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Abstract

We give a numerical method based on divergence-free wavelets to solve the incom-
pressible Navier-Stokes equations. We present a new scheme which uses anisotropic (or
generalized) divergence-free wavelets, and which only needs Fast Wavelet Transform
algorithm. We prove its stability and show convincing numerical experiments.

Introduction

A high degree of complexity arises in the numerical solution of the incompressible Navier-
Stokes equations due to the creation and interaction of small scales in the turbulent
flows. Existing numerical methods applied to the computation of approximate solutions
of Navier-Stokes equations can be distributed into two main groups: on one hand, the
ones well-localized in space (finite differences, finite elements and finite volumes) and on
the other hand, the ones well-localized in frequency (spectral methods). Wavelet methods
offer the possibility to mix both and to graduate the accuracy in space and in frequency.
However, a function ψ (for instance a wavelet) cannot be completely accurate both in
space and in frequency: the Heisenberg inequality states that ∆x∆ξ ≥ 1/2 for ∆x the
variance of ψ, and ∆ξ the variance of ψ̂.

At the beginning, reaserchers in fluid mechanics used wavelets to analyse turbulent
flows [28, 12, 18]. Then wavelet codes for the numerical simulation of Naver-Stokes equa-
tions made an apparition [2, 20]. They looked promising, especially concerning adaptivity
issues [15]. Among wavelet methods, we can notice adaptive collocation methods [23],
and coherent vortex extraction [14] which makes use of the wavelet/vaguelette decompo-
sition and relies on denoising for adaptivity. Other authors [17] applied wavelet/Galerkin
methods to the Navier-Stokes equations.

Here, we will use divergence-free wavelets as an algorithmic solver of PDE’s and for
adaptive purpose. We get a maximum benefit from the localization in space allowed by
wavelets, provided that the accuracy in frequency still permits competitive algorithms.
For this purpose, we’ll use anisotropic divergence-free and curl-free wavelets introduced
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in [9]. They naturally arise with an iterative Leray projector (deriving from a Helmholtz
decomposition) mimicking the spectral case and whose convergence is proved in [10].

We also use a wavelet solver for the implicit Laplacian to construct a wavelet semi-
implicit numerical scheme for the simulation of incompressible Navier-Stokes equations.

Hence, the numerical solution of the Navier Stokes equations we present, requires only
wavelet transforms and no other computational tool such as Fourier Transform or linear
system solvers (Conjugate Gradient, GMRES. . . ). This permits using it in a completely
adaptive context. On top of this, wavelet decomposition comes naturally with a scale
partition which should enable adaptive treatment of computations.

The scheme we propose is proved to be stable under a Courant-Friedrich-Levy (CFL)
condition, provided a sufficiently smooth solution to the Naver-Stokes equations exists.
The stability of this wavelet scheme is mainly due to the divergence-free condition which
is automatically and exactly satisfied by the divergence-free wavelet decomposition of the
solution.

First, we’ll briefly introduce the divergence-free and curl-free wavelets, and present the
wavelet Helmholtz decomposition. Then we’ll present the Navier-Stokes scheme and its
numerical analysis, followed by a numerical experiment with the simulation of the merging
of three vortices. Finally, we’ll give an insight on how to make this method adaptive, with
the support of some experiments.

1 Divergence-free and curl-free wavelets

The wavelet Helmholtz decomposition arises from divergence-free and gradient (i.e. curl-
free) wavelet decompositions. These wavelets are constructed thanks to two 1-D wavelets
ψ0 and ψ1 related by differentiation: ψ′

1(x) = 4 ψ0(x) [24].

1.1 Divergence-free wavelets

The 2D anisotropic divergence-free wavelets are generated from a single vector function

Ψdiv(x1, x2) =

∣∣∣∣
ψ1(x1)ψ0(x2)
−ψ0(x1)ψ1(x2)

by anisotropic dilations, and translations. The 2D anisotropic divergence-free wavelets are
given by:

Ψdiv
j,k (x1, x2) =

∣∣∣∣
2j2ψ1(2

j1x1 − k1)ψ0(2
j2x2 − k2)

−2j1ψ0(2
j1x1 − k1)ψ1(2

j2x2 − k2)

where j = (j1, j2) ∈ Z
2 is the scale parameter, and k = (k1, k2) ∈ Z

2 is the position param-
eter. For k, j ∈ Z

2, the family {Ψdiv
j,k} forms a basis of Hdiv,0(R

2) = {f ∈ (L2(R2))2/div f ∈
L2(R2), div f = 0}.
We introduce

Ψn
j,k(x1, x2) =

∣∣∣∣
2j1ψ1(2

j1x1 − k1)ψ0(2
j2x2 − k2)

2j2ψ0(2
j1x1 − k1)ψ1(2

j2x2 − k2)

as complement functions since Ψn
j,k is orthogonal to Ψdiv

j,k (j,k being fixed).

A similar construction is given for dimension three in [9, 10].
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1.2 Curl-free wavelets

The construction of curl-free wavelets (i.e. gradient wavelets) is similar to the construction
of divergence-free wavelets, despite some crucial differences. The starting point here is to
find wavelets in the MRA (V 0

j ⊗V 1
j )× (V 1

j ⊗V 0
j ) instead of (V 1

j ⊗V 0
j )× (V 0

j ⊗V 1
j ), where

the one-dimensional spaces V 0 and V 1 are related by differentiation and integration.
Let Hcurl,0(R

2) be the space of gradient functions in L2(R2). We construct gradient
wavelets by taking the gradient of a 2D wavelet basis of the MRA (V 1

j ⊗V 1
j ). If we neglect

the L2-normalization, the anisotropic gradient wavelets are defined by:

Ψcurl
j,k (x1, x2) =

1

4
∇

(
ψ1(2

j1x1 − k1)ψ1(2
j2x2 − k2)

)
=

∣∣∣∣∣∣

2j1ψ0(2
j1x1 − k1)ψ1(2

j2x2 − k2)

2j2ψ1(2
j1x1 − k1)ψ0(2

j2x2 − k2)

Thus, for j = (j1, j2),k = (k1, k2) ∈ Z
2, the family {Ψcurl

j,k } forms a wavelet basis of

Hcurl,0(R
2). We complete this basis to a

(
L2(R2)

)2
-basis with the following complement

wavelets:

ΨN
j,k(x1, x2) =

∣∣∣∣∣∣

2j2ψ0(2
j1x1 − k1)ψ1(2

j2x2 − k2)

−2j1ψ1(2
j1x1 − k1)ψ0(2

j2x2 − k2)
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Figure 1: Examples of divergence-free (on the left) and curl-free (on the right) vector
wavelets in dimension two.

This construction is extended to three dimensions in [9, 10].
We gave a similar construction for d-dimensional anisotropic divergence-free and gra-

dient wavelets in [7].

2 Wavelet algorithms

2.1 Helmholtz decomposition

2.1.1 Principle of Helmholtz decomposition and the Leray projector

The Helmholtz decomposition [16, 3] consists in splitting a vector function u ∈ (L2(Rd))d

into its divergence-free component udiv and a gradient vector. More precisely, there exist
a potential-function p and a stream-function ψ such that:
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u = udiv + ∇p and udiv = curl ψ (2.1)

Moreover, the functions curl ψ and ∇p are orthogonal in (L2(Rd))d. The stream-function
ψ and the potential-function p are unique, up to an additive constant.
In R

2, the stream-function is a scalar valued function, whereas in R
3 it is a 3D vector

function. This decomposition may be viewed as the following orthogonal space splitting:

(L2(Rd))d = Hdiv,0(R
d) ⊕⊥ Hcurl,0(R

d) (2.2)

where
Hdiv,0(R

d) = {v ∈ (L2(Rd))d/div v ∈ L2(Rd), div v = 0}
is the space of divergence-free vector functions, and

Hcurl,0(R
d) = {v ∈ (L2(Rd))d/curl v ∈ (L2(Rd))d, curl v = 0}

is the space of curl-free vector functions (if d = 2 we have to replace curl v ∈ (L2(Rd))d

by curl v ∈ L2(R2) in the definition). For the whole space R
d, the proofs of the above

decompositions can be derived easily by mean of the Fourier transform. In more general
domains, we refer to [16, 3]. Notice that one can also prove that Hdiv,0(R

d) is the space
of curl functions, whereas Hcurl,0(R

d) is the space of gradient functions.
The objective now is to generate a wavelet-Helmholtz decomposition.

2.1.2 Iterative wavelet Helmhotz decomposition algorithm

Instead of the previous orthogonal direct sum (2.2), the divergence-free and gradient
wavelet decompositions provide the following direct sums of vector spaces:

(L2(Rd))d = Hdiv,0 ⊕ Hn , (L2(Rd))d = HN ⊕ Hcurl,0

We call these biorthogonal projectors Pdiv and Qcurl:

v = Pdiv v + Qn v , v = PN v + Qcurl v

Then, when we alternatively apply the divergence-free wavelet decomposition and then

the curl-free wavelet decomposition, we define a sequence (vp)p∈N ∈
(
L2(Rd)

)d
:

vp = Pdiv vp

︸ ︷︷ ︸
v

p
div

+ Qcurl Qn vp

︸ ︷︷ ︸
v

p
curl

+ PN Qn vp

︸ ︷︷ ︸
vp+1

Finally, as this sequence converges to 0 in L2, we have:

vdiv =

+∞∑

p=0

vp
div vcurl =

+∞∑

p=0

vp
curl

This algorithm is proved to converge in arbitrary dimension with Shannon wavelets,
and we have the following convergence theorem proved in [10]:
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Figure 2: Construction of the sequences vp
div and vp

curl, and idealistic schematization of
the convergence process of the algorithm with Hn = vect{Ψn

j,k} and HN = vect{ΨN
j,k}.

Theorem 2.1 Let v ∈
(
L2(Rd)

)d
, and let the sequence (vp)p≥0 be defined by:

v0 = v and vp+1 = PNQn vp, p ≥ 0 (2.3)

where Qn and PN are the complementary projectors associated respectively to divergence-
free wavelets and curl-free wavelets. With Shannon wavelets, the sequence (vp) satisfies,
in L2 norm:

‖vp‖ ≤
(

9

16

)p

‖v‖

Experimentally, we also observe the convergence for many kinds of 2D and 3D wave-
lets [9]. This is the algorithm we’ll use in the numerical scheme for the solution of the
incompressible Navier-Stokes equations.

2.2 Implicit Heat kernel

As we would like the numerical scheme to be sufficiently stable in time, we adopted an
implicit resolution of the Heat kernel. This resolution is based on wavelet preconditionning
of elliptic operators. It is related to the works of J.Liandrat and A.Cohen [26, 5]. For
each component of the velocity u, we apply this algorithm. Hence we consider only scalar
functions.

We want to solve the equation :

(Id− α∆)v = u, α = νδt, u : R
d → R (2.4)

With a wavelet decomposition, u can be written in a basis (ψj,k)

u =
∑

j,k∈Zd

dj,kψj,k

we regroup the wavelets of a same level in uj =
∑

k∈Zd dj,kψj,k, then

u =
∑

j∈Zd

uj
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with uj localized in frequency.

Let us say that uj has frequency average ωj with ω2
j ∼

∑d
i=1 22ji .

We can solve (Id− α∆)v = u, by taking:

v0 =
∑

j∈Zd

vj,0, with vj,0 =
1

1 + αω2
j

uj

which is a first approximation of the solution.
Then, let

vn+1 = vn +
∑

j∈Zd

1

1 + αω2
j

(uj − (Id− α∆)vn j)

The sequence (vn) goes to v, the solution of equation (2.4). The smaller α is, the faster
the algorithm converges. This algorithm is presented extensively in [8]. In that paper, we
also prove the following convergence theorem:

Theorem 2.2 Let u in L2(Rd), and let the sequence (vn)n≥0 be defined by:

v0 = 0, vn+1 = vn +
∑

j∈Zd

1

1 + 5π
2 α(

∑d
i=1 22ji)

(uj − (Id− α∆)vn j) (2.5)

With Shannon wavelets, the sequence (vn) satisfies, in L2 norm:

‖vn − v‖ ≤
(

3α

2δx2 + 5α

)n

‖v0 − v‖

where v is the solution of equation (2.4) and δx the mesh size of the smallest computed
scale.

As a result,

‖vn − v‖ ≤
(

3

5

)n

‖v0 − v‖

But if νδt
δx2 ≪ 1 (remind that α = νδt), then it is interesting to consider

‖vn − v‖ ≤
(

3νδt

2δx2

)n

‖v0 − v‖

We apply this method with the divergence-free wavelet basis. However, with the linear
operator (Id− α∆)−1, the divergence-free condition is preserved.

3 Numerical scheme for Navier-Stokes equations

In this Section, we present a divergence-free wavelet numerical method, for the solution
of the incompressible Navier-Stokes equations. The Navier-Stokes equations, written in
velocity-pressure formulation (without a forcing term) are given by:

{
∂u
∂t + (u · ∇)u + ∇p− ν∆u = 0
∇ · u = 0

(3.1)

The scheme for solving the Navier Stokes equations is defined by means of the wavelet
algorithms previously described. We make a numerical analysis of this scheme and prove
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its stability. This stability is unconditional for low Reynolds numbers and under a Courant-
Friedrich-Lewy condition for high Reynolds numbers. The velocity u is expressed, at each
step of the scheme in the divergence-free wavelet basis (anisotropic or generalized).

We denote by P the wavelet Leray projector. The time step is denoted by δt, and the
smallest computed scale has mesh δx.

Remark 3.1 (Computation of the pressure) The Helmholtz wavelet decomposition of
the non-linear term (u · ∇)u entails the pressure thanks the following relation:

[(u · ∇)u]
curl

= (u · ∇)u − P [(u · ∇)u] = −∇p =
∑

j,k

dcurl j,k

1

4
∇

(
ψ1(2

j1x1 − k1)ψ1(2
j2x2 − k2)

)

Hence the pressure term is eliminated from the Navier-Stokes equations (3.1) after the
Leray projection and will never appear in the numerical scheme or the computations. But
it can be easily computed.

Written with the orthogonal projector P, equations (3.1) become:
{

∂u
∂t + P [(u · ∇)u] − ν∆u = 0
∇ · u = 0

(3.2)

3.1 Semi-implicit Euler scheme

By “semi-implicit” we mean that we integrate the Heat kernel ∆ implicitly in time, thanks
to the wavelet algorithm defined in Section 2.2, and we treat the non-linear term (u · ∇)u
explicitely. Additionally, we compute P [(u · ∇)u] using the algorithm of Section 2.1.2.
Clearly, all the results given by these algorithms are expressed in terms of divergence-free
wavelet coefficients.

The semi-implicit Euler scheme for the Navier-Stokes equations is given by:

(Id− νδt∆)un+1 = un − δtP [(un · ∇)un] (3.3)

3.2 The L2-stability

We assume that the solution u(t,x) of the Navier-Stokes equations (3.2) is in R
d for d = 2

or 3, with initial data u0, and for t ∈ [0, T ]. We also assume that u is continuously
differentiable in space and that u and its derivatives go to zero at infinity (‖x‖ → +∞).
Hence:

A0 = supx∈Rd, t∈[0,T ] ‖u(t,x)‖ < +∞

A1 = supx∈Rd, t∈[0,T ] ‖∇u(t,x)‖ < +∞
For studying stability, we assume that at step n, we have a small error εn. Hence, instead
of having exactly un, we have un + εn. Then, at step n + 1, the error with respect to
u((n+ 1)δt, ·), is due, on one hand to the newly introduced error in the algorithm (which
is called the consistency error), and on the other hand, to the increase of the error coming
from the previous steps (and which is concerned with stability).

If we prove that there exists a constant C (which will depend on A0 and A1) such that
‖εn+1‖ ≤ (1+Cδt)‖εn‖, then the scheme is stable. In our case, we recover the L2-stability
thanks to the following well-known result:

Lemma 3.1 Let u,v ∈ H1(Rd)d, H1 denoting the Sobolev space, be such that (u · ∇)v ∈
L2. If u ∈ Hdiv,0(R

d), then v ⊥ (u · ∇)v for the L2 scalar product, i.e.

< v, (u · ∇)v >L2=

∫

x∈Rd

v · (u · ∇)v dx = 0
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Proof:

< v, (u · ∇)v > =
∫
x∈Rd v · (u · ∇)v dx

=
∫
x∈Rd

∑d
i=1 vi(x)

∑d
k=1 uk(x)∂kvi(x) dx

=
∫
x∈Rd

∑d
k=1 uk(x)

(∑d
i=1 vi(x)∂kvi(x)

)
dx

=
∫
x∈Rd

∑d
k=1 uk(x)∂k

(
1
2

∑d
i=1 v

2
i (x)

)
dx

= −
∫
x∈Rd

(∑d
k=1 ∂kuk(x)

) (
1
2

∑d
i=1 v

2
i (x)

)
dx

= 0

Here, we used integration by parts and the fact that divu =
∑d

k=1 ∂kuk = 0.

Remark 3.2 This result is still valid on an open set Ω with u = 0 on the boundaries, or
even just slipping conditions (u · n = 0).

Remark 3.3 This result also yields orthogonality of the vectors v and (v · ∇)v for v ∈
Hdiv,0(R

d).

Theorem 3.1 An error εt equal to ε at time t = 0 propagates in the wavelet numerical
scheme (3.3) bounded by:

‖εt‖L2 ≤ e(
A2

0
2

δt
δx2

+A1)t‖ε‖L2

where A0 and A1 are constants depending on u introduced at the beginning of this section,
δt the time step and δx the mesh of the smallest computed scale.

Then the scheme (3.3) is stable under the CFL condition δt
δx2 ≤ C for a fixed constant

C > 0 which can be chosen equal to 2A1

A2
0

for instance.

Proof: If we take into account the propagation of the error εn along with un, then the
scheme (3.3) becomes:

(Id− νδt∆) (un+1 + εn+1) = un + εn − δtP [((un + εn) · ∇)(un + εn)] (3.4)

As a result εn satisfies:

(Id− νδt∆) εn+1 = εn − δtP [(εn · ∇)un + (un · ∇)εn + (εn · ∇)εn] (3.5)

As εn ∈ Hdiv,0(R
d), it is orthogonal to all gradient functions, and so

εn ⊥ (un · ∇)εn =⇒ εn ⊥ P [(un · ∇)εn]

and
εn ⊥ (εn · ∇)εn =⇒ εn ⊥ P [(εn · ∇)εn]

Then, with ηn = P [(un · ∇)εn + (εn · ∇)εn],

‖εn + ηnδt‖2
L2 = ‖εn‖2

L2 + ‖ηn‖2
L2δt

2
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and

‖εn + ηnδt‖L2 = ‖εn‖L2 +
‖ηn‖2

L2

2‖εn‖L2

δt2 + o(δt2)

where we noted o(h), a quantity going to 0 faster than h for δt → 0 and δx→ 0.
For the stability, we can assume that εn remains in our discretization space. Indeed,
the error introduced by the truncation of un is concerned with the consistency error. It
accumulates but it is not amplified by the numerical scheme. Hence, we have the following
bounds:

‖ηn‖L2 ≤ ‖un‖L∞‖εn‖H1 + ‖εn‖L∞‖εn‖H1

‖εn‖H1 ≤ ‖εn‖L2

δx

‖εn‖L∞ ≤ ‖εn‖L2

δxd/2

‖un‖L∞ ≤ A0

we obtain:
‖ηn‖2

L2

2‖εn‖L2

≤ A2
0‖εn‖L2

2δx2
+A0

‖εn‖2
L2

δx2
+

‖εn‖3
L2

δx2+d/2

as well as:
‖δtP [(εn · ∇)un] ‖ ≤ ‖εn‖L2‖∇un‖L∞δt ≤ A1‖εn‖L2δt

And finally:

‖ (Id− νδt∆) εn+1‖L2 ≤
(

1 +
A2

0

2

δt2

δx2
+A0

‖εn‖L2δt2

δx2
+

‖εn‖2
L2

2δx2+d
δt2 +A1δt

)
‖εn‖L2

As we can assume that ‖εn‖L2 = o(1) and even ‖εn‖L2 = o(δxd/2), for d = 2, 3 (these
apriori estimates will be verified latter), this gives

‖ (Id− νδt∆) εn+1‖L2 ≤
(

1 + (
A2

0

2

δt

δx2
+A1)δt

)
‖εn‖L2

Any role played by the implicit Laplacian would be favorable for the L2-stability since
‖εn+1‖L2 ≤ ‖ (Id− νδt∆) εn+1‖L2 . But, assume that the term (Id− νδt∆) doesn’t play
any role because ν δt

δx2 ≪ 1. Then we have the following CFL condition:

δt

δx2
≤ C (3.6)

for some C > 0 constant. Or, if we want something more precise:

A2
0

2

δt

δx2
= A1 (3.7)

Remark 3.4 This stability condition can be compared with the usual CFL condition δt ≤ Cδx
which is much weaker and more interesting. In practice, we observe a stability condition
δt ≤ Cδx2 for the Euler scheme (3.3) which confirm the theoretical CFL condition (3.6)
of order 2. For the order two Adam-Bashford divergence-free wavelet scheme (3.10) we
observe an empirical stability condition δt ≤ Cδx1.3.
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The stability is then guaranteed since, for an initial error ε ∈ L2 at time 0,

‖εT/δt‖L2 ≤
(

1 + (
A2

0

2

δt

δx2
+A1)δt

)T/δt

‖ε‖L2 ≤ e(
A2

0
2

δt
δx2 +A1)T ‖ε‖L2

Remark 3.5 If we had just
εn+1 = εn + δtηn

with no orthogonality between εn and ηn, then the stability would not hold since

‖εn+1‖L2 ∼ ‖εn‖L2 + ‖ηn‖L2δt ∼ (1 +
A0

δx
δt)‖εn‖L2

and then
‖εT/δt‖L2 ∼ e(

A0
δx

)T ε0

which goes exponentially to infinity for δx→ 0.

Now, we take the implicit Laplacian into account. Assume we applied first the implicit
Laplacian and then the convection term, then

un+1 = (Id− νδt∆)−1 un − δtP
[
((Id− νδt∆)−1 un · ∇) (Id− νδt∆)−1 un

]

and so

εn+1 = (Id− νδt∆)−1 εn − δtP
[
((Id− νδt∆)−1 εn · ∇) (Id− νδt∆)−1 un

+((Id− νδt∆)−1 un · ∇) (Id− νδt∆)−1 εn

]

We neglected the last term (εn · ∇)εn in comparison with equation (3.5) since it doesn’t
play any rôle. As (Id− νδt∆)−1 εn is divergence-free, we have the same orthogonalities
as in (3.5). We replace the bound for ‖εn‖H1 by:

‖∇ (Id− νδt∆)−1 εn‖L2 ≤ sup
δx≤α<+∞

(
1 +

νδt

α2

) ‖εn‖L2

α
≤ ‖εn‖L2

2
√
νδt

and we have

‖εn+1‖L2 ≤ (1 + (
A2

0

8ν
+A1)δt)‖εn‖L2 (3.8)

Hence we have unconditional stability. But one has to remark that this is interesting only

if
A2

0

8ν ≤ A1, that is for low Reynolds numbers.

To summarize, the stability conditions are:

A2
0 ≤ 8νA1 or δt ≤ Cδx2

with C > 0 a constant. And with condition (3.7) A = A1 =
A2

0

2
δt

δx2 , the L2-stability of the
implicit Euler scheme (3.3) is given by:

‖εn+1‖L2 ≤ (1 + 2Aδt) ‖εn‖L2 (3.9)
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3.3 An order two scheme

In the numerical experiments of Section 5, we tested a scheme of order two in time. It’s
derived from an Adams-Bashford sheme of order 2 for the non-linear term. This scheme
proceeds with an intermediate step un+1/2 as follows:

(
Id− ν

δt

2
∆

)
un+1/2 = un − δt

2
P [(un · ∇)un]

and then
(
Id− ν

δt

2
∆

)
un+1 = un + δt

(ν
2
∆un − P

[
(un+1/2 · ∇)un+1/2

])
(3.10)

As un+1/2 is assymptotically close to un, the same arguments as in Section 3.1 can be
used for proving stability.

4 The adaptive scheme

At each step of the semi-implicit Euler scheme (3.3) and the order two scheme, the solu-
tion un and the non-linear term P [(un · ∇)un] are expressed in terms of divergence-free
wavelets. The only basic algorithm we use is the Fast Wavelet Transform.

We’ll sketch an adaptive method for the numerical resolution of incompressible Navier-
Stokes equations in dimensions 2 and 3:






∂u
∂t + u.∇u + ∇p = ν∆u + f t ∈ [0, T ], x ∈ R

d, d=2 or 3

div u = ∇ · u =
∑n

i=1
∂ui
∂xi

= 0

u(x, 0) = u0(x)

The adaptivity is based on the wavelet discretization. At each time step n, we first find a
set Λn of active wavelet coefficients. The other coefficients are ignored and set to zero, or
in a really adaptive scheme, not represented. Then the computed solution uN is given by:

uN (nδt, x) =
∑

λ∈Λn

cn,λ Ψdiv
λ (x)

with #(Λn) = N (the set Λn has N elements) and Ψdiv
λ ∈ Hdiv,0 = {u ∈ L2, div(u) = 0}.

Further, we used two criteria for an element λ to be in Λn. Let

un =
∑

λ

cn,λ Ψdiv
λ

and
P [(un · ∇)un − f ] =

∑

λ

dn,λ Ψdiv
λ

with an L2-normalization for the wavelets Ψdiv
λ . And let σ0 n > 0 and σ1 n > 0 be two

thresholds.
The index λ is activated if |cn,λ| ≥ σ0 n or |dn,λ| ≥ σ1 n. The first threshold σ0 n allows

to stock valuable information on uN , the second one σ1 n takes into account the changes
in the coefficients.
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5 Numerical experiments

The experiment on which we test our algorithm, is called the “merging of 3 vortices”.
This experiment, without any forcing term, was originally designed by M. Farge and N.
Kevlahan [30], and is often used to test new numerical methods [2, 17]. In order to provide
a reference solution, the experiment of [2] was reproduced by using a pseudo-spectral
method, solving the Navier-Stokes equations in velocity-pressure formulation.

The initial state is displayed in Figure 3 left. In the periodic box [0, 1]2, three vortices
with a gaussian vorticity profile ω(x) = πe−4π4(x2

1+x2
2) are present:

- one centered at (3/8, 1/2) with amplitude 1,
- one centered at (5/8, 1/2) also with amplitude 1,
- and one centered at (5/8, 1/2 +

√
2/8) with amplitude −1/2.

The negative vortex is here to force the merging of the two positive ones. The time
step was δt = 10−2 and the viscosity ν = 5.10−5. The solution is computed on a 512×512
grid.

The vorticity fields at times t = 0, 10, 20 and 40 are displayed on Figure 3. The
second row of Figure 3 displays the absolute values of the isotropic divergence-free wavelet
coefficients of the velocity field at corresponding times, with an L∞-normalization.

t=0 t=10 t=20 t=40

-1.6 -0.8 0 0.8 1.6 2.4

0 10−5 10−4 10−3 10−2

Figure 3: Vorticity fields at times t = 0, 10, 20 and 40, and corresponding isotropic
divergence-free wavelet coefficients of the velocity, for the reference solution in pseudo-
spectral code, on a 5122 grid.

12



5.1 Full code

Here, we show the results of simulation of the “merging of three vortices” with the
anisotropic divergence-free wavelet scheme of Section 3.3.

We used the spline wavelets of order 2 and 3 represented in Figure 4.

−2 −1 0 1 2 3 4 5
−0.5

−0.3

−0.1

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5

−2 −1 0 1 2 3 4 5 6
−1.3

−0.9

−0.5

−0.1

0.3

0.7

1.1

1.5

φ0 ψ0 φ1 ψ1

Figure 4: Scaling spline functions and associated spline wavelets of order 2 and 3 related
by differentiation: ψ′

1 = 4ψ0.

The solution was computed on a 2562 grid with δt = 0.02 and ν = 5.10−5. There were
no thresholding. In order to make the algorithms of Sections 2.1.2 and 2.2 give a sufficient
accuracy, we needed 7 iterations for the wavelet Helmholtz decomposition of (un · ∇)un,
using the result of the previous step as an initial guess, and 3 iterations for the implicit
Heat kernel wavelet solver.

t=0 t=10 t=20 t=40

Figure 5: Simulation of the “merging of three vortices” with the full wavelet code, using
anisotropic wavelets in 2562.

The results are represented in Figure 5 and are close to the reference solution in Figure
3. This code uses uniquely wavelet transforms.

We also represented the evolution of the set of wavelet coefficients, observing the ratio
of coefficients (in L2-normalization) which are above some fixed thresholds on Figure 6,
for the “merging of three vortices”. We took ε = sup(|c0,λ|), the maximal value of the
wavelet coefficients at time 0. And, we fixed the thresholds at ε/4j for 1 ≤ j ≤ 7. Then
the lowest threshold represented is ε/16, 384.

One can observe that for this experiment, the complexity of the flow structure increases
until reaching a maximum at time t = 22, and then decreases slowly.
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0.06
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0.08

Figure 6: Evolution of the ratio of anisotropic divergence-free wavelet coefficients of the
solution un of the “merging of three vortices” above thresholds equal to ε/4j for 1 ≤ j ≤ 7.

5.2 Anisotropic pseudo-adaptive code

Here we investigate how the numerical wavelet scheme behaves with thresholding. As
the implementation of a fully adaptive scheme is heavy, we just put to zero the wavelet
coefficients for which we had neither |cn,λ| ≥ σ0 nor |dn,λ| ≥ σ1 as explained in Section 4,
in the full anisotropic divergence-free wavelet code.

We represented the result of the thresholding in Figure 7. We can infer the number
of coefficients verifying both thresholding conditions by substracting the area between the
upper and middle curve from the lower curve.

The solution obtained in Figure 8 may be compared with Figures 3 and 5.
We also represented the computed L2 relative error between this numerical solution

and the reference solution of Figure 3. It is also compared with the error obtained for a
pseudo-spectral code with the same number of grid points (2562). One can notice that
neither the use of wavelets, neither the thresholding destroyed the accuracy of the solution.

The effects of the anisotropy begin to be visible for higher thresholdings.
In Figure 11, they are already clearly present without destroying the solution. And

the evolution of the thresholding represented on Figure 10, gives satisfactory results. But
in Figure 12 with a higher threshold, when keeping a maximum of 4.5% of the coefficients,
the final result is not admissible.

5.3 Generalized pseudo-adaptive code

We remedied the problem of anisotropy induced by thresholding, by using generalized
divergence-free wavelets which are a mix between isotropic divergence-free wavelets and
anisotropic divergence-free wavelets. These wavelets were first introduced in [7] and ex-
tensively treated in [11].
Here, we display their construction in dimension two.
Let m ∈ N. The generalized divergence-free wavelets are composed of the following vector
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Figure 7: Ratio of coefficients above the threshold: the lowest curve is for the coefficients
from the non-linear term, the middle curve from the solution un, and the upper curve is
the union of these two.

t=0 t=10 t=20 t=40

Figure 8: Simulation of the “merging of three vortices” by a wavelet code with thresholding
corresponding to Figure 7, and using anisotropic wavelets in 2562.

wavelets:

• Ψ
div (1,1)
j,k =

∣∣∣∣
2j2ψ1(2

j1x1 − k1)ψ0(2
j2x2 − k2)

−2j1ψ0(2
j1x1 − k1)ψ1(2

j2x2 − k2)
with |j1 − j2| ≤ m,

• Ψ
div (1,0)
j,k =

∣∣∣∣
2j2−2ψ1(2

j1x1 − k1)(ϕ0(2
j2x2 − k2) − ϕ0(2

j2x2 − k2 − 1))
−2j1ψ0(2

j1x1 − k1)ϕ1(2
j2x2 − k2)

with j2 = j1 −m,

• Ψ
div (0,1)
j,k =

∣∣∣∣
2j2ϕ1(2

j1x1 − k1)ψ0(2
j2x2 − k2)

−2j1−2(ϕ0(2
j1x1 − k1) − ϕ0(2

j1x1 − k1 − 1))ψ1(2
j2x2 − k2)

with j1 = j2 −m.

where ψ′
1 = 4ψ0 and ϕ′

1 = ϕ0( . ) − ϕ0( . − 1).
The corresponding complement functions used for the divergence-free wavelet trans-

form are:
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Figure 9: L2 relative error for pseudo-spectral code (lower curve) and wavelet thresholded
code (upper curve), corresponding to Figure 7, on a 2562 grid, compared with the reference
solution.

0 5 10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 10: Ratio of coefficients kept for the computation of the solution un with an average
thresholding.

• Ψ
n (1,1)
j,k =

∣∣∣∣
2j1ψ1(2

j1x1 − k1)ψ0(2
j2x2 − k2)

2j2ψ0(2
j1x1 − k1)ψ1(2

j2x2 − k2)
with |j1 − j2| ≤ m,

• Ψ
div (1,0)
j,k =

∣∣∣∣
ψ1(2

j1x1 − k1)ϕ0(2
j2x2 − k2)

0
with j2 = j1 −m,
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t=0 t=10 t=20 t=40

Figure 11: Simulation of the “merging of three vortices” by a wavelet code with an average
thresholding corresponding to Figure 10, on a 2562 grid, using anisotropic divergence-free
wavelets.

t=40
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0.045

0.05

Figure 12: Ratio of active coefficients for a high thresholding (on the left), and final result
at t = 40 (on the right), on a 2562 grid, using anisotropic divergence-free wavelets.

• Ψ
div (0,1)
j,k =

∣∣∣∣
0
ϕ0(2

j1x1 − k1)ψ1(2
j2x2 − k2)

with j1 = j2 −m.

For m = 0, these wavelets are the usual isotropic divergence-free wavelets.
Contrarily to anisotropic wavelets, these wavelets do not lengthen and permit to refine

the grid locally. With the generalized divergence-free wavelets, the algorithms of Sections
2.1.2 and 2.2 give still good results.

While the Helmholz wavelet decomposition of Section 2.1.2 doesn’t converge for m = 0,

it does converge for m = 1. In fact, for m = 1, wavelets Ψ
div (1,0)
j,k and Ψ

div (0,1)
j,k are better

localized in frequency.
Hence, we sacrify a little part of space localization to get a sufficiently good localization

in frequency, and assure the convergence of the Helmholtz algorithm of Section 2.1.2.
Even with a rather high threshold as in Figure 13, the quality of the solution repre-

sented in Figure 14 is quite good. And the thresholding evolves normally.
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Figure 13: Ratio of activated wavelet coefficients in the case of generalized divergence-free
wavelets on a 2562 grid.

t=0 t=10 t=20 t=40

Figure 14: Simulation of the “merging of three vortices” by a generalized divergence-free
wavelet code with thresholding corresponding to Figure 13, on a 2562 grid.

Conclusion

To our knowledge, a numerical divergence-free wavelet method for solving Navier-Stokes
equations was presented for the first time in this paper. The proposed method only relies
on the Fast Wavelet Transform algorithm and is perfectly fitted for adaptivity.

Untill now, the use of divergence-free wavelets was limited to Galerkin methods applied
to the Driven-Cavity-Stokes problem [32] or the equations of electromagnetics [35]. This
limitation was due to the inexistence of divergence-free wavelet algorithms dealing with
the non-linear term (u · ∇)u. The invention of the anisotropic divergence-free wavelets
and more specifically of the generalized divergence-free wavelets [7] enables such algorithm
(see Section 2.1.2 or [11]).

The numerical stability of this numerical scheme is shown under a CFL condition, and
is mainly due to the use of the divergence-free wavelets that permit to verify exactly the
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divergence-free condition (div u = 0).

An extensive numerical test with the experiment of the “merging of three vortices”
is displayed. These results can be compared with those obtained in [17]. M. Griebel &
F. Kostner’s paper [17] uses anisotropic interpolating wavelets with Poisson solver to solve
the “merging of three vortices” in velocity-vorticity formulation. With 10,000 degrees of
freedom, their results are of lesser quality (ibid. “overestimation of the rotation of the
cores of the vortices”) than the ones we obtained with 3,500 degrees of freedom. The
computational time for the full wavelet code is about four times the Fourier code in the
periodic case for which the Fourier code is known to be nearly optimal. But the wavelet
method can be adapted to other cases as the inclusion of boundary conditions Wavelet
methods fit better complex geometries with penalisation methods, and may be included
in an adaptive code, in contrast with the Fourier method.

While only results in dimension two are presented in this paper, the divergence-free
wavelet method extends directly to dimension three.

Finally, this type of schemes could be improved in a number of ways: one can make
this method partially lagrangian by convecting the small vortices by the large scales of
the flows. In the context of divergence-free wavelets, the velocity field is decomposed
into a sum of vortices in a stable way: ‖u‖2

L2 ∼ ∑
(j,k)∈Λ ‖τ(j,k)‖2

L2 , with the functions
τ(j,k) similar each to other by dilations and translations. These considerations in two
dimensions are extended to dimension three by considering two or three different vortex
functions instead of one.
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