of the class C1,u

E for
all i, j.

Each pair (Ui, φi) is called a chart. If x ∈ Ui, then the pair (Ui, φi) is called a chart
at x.

Observe that AT 3 implies that
(
φjφ

−1
i

)−1

= φiφ
−1
j ∈ C1,u

E .

Suppose now that M is a topological space and let U be an open set in M . Suppose
that there is a topological isomorphism φ mapping U onto an open set U ′ ∈ E. We say that
(U, φ) is compatible with the C1,u

E -atlas (Ui, φi) if for all i the maps φiφ
−1 and φφ−1

i belong
to C1,u

E . We say that two C1,u
E -atlases are compatible if each chart of one is compatible

with the other C1,u
E -atlas.

A topological space M equipped with C1,u
E -atlas (Ui, φi) we shall call C1,u

E -manifold.

Let M be a C1,u
E -manifold. Let (Ui, φi) be a C1,u

E -atlas on X. Let f(·) be a real-
valued function f(·) defined on X. We say that the function f(·) is Fréchet (Gateaux)
differentiable at x0 ∈ Ui if the function f(φ−1

i (·)) is Fréchet (resp. Gateaux) differentiable
at φi(x0). Since for every Fréchet differentiable at φi(x0) function g(·) and any σ(·) ∈ C1,u

E

the function g(σ(·)) is Fréchet differentiable at σ(φi(x0)), the definition of Fréchet differen-
tiability is the same for all compatible C1,u

E -atlases. Situation with Gateaux differentiability
is not so nice. However, if we restrict ourselves to locally Lipschitz functions the situation
is the same, since for every locally Lipschitz Gateaux differentiable at φi(x0) function g(·)
and any σ(·) ∈ C1,u

E the function g(σ(·)) is Gateaux differentiable at σ(φi(x0)).

Much more difficult is a problem, how define a ”convex” function. It looks that a
natural definition is following: we say that a function f(·) defined on M is ”convex” if
f(φ−1

i (·)) defined on E is locally convex. This definition has however a serious disadvan-
tage. Namely, it is obvious that the ”convexity” of the ”convex functions” in this case
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ought be independent of the chart. In other words we ought to define a class C of real-
valued functions f(·) such that the domain of f(·) is an open subset domf = Ωf ⊂ E
and

1C . every locally convex function belongs to C,

2C . if f ∈ C and σ(·) is a local diffeomorphism of Ωf then for each x ∈ Ωf , there is an
open set U , x ∈ U ⊂ Ωf , such that fU (·) being the restriction of f(σ(·)) to the set U
belongs to C,

3C . for each f ∈ C, the function f(·) is
(a). Fréchet differentiable on a dense Gδ-set of its domain provided E is an Asplund space,
(b). Gateaux differentiable on dense Gδ-set of its domain provided E is separable.

Having the class C satisfying 1C and 2C and 3C , we can easily to define the class of
functions F(M) defined on manifolds and satisfying 1F and 2F and 3F . Namely, we say
that a function f(·) defined on a manifold M with an C1,u

E -atlas (Ui, φi) (i ranging in some
indexing set) belongs to F(M) if for all i f(φ−1

i (·)) ∈ C.

The simplest example of the class C having properties 1C and 2C and 3C is the following
class C0. We say that a function f ∈ C0, if for all x ∈ domf there are an open set U ,
x ∈ U ⊂ Ωf , a diffeomorphism σ of U onto σ(U) and a locally convex function g(·)
defined on σ(U) such that f(·) = g(σ(·)). It is easy to see that the class C0 has the
requested property. In the case (b) we use the fact that locally convex function is locally
Lipschitzian.

However, the class C0 has serious disadvantages. The first one is that there is not nice
description of this class similar to local convexity, second is that the sum of two functions
f, g belonging to the class C0 and having the same domain may not belongs to the class
C0.

Example 1. Let E = R. Let

f(x) = [arctan(x− a)]2

and
g(x) = [arctan(x+ a)]2

Of course the both functions f, g ∈ C0 as a composition of quadratic function and diffeo-
morphisms. Let a be chosen in such a way that arctan(a) > 0.99π

2 . Thus

f(a) + g(a) = f(−a) + g(−a) = [arctan(2a)]2 < (
π

2
)2

On the other hand

f(0) + g(0) = 2[arctan(2a)]2 > (0.99
π

2
)2

It implies that f(x) + g(x) has local strict maximum at the point 0. Thus f(·) + g(·) 6∈ C0,
since a function belonging C0 does not have a local maximum.
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Of course we can replace C0 by its cone

C∞ = {f |f =
n∑

i=1

fi(·), fi ∈ C0}.

It is easy to check that C∞ has requested property, but still there is no a natural description
of C∞.

In the paper we propose another class of functions, which seems more proper. It will
be locally strongly paraconvex functions.

Now we recall the notion of strongly α(·)-paraconvex functions (Rolewicz (2000)). Let
α(·) be a nondecreasing function mapping the interval [0,+∞) into the interval [0,+∞]
such that

lim
t↓0

α(t)
t

= 0. (1)

Let a real-valued continuous function f(·) be defined on an open convex subset Ω ⊂ X.
We say that the function f(·) is strongly α(·)-paraconvex if for all x, y ∈ Ω and 0 ≤ t ≤ 1
we have

f
(
tx+ (1− t)y

)
≤ tf(x) + (1− t)f(y) + min[t, (1− t)]α(‖x− y‖). (2)

The set of all strongly α(·)-paraconvex functions defined on Ω we shall denote by
αPC(Ω). If there is an α(·) satisfying (1) such that a function is strongly α(·)-paraconvex
we say that it is strongly paraconvex. The set of all strongly paraconvex functions defined
on Ω we shall denote by PC(Ω).

Let X be a Banach spaces over reals. Let f(·) be a real-valued function defined on an
open subset Ω ⊂ X. We say that f(·) is locally strongly paraconvex if for all x0 ∈ Ω there
is a convex open neighbourhood Ux0 of x0 such that the function f(·) restricted to Ux0 ,
f
∣∣∣
Ux0

(·), is strongly paraconvex.

The set of all locally strongly paraconvex functions defined on Ω we shall denote by
PCLoc(Ω).

It is easy to see that the class PCLoc(Ω) satisfies condition 1C .

The essential role in showing that it also satisfies condition 2C is played by the following

Proposition 2. Let ΩX ( ΩY ) be an open convex set in a Banach space over reals
X (resp. Y ). Let σ be a mapping of a ΩX into ΩY such that the differentials of ∂σ

∣∣
x

are
uniformly continuous function of x in the norm topology. Then there is a function β(·)
mapping the interval [0,+∞) into the interval [0,+∞] such that

lim
t↓0

β(t)
t

= 0. (1)β
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and such that for all x, y ∈ ΩX and 0 ≤ t ≤ 1

‖σ
(
tx+ (1− t)y

)
− tσ(x) + (1− t)σ(y)‖ ≤ min[t, (1− t)]β(‖x− y‖). (3)

Proof. We shall start the proof of Proposition 2 with special case, namely when
Y = R is one-dimensional. In other words, we consider a real valued function f(·) defined
on be an open convex set Ω ⊂ X. By our assumptions f(·) is differentiable on Ω and that
the differentials of f

∣∣
x

are uniformly continuous function of x in the norm topology. In
other words, there is a function β0 mapping the interval [0,+∞) into the interval [0,+∞]
such that

lim
t↓0

β0(t) = 0. (4)

and
‖∂f

∣∣
x
− ∂f

∣∣
y
‖ ≤ β0(‖x− y‖). (5)

We define
F (t) = f

(
tx+ (1− t)y

)
− [tf(x) + (1− t)f(y)].

It is easy to observe that F (0) = F (1) = 0. Now we shall calculate its derivative

dF

dt

∣∣∣
t
= ∂f

∣∣∣
(tx+(1−t)y)

(x− y)− f(x) + f(y). (6)

Since F (0) = F (1) = 0, by the Rolle theorem there is t0, 0 ≤ t0 ≤ 1, such that
dF
dt

∣∣∣
t0

= 0. Thus for arbitrary t, 0 ≤ t ≤ 1

|dF
dt

∣∣∣
t
| = |dF

dt

∣∣∣
t
− dF

dt

∣∣∣
t0
| ≤ |∂f

∣∣∣
(tx+(1−t)y)

− ∂f
∣∣∣
(t0x+(1−t0)y)

(x− y)|

≤ β0

(
‖(tx+ (1− t)y)− (t0x+ (1− t0)y)‖

)
‖x− y‖ ≤ β0

(
‖x− y‖

)
‖x− y‖

= β
(
‖x− y‖

)
, (7)

where the function β(t) = tβ0(t) satisfies (1)β .

Since F (0) = F (1) = 0, by (7) we have

F (t) =
∫ t

0

dF

ds

∣∣∣
s
ds ≤ tβ

(
‖x− y‖

)
and

F (t) =
∫ 1

t

dF

ds

∣∣∣
s
ds ≤ (1− t)β

(
‖x− y‖

)
.

Therefore
F (t) ≤ min[t, (1− t)]β(‖x− y‖). (8)

Now we consider the general case.
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Since the differentials of ∂σ
∣∣
x

are uniformly continuous function of x in the norm
topology, there is a function β0 mapping the interval [0,+∞) into the interval [0,+∞]
satisfying (4) and

‖∂σ
∣∣
x
− ∂σ

∣∣
y
‖ ≤ β0(‖x− y‖). (9)

Take any functional φ ∈ Y ∗ of norm one. We define

fφ(t) =: φ
(
σ
(
tx+ (1− t)y

)
−

(
tσ(x) + (1− t)σ(y)

))
. (9)

Observe that the differentials of the real-valued fφ, ∂fφ

∣∣∣
x

are uniformly continuous function
of x in the norm topology. Thus by Proposition 2

fφ(t) ≤ min[t, (1− t)]β(‖x− y‖). (10)

Since φ was an arbitrary linear functional of norm one by (10) we get

‖σ
(
tx+(1− t)y

)
− tσ(x)+(1− t)σ(y)‖ = sup

{φ:‖φ‖=1}
φ(σ

(
tx+(1− t)y

)
− tσ(x)+(1− t)σ(y))

= sup
{φ:‖φ‖=1}

fφ(t) ≤ min[t, (1− t)]β(‖x− y‖). (11)

ut

By Proposition 2 we get

Theorem 3 (Rolewicz (2007)). Let ΩX ( ΩY ) be an open set in a Banach space over
reals X (resp. Y ). Let f(·) be a real-valued locally strongly paraconvex function defined
on ΩY . Let σ be a mapping of a ΩX into ΩY such that the differentials of σ

∣∣
x

are locally
uniformly continuous function of x in the norm topology. Then the composed function
f(σ(·)) is locally strongly paraconvex.

Proof. Let x0 ∈ ΩX . Since f(·) is a real-valued locally strongly paraconvex function,
there are an open convex neighborhood of σ(x0) Uσ(x0) ⊂ ΩY ans a nondecreasing function
αU (·) satisfying (1) such that for all x, y ∈ Uσ(x0) and 0 ≤ t ≤ 1

f
(
tx+ (1− t)y

)
≤ tf(x) + (1− t)f(y) + min[t, (1− t)]αU (‖x− y‖). (12)

Recall that f(·) restricted to Uσ(x0) is a Lipschitz function (Rolewicz (2000)). We
shall denote the corresponding Lipschitz constant by M . Thus by Proposition 1

|f
(
σ
(
tx+ (1− t)y

))
− f

(
tσ(x) + (1− t)σ(y)

)
|

≤M‖σ
(
tx+ (1− t)y

)
− tσ(x) + (1− t)σ(y)‖ ≤M min[t, (1− t)]β(‖x− y‖). (13)

Therefore

f
(
σ
(
tx+ (1− t)y

))
≤ f

(
tσ(x) + (1− t)σ(y)

)
+M min[t, (1− t)]β(‖x− y‖)
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≤ tf(σ(x)) + (1− t)f(σ(y)) + min[t, (1− t)]α(‖σ(x)− σ(y)‖) +M min[t, (1− t)]β(‖x− y‖)

= tf(σ(x)) + (1− t)f(σ(y)) + min[t, (1− t)]
(
α(‖σ(x)− σ(y)‖) + β(‖x− y‖)

)
. (14)

Since σ(·) is locally uniformly differentiable, it is also locally Lipschitz, i.e. there are
a neighbourhood Vx0 of x0 and a constant N such that for x, y ∈ Vx0

‖σ(x)− σ(y)‖ ≤ N‖x− y‖. (15)

Let

γ(t) = α(Nt) + β(t). (16).

It is easy to check that γ(·) satisfies (1). Moreover by (14) and (15) the function f(σ(·))
is strongly γ(·)-paraconvex on Vx0 . Therefore is locally strongly paraconvex. ut

Condition 3C is an immediate consequence of

Theorem 4. (Rolewicz (1999), (2001), (2001b), (2002), (2005), (2005b), (2006),
Zaj́ıček (2007)) Let ΩX be an open set in a Banach space over reals X. Let f(·) be a
real-valued strongly paraconvex function defined on ΩX . Then the function f(·) is:

(a). Fréchet differentiable on a dense Gδ-set provided X is an Asplund space,

(b). Gateaux differentiable on dense Gδ-set provided X is separable.

By Michael theorem (Michael (1953)) we immediately obtain a local version of Theo-
rem 4. Namely we have

Theorem 5. (Rolewicz,(2007)) Let ΩX be an open set in a Banach space over reals
X. Let f(·) be a real-values locally strongly paraconvex function defined on ΩX . Then
the function f(·) is:

(a). Fréchet differentiable on a dense Gδ-set provided X is an Asplund space,

(b). Gateaux differentiable on dense Gδ-set provided X is separable.

Combining Theorems 3 and 5 we trivially get

Theorem 6. (Rolewicz (2007)) Let ΩX ( ΩY ) be an open set in a Banach space over
reals X (resp. Y ). Let f(·) be a real-valued locally strongly paraconvex function defined
on ΩY . Let σ be a mapping of a ΩX into ΩY such that the differentials of σ

∣∣
x

are locally
uniformly continuous function of x. Then the composed function f(σ(·)) is:

(a). Fréchet differentiable on a dense Gδ-set provided X is an Asplund space,

(b). Gateaux differentiable on dense Gδ-set provided X is separable.

We say that a real-valued function f(·) defined on a C1,u
E -manifoldM is locally strongly

paraconvex on M if there is a C1,u
E -atlas (Ui, φi) such that for all i the function f(φ−1

i (·))
locally strongly paraconvex on the set φi(Ui) ⊂ E.
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Basing on Theorem 6 and the definitions of differentiability of functions on manifold
we immediately obtain

Theorem 7 (Rolewicz (2007)). Let M be a C1,u
E -manifold. Let f(·) be a real-valued

locally strongly paraconvex function defined on M . Then it is:

(a). Fréchet differentiable on a dense Gδ-set provided E is an Asplund space,

(b). Gateaux differentiable on a dense Gδ-set provided E is separable.

Now we shall determine C1,u
E -submanifold in the classical way (compare Lang (1962)).

Let M be a C1,u
E -manifold. Let N be a subset of M . We assume that for each point

y ∈ N there exist a chart (V, ψ) in M such that V1 = ψ(V ∩N) is an open in some Banach
subspace E1 ⊂ E. The map ψ induces a bijection

ψ1 : Y ∩ V → V1 (17)

and moreover ψ1 ∈ C1,u
E1

The collection of pairs (N ∩ V, ψ1) obtained in the above manner constitute the atlas
for N . We shall call N C1,u

E1
-submanifold of M .

Theorem 8 (Rolewicz (2007)). Let M be a C1,u
E -manifold. Let N be an its C1,u

E1
-

submanifold. Let f(·) be a real-valued locally strongly paraconvex function defined on M .

Then the restriction f
∣∣∣
N

is locally strongly paraconvex function defined on N .

Corollary 9. Let f(·) be a convex function defined on Rn. Let M be and m-
dimensional manifold, m < n, imbedded in Rn. Then the restriction of the function f(·)
to M is differentiable on a dense Gδ-set.
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nondifferentiability of convex functions, Proc. 11-th Winter School, Suppl. Rend.
Circ. Mat di Palermo, ser II, 3, pp. 219 - 223.
Rolewicz, S.: (1999), On α(·)-monotone multifunction and differentiability of γ-
paraconvex functions, Stud. Math. 133, pp. 29 - 37.
Rolewicz, S.: (2000), On α(·)-paraconvex and strongly α(·)-paraconvex functions,
Control and Cybernetics 29, pp. 367 - 377.
Rolewicz, S.: (2001), On the coincidence of some subdifferentials in the class of
α(·)-paraconvex functions, Optimization 50, pp. 353 - 360.
Rolewicz, S.: (2001b), On uniformly approximate convex and strongly α(·)-para-
convex functions, Control and Cybernetics 30, pp. 323 - 330.
Rolewicz, S.: (2002), α(·)-monotone multifunctions and differentiability of strongly
α(·)-paraconvex functions, Control and Cybernetics 31, pp. 601 - 619.
Rolewicz, S.: (2005), On differentiability of strongly α(·)-paraconvex functions in
non-separable Asplund spaces, Studia Math. 167, pp. 235 - 244.
Rolewicz, S.: (2005b), Paraconvex Analysis, Control and Cybernetics 34, 951 - 965.
Rolewicz, S.: (2006), An extension of Mazur Theorem about Gateaux differentia-
bility, Studia Math. 172, pp. 243 - 248.
Rolewicz, S.: (2007), Paraconvex Analysis on C1,u

E -manifolds, Optimization 56, pp.
49 - 60

9


