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Conley index in Hilbert spaces and the Leray–Schauder degree

Marcin Styborski

Abstract. Let H be a real, infinite-dimensional and separable Hilbert space. With an isolated invariant set
inv(N) of a flow φt generated by an LS -vector field f : H ⊇ Ω→ H, f(x) = Lx + K(x), where L : H → H

is strongly indefinite linear operator and K : H ⊇ Ω → H is completely continuous, one can associate a
homotopy invariant hLS (inv(N), φt) called the LS -Conley index. In fact, this is a homotopy type of a
finite CW-complex. We define Betti numbers and hence Euler characteristic of such index and prove the
formula relating this numbers to the Leray–Schauder degree degLS (f̂ , N, 0), where f̂ : H ⊇ Ω → H is
defined as f̂(x) = x + L−1K(x).

Introduction

The aim of this paper is to present certain generalization of the Poincaré–Hopf index theorem. This
generalization goes in the direction of infinite dimensional nonlinear analysis and occurs when we are working
with infinite dimensional Conley–type invariant for flows. Let H be a real, infinite dimensional Hilbert space.
With a locally Lipschitz vector field f : H ⊇ Ω → H, which is completely continuous perturbation of an
isomorphism L : H → H, f(x) = Lx + K(x) we can associate a flow φt

f : Ω → Ω (at least locally) satisfying

d

dt
φt

f = −f ◦ φt
f , φ0

f = id.

Under certain assumptions we prove the formula

degLS (f̂ , int(N), 0) = χ(hLS (inv(N), φt
f )).

The left-hand side of above equality stands for the standard Leray–Schauder degree with respect to a bounded
set int(N) and 0. A map f̂ is defined by f̂(x) = x+L−1K(x). On the other hand we have Euler characteristic.
Here hLS (inv(N), φt

f ) is the Conley index of an isolated invariant set inv(N) of the flow φt
f on infinite

dimensional Hilbert spaces.
An extension of the classical Conley’s theory (for flows on locally compact metric spaces), we are going to

work with, was introduced by K. Gęba, M. Izydorek and A. Pruszko in [6]. They considered a so-called LS -
vector fields i.e. completely continuous perturbation of an isomorphism L : H → H and have defined Conley
index for flows induced by such maps. One of the most important fact is that this index admits situations,
where L is strongly indefinite, i.e. both stable and unstable eigenspaces of L are infinite dimensional. This
property makes this theory applicable to many variational problems occurring in Hamiltonian dynamics.

Further develop of this homotopy invariant has been done by Izydorek in [7]. He defined a cohomological
Conley index in Hilbert spaces in order to obtain existance results in various strongly indefinite problems
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(variational problems, where gradient of action functional is LS -vector field with strongly indefinite linear
part). We briefly sketch out this definition. The definition of cohomology of Conley–type invariant was the
reason to define Betti numbers and next Euler characteristic of Conley index in infinite dimensional case.
Let E be an object representing Conley index, and denote by H∗(E) the cohomology with coefficients in
some fixed ring. We define Euler characteristic of Conley index E in the most natural way by

χ(E) :=
∑
q∈Z

(−1)q rank Hq(E).

The rank of Hq(E) is called qth Betti number of E.
The proof of our theorem is based on finite dimensional case of such Poincaré–Hopf relation. It has been

first proved by C. McCord [10] in terms of local indices of zeros of a vector field. Earlier N. Dancer proved
this kind of relation for considerably smaller class of isolated invariant sets, precisely for degenerate critical
points (See [4]). We present simple proof of this fact given by M. Razvan and M. Fotouhi [11] based on
Morse inequalities and Reineck continuation theorem. Similar result was obtained by W. Kryszewski and
A. Szulkin in [8] in terms of critical groups of a smooth functional Φ: H → R.

In order to gain insight into classical homotopy index theory we refer the reader to Conley’s book
"Isolated Invariant Sets and the Morse Theory" [2] or Salamon’s paper [13].

1. Classical Conley theory

1.1. Finite dimensional case. First of all, we collect basic facts from Conley index theory for flows
on a locally compact metric space X. Recall, that a continuous map φ : R×X → X is called a flow on X if
the following properties are satisfied:

(Fl.1) φ(0, x) = x;
(Fl.2) φ(s, φ(t, x)) = φ(s + t, x) for all s, t ∈ R.

We will sometimes write φt(x) instead of φ(t, x). This notation allows us to write above properties of flow in
the shorter form, i.e. φ0 = idX and φt+s = φt ◦φs. The main objects of this theory are isolated invariant sets
and associated to them isolating neighborhoods. Let φt be a flow on X. A subset S of X is called an invariant
set, if S =

⋃
t∈R φt(S). So the invariant sets are precisely the sums of orbits

⋃
x∈A⊂X {φt(x); t ∈ R}. For

N ⊂ X we define the maximal invariant set contained in N as

inv(N) :=
{
x ∈ N ; φt(x) ∈ N, t ∈ R

}
.

If N is compact and inv(N) ⊂ int(N), then N is called an isolating neighborhood and S = inv(N) is an
isolated invariant set.

Let N be a compact subset of X. We say that L ⊂ N is positively invariant relative to N , if t > 0,
x ∈ L and φs(x) ∈ N for s ∈ [0, t] then φs(x) ∈ L for s ∈ [0, t].

Definition 1.1 (Index pair). A compact pair (N,L) is called an index pair for S, if:

(IP.1) N \ L is a neighborhood of S and S = inv (cl(N \ L));
(IP.2) L positively invariant relative to N ;
(IP.3) if x ∈ N and there exists t > 0, such that φt(x) 6∈ N , then there exists s ∈ [0, t], such that

φs(x) ∈ L.

The next two theorems are crucial in the definition of homotopy Conley index. The proofs can be found
in Salamon’s paper [13]

Theorem 1.2. Every isolated invariant set S admits an index pair (N,L).
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If (N,L) is a pair of spaces, L ⊂ N , then we define the quotient space N/L obtained from N by collapsing
L to a single point denoted by [L], the base point of N/L.

Recall that f : (X, x0) → (Y, y0) is a homotopy equivalence if there exists g : (Y, y0) → (X, x0) such that
g ◦ f is homotopic to id|X rel. x0 and f ◦ g is homotopic to id|Y rel. y0. If there is a homotopy equivalence
f : (X, x0) → (Y, y0) we say that pairs (X, x0) and (Y, y0) are homotopy equivalent or they have the same
homotopy type. The homotopy type of X is denoted by [X, x0].

Theorem 1.3. Let (N0, L0) and (N1, L1) be two index pairs for the isolated invariant set S. Then the
pointed topological spaces N0/L0 and N1/L1 are homotopy equivalent.

Definition 1.4. If (N,L) is any index pair for the isolated invariant set S, then the homotopy type
h(S, φt) = [N/L] is said to be the Conley (homotopy) index of S.

Theorem 1.3 says that h(S, φt) is independent of the choice of index pair. Let us illustrate the concept
of Conley index by the following simple example.
Example. Let Ω ⊂ Rn be an open and bounded set and f : cl Ω → R be a smooth function such that
∇f−1(0) 6∈ ∂Ω. Consider the positive gradient flow φt

f on Ω defined by

d

dt
φt

f = ∇f ◦ φt
f , φ0

f = id.

The rest points of φt
f are the critical points of f . They are hyperbolic if f is a Morse function i.e. the Hessian

of f is nonsingular at every x ∈ Crit(f). In this case the number

indf (x) = #{negative eigenvalues of the Hessian∇2f(x)}

i well defined. The Conley index of an isolated invariant set S = {x}, where x ∈ Crit(f) is the homotopy
type of pointed k-sphere, where k = n− indf (x). We write it h({x}, φt

f ) = [Sk, ∗].

A Morse decomposition of an isolated invariant set S is a finite collection

M (S) = {Mi; 1 ≤ i ≤ l}

of subsets Mi ⊂ S, which are disjoint, compact and invariant, and which can be ordered (M1,M2, . . . ,Ml)
so that for every x ∈ S \

⋃
1≤j≤l Mj there are indices i < j such that

ω(x) ⊂ Mi, α(x) ⊂ Mj .

Notice that in the previous example the set Crit(f) of all critical points of f forms a Morse decomposition
of inv(Ω).

The formal power series
P(t, A, B) =

∑
q∈Z

rank Hq(A,B) · tq

is called the Poincaré series of a pair (A,B). One can prove, that for an isolated invariant set there is
an index pair (N,L) for which the isomorphism H∗(N,L) ∼= H∗(N/L) holds. Such an index pair is called
regular. We can therefore define the Poincaré polynomial for S as

P(t, h(S, φt)) := P(t, N, L)

where (N,L) is any regular index pair for S. The next theorem gives us a useful tool in a Morse–theoretic
methods. It is a generalization of a classical Morse inequalities.

Theorem 1.5 (cf. [3],[7]). Let S be an isolated invariant set with a Morse decomposition M (S) =
{Mi; 1 ≤ i ≤ l}. Then there is a polynomial Q with nonnegative coefficients such that

l∑
i=1

P(t, h(Mi)) = P(t, h(S)) + (1 + t)Q(t).
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1.2. Continuation to a gradient. Let φ : R×X × [0, 1] → X be a continuous family of flows on X,
i.e. φt

λ := φ(t, · , λ) : X → X is a flow on X. Suppose that N ⊂ X is compact and Si = inv(N,φt
i), i = 0, 1.

We say that two isolated invariant sets S0 and S1 are related by continuation or S0 continues to S1 if N is
an isolating neighborhood for all φt

λ for λ ∈ [0, 1]. The notion of continuation is essential in Conley’s theory
because of the following statement.

Theorem 1.6 ([2]). If S0 and S1 are related by continuation, then their Conley indices coincide.

The formula we would like to prove is based on the Reineck continuation theorem.

Theorem 1.7 (Reineck [12]). Let F : Ω → Rn be a smooth vector field with Ω ⊂ Rn open. Let S be
an isolated invariant set of the flow φt

F : Ω → Ω generated by differential equation ẋ(t) = −F (x(t)) with
isolating neighborhood N . Then S can be continued to an isolated invariant set in a positive gradient flow
of ∇f , without changing F on Ω \N . Moreover, this can be done that the new flow is Morse–Smale.

Remarks. The fact that such function f exists has been proved by Robbin and Salamon. They showed that
for an isolated invariant set S = inv N there exists a smooth function f : U → R defined on a neighborhood
of N such that

(1) f(x) = 0 iff x ∈ S and
(2) d

dt |t=0f(φt(x)) < 0 for all x ∈ Ω \ S.

The function which fulfil those properties is called the Lyaponov function. In general we can’t expect that
for an isolated invariant set the Lyaponov function has only nondegenerate critical points i.e. the rest points
of gradient flow are hyperbolic. But this can be obtained via arbitrary small perturbation of ∇f . So without
loss of generality we can assume that the gradient flow is Morse–Smale. Following by Reineck, we can explicit
write the homotopy joining −F and ∇f . Define h : Ω× [0, 1] → Rn as

(1.1) h(x, λ) = ρ(x)[λ∇f(x) + (λ− 1)F (x)] + (ρ(x)− 1)F (x),

where ρ : Ω → [0, 1] is smooth function equal 1 on a compact neighborhood of S, say M (cl(M) ⊂ int(N))
and ρ is zero on Ω \N .

1.3. Euler characteristic of h(inv(N), φt). Recall that the Euler characteristic of a pair (E,E′) is
defined as the alternating sum of rank of the cohomology groups Hq(E,E′), i.e.

(1.2) χ(E,E′) =
∑
q∈Z

(−1)q rank Hq(E,E′).

Notice that χ(E,E′) = P(−1, E, E′). If both Hq(E) and Hq(E′) are finitely generated (e.g. if E and
E′ are CW-complexes) the integer χ(E,E′) is well defined. In particular if E′ is a point in E (that is, E

is a pointed space), then we have χ(E, ∗) =
∑

q∈Z(−1)q rank H̃q(E), where H̃q(E) stands for the reduced
cohomology. Note that χ is independent of principal ideal domain used for define cohomology groups. Later
on we will omit the point in χ(E, ∗) if it is clear from the context, that E is pointed space. The Euler
characteristic is defined especially for the Conley index of an isolated invariant set for flows generated by
equation ẋ = −F (x).

The next proposition is due to Gęba (see Proposition 5.6 of [5]).

Proposition 1.8. Let N be an isolating neighborhood for gradient Morse–Smale flow φt. Then h(inv(N), φt)
is a homotopy type of finite CW-complex.

Conclusion 1.9. Let N be an isolating neighborhood for flow φt generated by ẋ = −F (x). Then
h(inv(N), φt) is a homotopy type of finite CW-complex.
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Proof. Since inv(N) is related by continuation to some isolated invariant set of gradient Morse–Smale
flow, the result follows from Proposition 1.8. �

In the Conley index theory we are working with pointed spaces. So we have to remember to take into
account this distinguished point in calculation.
Example. Euler characteristic of the n-sphere. Since Hq(Sn, ∗) = Z if q = n and is zero elsewhere we have
χ(Sn, ∗) = (−1)n. In contrast χ(Sn) = 1 + (−1)n when Sn is considered without base point.

1.4. Mapping degree. Let Ω ⊂ Rn be an open and bounded set. If f : cl Ω → Rn is continuous
map and does not vanish on the boundary ∂Ω, then it is well known, that there is defined an integer
deg(f,Ω, 0) ∈ Z called the Brouwer topological degree. It is a powerfull tool in topology and analysis. For
details we refer the reader to Lloyd’s book [9]. Now, we are going to formulate only a few fundamental facts
about the degree:

Nontriviality: If 0 ∈ Ω then deg(I,Ω, 0) = 1;
Existence: If deg(f,Ω, 0) 6= 0 then f−1(0) ∩ Ω in nonempty;
Additivity: If Ω1,Ω2 are open, disjoint subsets of Ω and there is no zeros of f in the completion

Ω \ (Ω1 ∪ Ω2), then

deg(f,Ω, 0) = deg(f,Ω1, 0) + deg(f,Ω2, 0);

Homotopy invariance: If h : cl Ω × [0, 1] → Rn is continuous map such that h(x, t) 6= 0 for all
(x, t) ∈ ∂Ω× [0, 1], then

deg(h( · , 0),Ω, 0) = deg(h( · , 1),Ω, 0)

There is a generic situation, when the degree is easy to calculate. If ϕ : cl Ω → R is a Morse function of class
C1, such that deg(∇ϕ, Ω, 0) is defined, then

deg(∇ϕ, Ω, 0) =
∑

x∈∇ϕ−1(0)∩Ω

(−1)indϕ(x).

Theorem 1.10 (cf. [11]). Suppose that N is an isolating neighborhood for the flow φt
F generated by

ẋ = −F (x), where F : Ω → Rn is locally Lipschitz map. Then

(1.3) χ(h(inv(N), φt
F )) = deg(F, int(N), 0).

Notation. Now and subsequently we will sometimes write deg(F,N, 0) instead of deg(F, int(N), 0).

Proof. By the Reineck continuation theorem we can deform −F to ∇f on N using (1.1) to obtain the
isolated invariant set of gradient flow, which consists only non-degenerate critical points of f and connecting
orbits between them. Denote this set by invφt

f
(N). By the continuation property of Conley index we have

h(inv(N), φt
F ) = h(invφt

f
(N), φt

f ). The set of critical points {x1, . . . , xm} forms Morse decomposition of
invφt

f
(N) and we can apply Morse inequalities. We know that h({xi}, φt

f ) has homotopy type of pointed
k-sphere, where k = n− indf (xi). So the Poincaré polynomial of h({xi}, φt

f ) is of the form

(1.4) P(t, h({xi}, φt
f )) = tn−indf (xi).

From the Morse inequalities we have

χ(h(inv(N), φt
F )) = χ(h(invφt

f
(N), φt

f ))

= P(−1, h(invφt
f
(N), φt

f )) =
m∑

i=1

P(−1, h({xi}, φt
f ))

= (−1)n
m∑

i=1

(−1)indf (xi)

(1.5)
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For 1 ≤ i ≤ m, let Ωi be the neighborhood of xi i N such that Ωi ∩ Ωj = ∅. By the homotopy invariance of
the Brouwer degree and additive property we can write

(1.6) deg(−F,N, 0) = deg(∇f,N, 0) =
m∑

i=1

deg(∇f,Ωi, 0).

Now it is easy to compute deg(∇f,Ωi, 0). Since f is Morse, the hessian ∇2f(xi) is non-degenerate linear
operator. The degree of ∇f with respect to Ωi is just (−1)µ, where µ is the number of negative eigenvalues
of ∇2f(xi). So we have deg(∇f,Ωi, 0) = (−1)indf (xi), and by (1.6)

(1.7) deg(F,N, 0) = (−1)n deg(−F,N, 0) = (−1)n
m∑

i=1

(−1)indf (xi)

Comparing (1.5) and (1.7) we obtain the formula (1.3). �

2. LS -index

2.1. LS -flows and the index. Let H be a real, separable Hilbert space and L : H → H be a linear
bounded operator which satisfies following assumptions:

(L.1) L gives a splitting H =
⊕∞

n=0 Hn onto finite dimensional, mutually orthogonal L-invariant sub-
spaces;

(L.2) dim H0 < ∞, where H0 is subspace corresponding to the part of spectrum on imaginary axis, i.e.
σ0(L) := σ(L|H0) = σ(L) ∩ iR;

(L.3) σ0(L) is isolated in σ(L).

We do not preclude the case dim H± = ∞, where H− (resp. H+) is invariant subspace corresponding
to those part of spectrum of L which lies on the left (resp. right) half complex plane. Operators with above
property are called strongly indefinite.

Let Λ be a compact metric space. A family of flows indexed by Λ is a continuous map φ : R×H×Λ → H

such that φλ : R×H → H defined by φλ(t, x) = φ(t, x, λ) is a flow on H. As before we write φt(x, λ) instead
of φ(t, x, λ). If X ⊂ H and φ is a family of flows indexed by Λ then we define

inv(X × Λ) = inv(X × Λ, φ) :=
{
(x, λ) ∈ X × Λ; φt(x, λ) ∈ X, t ∈ R

}
.

Definition 2.1. A family of flows φt : H × Λ → H is called a family of LS -flows if

φt(x, λ) = etLx + U(t, x, λ),

where U : R×H × Λ → H is completely continuous.

Recall, that a map is completely continuous if it is continuous and maps bounded sets to relatively
compact sets.

Definition 2.2. We say that a map f : H × Λ → H is a family of LS -vector fields, if f is of the form

f(x) = Lx + K(x, λ), (x, λ) ∈ H × Λ,

where K : H × Λ → H is completely continuous and locally Lipschitz map.

If in the above definitions Λ = {λ0}, we drop the parameter space out from notation, and we are talking
about LS -flows or LS -vector fields.

Suppose that f : H → H is an LS -vector field, f(x) = Lx + K(x). We say that f is subquadratic if
|〈K(x), x〉| ≤ a ‖x‖2 + b for some a, b > 0. One can prove that if f is subquadratic then f generates an
LS -flow (see [7] and references therein). That is for all x ∈ H, there exists a C1-curve

φ(·)(x) : R → H
6



satisfying
d

dt
φt(x) = −f ◦ φt(x), φ0(x) = x,

and is of the form φt(x) = e−tLx + U(t, x), where U : R×H → H is completely continuous. Without loss of
generality we will restrict our consideration to subquadratic LS -vector fields.

An isolating neighborhood for a flow φt on infinite dimensional space is defined similarly to finite dimen-
sional case. The difference lies in the fact that we cannot expect compactness of that set.

Definition 2.3. A bounded and closed set N is an isolating neighborhood for a flow φt if and only if
inv(N) ⊂ int(N).

The isolating neighborhoods are stable with respect to small perturbation of the flow. The sense of this
concept is given by the following.

Proposition 2.4 (Gęba et al. [6]). Let φ : R×H ×Λ → H be a family of LS -flows. For any bounded
and closed N ⊂ H the set

Λ(N) = {λ ∈ Λ; inv(N,φλ) ⊂ int(N)}
is open in Λ.

We are going to work in the category of compact metrizable spaces with a base point. The notion
f : (X, x0) → (Y, y0) means that f is a continuous map preserving base points, i.e. f(x0) = y0. The
product is defined in this category by (X, x0) × (Y, y0) = (X × Y, (x0, y0)). The wedge of two pointed
spaces i.e. the space X ∨ Y = X × {y0} ∪ {x0} × Y is closed in X × Y . Hence, the smash product
X ∧ Y = (X × Y )/(X ∨ Y ) is also an object in that category. In addition, if f : X → Y and g : X ′ → Y ′

then there is defined f ∧ g : X ∧X ′ → Y ∧ Y ′.
Consider the circle as the unit interval modulo its end points S1 = [0, 1]/{0, 1}. The suspension functor

is defined to be the smash product SX := S1 ∧X. For any m ∈ N we define SmX := S(Sm−1X).
LS -index is defined as a sequence of pointed spaces with an extra information added. This leads us to

a notion of spectra. Let ν : N∪ {0} → N∪ {0} be a fixed map and suppose that (En)∞n=n(E) is a sequence of
spaces and (εn : Sν(n)En → En+1)∞n=n(E) is a sequence of maps.

Definition 2.5. We say that a pair E = ((En)∞n=n(E), (εn)∞n=n(E)) is a spectrum if there exists n0 ≥ n(E)
such that εn : Sν(n)En → En+1 is a homotopy equivalence for all n ≥ n0.

One can define the notion of maps of spectra, homotopy of spectra, their homotopy type etc. For us it
is sufficient to know that a homotopy type [E] of a spectrum E is uniquely determined by a homotopy type
of a pointed space En for n sufficiently large. Moreover, in order to define the homotopy type [E] one only
needs a sequence (En)∞n=n(E) such that Sν(n)En is homotopy equivalent to En+1 for n sufficiently large.

Assume that f : H → H is an LS -vector field, f(x) = Lx + K(x). Let φt : H → H be the LS -flow
generated by f and assume that N ⊂ H is an isolating neighborhood for φt. Denote by Pn : H → H the
orthogonal projection onto Hn =

⊕n
i=1 Hi. Define

fn : Hn → Hn, fn(x) = Lx + PnK(x).

Let φt
n : H → H be a flow induced by fn. The definition of LS -Conley index is based on the following.

Lemma 2.6 (Gęba et al. [6]). There exists n0 ∈ N such that Nn = N ∩Hn is an isolating neighborhood
for a flow φt

n provided that n ≥ n0.

By the above lemma the set inv(Nn, φt
n) is an isolated and invariant (by definition) and thus admits an

index pair (Yn, Zn) by Theorem 1.2. The Conley index of inv(Nn) is the homotopy type [Yn/Zn]. Fix a map
ν : N ∪ {0} → N ∪ {0} by setting ν(n) := dimH−n+1. Using the continuation property of the Conley index

7



one can prove that the pointed space Yn+1/Zn+1 is in fact homotopy equivalent to ν(n)-fold suspension of
Yn/Zn, that is

[Yn+1/Zn+1] = [Sν(n)(Yn/Zn)]

for all n ≥ n0. In the light of earlier observation the sequence (En)∞n=n0
= (Yn/Zn)∞n=n0

represents the
spectrum, say E and uniquely determines its homotopy type [E]. This leads us to the definition.

Definition 2.7. Let φt be an LS -flow generated by an LS -vector field. If N is an isolating neighbor-
hood for φt, then the homotopy type of spectrum

hLS (inv(N), φt) := [E]

is well defined and we call it the LS -Conley index of inv(N) with respect to φt.

Let 0 represents the homotopy type of spectrum such that for all n ≥ 0 En is just a point and εn maps
this point into the point in En+1.

Proposition 2.8 (Gęba et al. [6]). The LS -Conley index has the following properties:

Nontriviality: Let φt : H → H be an LS -flow and N ⊂ H be an isolating neighborhood for φt. If
hLS (inv(N), φt) 6= 0, then inv(N,φt) 6= ∅;

Continuation: Let Λ be a compact, connected and locally contractible metric space. Assume that
φt : H × Λ → H is a family of LS -flows. Let N be an isolating neighborhood for a flow φt

λ for
some λ ∈ Λ. Then there is a compact neighborhood Uλ ⊂ Λ such that

hLS (inv(N), φt
µ) = hLS (inv(N), φt

ν)

for all µ, ν ∈ Uλ.

2.2. Cohomological LS -Conley index. The main reference for this section is [7]. Now and sub-
sequently H denotes the Alexander–Spanier cohomology functor. Let E = (En, εn)∞n=n(E) be a spectrum.
Define ρ : N∪{0} → N∪{0} by setting ρ(0) = 0 and ρ(n) =

∑n−1
i=0 ν(i) for n ≥ 1. For a fixed q ∈ Z consider

a sequence of cohomology groups
Hq+ρ(n)(En), n ≥ n(E).

Define a sequence of homomorphisms by a composition hn = (S∗)−ν(n) ◦ ε
q+ρ(n+1)
n :

hn : Hq+ρ(n+1)(En+1) −→ Hq+ρ(n+1)(Sν(n)En) −→ Hq+ρ(n)(En),

where S∗ denotes the suspension isomorphism. Thus we see that {Hq+ρ(n)(En), hn} forms an inverse system
and we are ready to make the following definition.

Definition 2.9. The qth cohomology group of a spectrum E is CHq(E) := lim
←−

{Hq+ρ(n)(En), hn}.

Since En+1 is homotopically equivalent to Sν(n)En for n ≥ n0, we see that

hn : Hq+ρ(n+1)(En+1) → Hq+ρ(n)(En)

is an isomorphism for n ≥ n0 and the sequence of groups Hq+ρ(n)(En) stabilizes. This simply observation
implies that:

• CHq(E) ∼= Hq+ρ(n)(En) for n ≥ n0;
• the graded group CH∗(E) is finitely generated if H∗(En0) is finitely generated;
• the spectrum E is of finite type if the space En0 is of finite type.

These groups may be nonzero for positive and also negative integers (see [7]).
Now we are able to define Betti numbers and Euler characteristic of an LS -Conley index represented

by the spectrum E in the obvious way.
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Definition 2.10. Let E be a fixed spectrum. The qth Betti number of E is defined as

βq(E) := rank CHq(E),

and the Euler characteristic is given by

χ(E) :=
∑
q∈Z

(−1)qβq(E).

Remark 2.11. Since CHq(E) ∼= Hq+ρ(n)(En) for n ≥ n0 we have

(−1)ρ(n0)χ(E) = (−1)ρ(n0)
∑
q∈Z

(−1)qβq(E)

=
∑
q∈Z

(−1)q+ρ(n0)βq+ρ(n0)(En0) = χ(En0).

3. Relationship between LS -index and degree

3.1. The Leray–Schauder degree with respect to L. Let U be an open and bounded subset of
H. Denote by degLS (f, U, 0) the Leray-Schauder degree, defined for completely continuous perturbation of
identity. For more details about degree theory see [9]. Consider an LS -vector field f in H, f(x) = Lx+K(x),
where L is strongly indefinite linear bounded and invertible operator and K is completely continuous map.
Suppose that f does not vanish on ∂U . We will define degree for the class of such maps in the following
manner:

degL(f, U, 0) := degLS (I + L−1K, U, 0).

Since the zero sets for both f and I + L−1K are the same and L−1K is completely continuous map, the
above definition works. The degL inherits all the properties of the Leray–Schauder degree. In particular one
has:

Nontriviality: If 0 ∈ U then degL(L,U, 0) = 1;
Existence: If degL(f, U, 0) 6= 0 then f has a zero inside U ;
Additivity: If U1, U2 are open, disjoint subsets of U and there are no zeros of f in the completion

U \ (U1 ∪ U2), then

degL(f, U, 0) = degL(f, U1, 0) + degL(f, U2, 0);

Homotopy invariance: If h : H × [0, 1] → H is an LS -vector field for all t ∈ [0, 1] such that
h(x, t) 6= 0 for all (x, t) ∈ ∂U × [0, 1], then degL(h( · , t), U, 0)) is independent of t ∈ [0, 1].

3.2. Main theorem.

Theorem 3.1. Let H be a Hilbert space and L : H → H be a linear bounded operator satisfying assump-
tions (L.1)-(L.4) of Paragraph 2.1. Moreover assume that:

(1) L is an isomorphism;
(2) Ω ⊆ H is open and bounded, and f : Ω → H is of the form

f(x) = Lx + K(x),

where K : Ω → H is completely continuous map of class C1;
(3) φt is the local flow of equation ẋ = −f(x);
(4) N is an isolating neighborhood for φt.

Then the equality

(3.1) χ(hLS (inv(N), φt)) = degL(f, int(N), 0).

holds.
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Proof. Suppose that hLS (inv(N), φt) is represented by spectrum E = (En, εn)n≥n(E). According to
finite dimensional formula (1.3)

(3.2) (−1)ρ(n)χ(En) = (−1)ρ(n) deg(L + PnK, Nn, 0).

The left–hand side of the above equation represents χ(E) for large n, so we have to show that (3.2) is
independent of n ≥ n0. We have

(3.3) (−1)ρ(n)χ(En) = (−1)ρ(n) deg(L + PnK, Nn, 0)

= (−1)ρ(n) deg L|Hn · deg(I + PnL−1K, Nn, 0) = deg(I + PnL−1K, Nn, 0),

since the degree of linear isomorphism with respect to 0 is (−1)ν , where ν is the number of negative eigenvalues
of L. But in this case it is exactly dim Hn

− =
∑n

i=1 dim H−i =
∑n−1

i=0 ν(i) = ρ(n). Assume that n0 is chosen
such that

degLS (I + L−1K, N, 0) = deg(I + PnL−1K, Nn, 0) = deg(I + Pn+kL−1K, Nn+k, 0)

for all n ≥ n0 and k ∈ N. Replacing in (3.3) n by n + k, k ∈ N we obtain

(3.4) (−1)ρ(n+k)χ(En+k) = deg(I + Pn+kL−1K, Nn+k, 0).

On the other hand

(−1)ρ(n+k)χ(En+k) = (−1)ρ(n+k)χ(Sν(n)+...+ν(n+k−1)En)

= (−1)ρ(n+k)χ(Sν(n)) · . . . · χ(Sν(n+k−1))χ(En)

= (−1)ρ(n)χ(En)

and the proof follows from induction. �

3.3. L is not an isomorphism. Now consider weaker assumption about an operator L : H → H. We
would like to admit the case, when L is not invertible operator but is selfadjoint, i.e. 〈Lx, y〉 = 〈x, Ly〉 for
all x, y ∈ H. Let P0 : H → H denote the orthogonal projection onto H0, the kernel of L. Define a map
L̂ : H → H by L̂x := Lx + P0x. Since the kernel of L is orthogonal to the image of L we see, that L̂ is an
isomorphism. In particular, if L is invertible, then L̂ = L. If f is vector filed of the form Lx + K(x), where
K is completely continuous, we can write it equivalently as

f(x) = L̂x + K̂(x),

where K̂(x) = K(x)− P0x. Note that K̂ is completely continuous as well, since dim H0 < ∞. As before for
an open bounded subset U ⊂ H and LS -vector field f = L + K such that 0 6∈ f(∂U) we set

degL(f, U, 0) := degLS (I + L̂−1K̂, U, 0).

Proposition 3.2. Let assumptions of Theorem 3.1 are satisfied. Suppose that L : H → H is selfadjoint
(instead of isomorphism). Then the equality (3.1) is valid.

Proof. If L is selfadjoint then

deg(L + PnK, Nn, 0) = deg(L̂ + PnK̂,Nn, 0),

since PnP0 = P0 and L preserves the splitting of H =
⊕∞

n=1 Hn. Next

deg(L̂ + PnK̂,Nn, 0) = deg L̂|Hn · deg(I + PnL̂−1K̂,Nn, 0).

Observe that deg L̂|Hn = (−1)ρ(n). Indeed, the number of negative eigenvalues of L and L̂ coincide, because
L̂ differs from L only on the kernel of L by identity. That is there are only the λ = 1 of multiplicity dim H0

added to spectrum of L in places of zeros. The deg(I + PnL̂−1K̂,Nn, 0) stabilizes for large n and represents
degLS (I + L̂−1K̂,N, 0). In the light of the proof of preceding theorem it gives us the required result. �

10



In fact this theorem can be formulated for much bigger class of operators L. It is easy to see that L is
admissible if H = kerL ⊕ im L, where ⊕ means a direct sum (not orthogonal). This condition allows us to
define the degL in the above way.

4. Alternative approach

4.1. Finite-dimensional approximation. In this section the equality (3.1) will be obtained via direct
calculation, in the case when L = (−I, I) : H−⊕H+ → H−⊕H+ and S is an isolated zero of a given vector
field.

We say, that an operator sequence {Pn}∞n=1, Pn : H → H is strongly convergent to the identity operator
I : H → H, if lim

n→∞
Pnx = x for all x ∈ H.

Lemma 4.1. If K : H → H is compact operator and Pn : H → H, n = 1, 2, . . . is a sequence of orthogonal
projections onto Hn strongly convergent to the identity, then

(a) lim
n→∞

‖PnK −K‖ = 0;
(b) lim

n→∞
‖PnKPn −K‖ = 0;

(c) lim
n→∞

‖QnK‖ = 0, where Qn : H → H is an orthogonal projection onto Hn.

Proof. Statement (a) is a well known fact from the Riesz–Schauder theory. Since

‖PnKPn −K‖ ≤ ‖PnKPn − PnK‖+ ‖PnK −K‖

and since PnK is compact, in order to prove (b) it is enough to show that for any compact A we have
lim
n
‖APn −A‖ = 0. If A is compact, then the adjoint operator A∗ is compact as well and we may

write ‖APn −A‖ = ‖(APn −A)∗‖ = ‖PnA∗ −A∗‖ −→ 0. Finally, we have an estimation 0 ≤ ‖QnK‖ ≤
‖(

∑∞
i=n Qi) K‖ = ‖(I − Pn−1)K‖ < ε provided n ≥ n0. This proves (c). �

Definition 4.2. We say that A ∈ B(H) is hyperbolic, if

dist(σ(A), iR) := inf
λ∈σ(A), x∈iR

d(x, λ) > 0.

The set of all hyperbolic operators will be denoted by Bhip(H).

Here d( · , · ) stands for the distance function on C.
Recall, that the multivalued map B(H) 3 A 7→ σ(A) ⊂ C is upper semi continuous, that is for all

A ∈ B(H) and ε > 0, there exists δ > 0, such that inequality ‖A−B‖ < δ implies sup
λ∈σ(B)

dist(λ, σ(A)) < ε.

Lemma 4.3. Bhip(H) is an open subset of B(H).

Proof. Set ρ := dist(σ(A), iR). There exists δ > 0 such that for all B in δ-neighborhood of A

sup
λ∈σ(B)

dist(λ, σ(A)) < ρ/2.

Thus, the triangle inequality gives us the following estimation

dist(σ(B), iR) = inf
µ∈σ(B), x∈iR

d(µ, x) ≥ inf
µ∈σ(B), λ∈σ(A), x∈iR

(d(x, λ)− d(λ, µ))

≥ inf
λ∈σ(A), x∈iR

d(x, λ)− sup
µ∈σ(B)

( inf
λ∈σ(A)

d(λ, µ)) > ρ− ρ

2
=

ρ

2
> 0,

which completes the proof. �
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4.2. Conley index and the LS -degree.

Theorem 4.4. Let H be a real Hilbert space and let L satisfy all the assumptions (L.1)–(L.4) of 2.1.
Moreover, assume that:

(1) L is of the form (−I, I) : H− ⊕H+ → H− ⊕H+, where both H± are of infinite dimension;
(2) Ω ⊆ H is a neighborhood of the origin in H and f : Ω → H is an LS -vector field, with K : Ω → H

being continuously differentiable;
(3) f(0) = 0 and Df(0) ∈ Bhip(H).

Let φt be a flow generated by equation ẋ = −f(x). Then there exists ρ > 0, such that

(4.1) χ(hLS ({0}, φt)) = degL(f,B(0, ρ), 0).

Remark 4.5. Assumption (3) guarantees that S = {0} is an isolated invariant set and x0 = 0 is isolated
in the set f−1(0) (cf. Remark 1.11 of [1]).

In order to compute the index on the left-hand side of (4.1) consider a sequence of finite dimensional
approximations fn : Hn → Hn, fn(x) = Lx + PnK(x). Since the derivative Df(0) = L + DK(0) is a
hyperbolic operator, then by Lemmas 4.1 and 4.3 there exists n0 ∈ N such that Dfn(0) = L + PnDK(0) is
hyperbolic, provided n ≥ n0. Let us note that DK(0) is a compact linear operator.

The set cl(B(0, ρ)) ∩Hn is an isolating neighborhood for the invariant set {0} ∈ Hn for n ≥ n1 (comp.
Lemma 2.6). Assume that n0 is chosen such that n0 ≥ n1. W have a splitting Hn0 = Ĥn0

− ⊕ Ĥn0
+ where

Ĥn0
− (resp. Ĥn0

+ ) stands for unstable (resp. stable) subspace of the linear equation ẋ = −Dfn0(0)x. In the
hyperbolic case, the Conley index is exactly the homotopy type of pointed sphere: h({0}, φt

n0
) = [Sdim bHn0

− , ∗].
Denote by En0 the space that is homotopy equivalent to (Sdim bHn0

− , ∗). In order to establish the relation
between En0 and En0+1, we have to compute the index of the flow generated by fn0+1 : Hn0+1 → Hn0+1.
Note that the derivative Dfn0+1(0) = L + Pn0+1DK(0) preserve the splitting Hn0+1 = Hn0 ⊕Hn0+1. It is
easy to see if we write it as

L|Hn0 + Pn0DK(0) + L|Hn0+1 + Qn0+1DK(0) : Hn0 ⊕Hn0+1 → Hn0 ⊕Hn0+1.

In this situation we have the formula h({0}, φt
n0+1) = h({0}, φt

n0
)∧h({0}, η), where h({0}, η) is an index

of {0} with respect to flow generated by ẋ = −L|Hn0+1x−Qn0+1DK(0)x.
Since ‖QnDK(0)‖ → 0, the maps L|Hn0+1 and L|Hn0+1 + Qn0+1DK(0) are homotopic for sufficiently

large n0 and the index h({0}, η) is determined by dimension of the unstable subspace of linear equation

ẋ = −L|Hn0+1x.

Set Hn0+1 = H−n0+1 ⊕H+
n0+1, where H−n0+1 (resp. H+

n0+1) is the unstable (resp. stable) subspace of L and
define ν : N∗ → N∗ by ν(n) = dim H−n+1. We have

h({0}, φt
n0+1) = [Sdim bHn0

− , ∗] ∧ [Sν(n0), ∗] = [Sν(n0)Sdim bHn0
− , ∗]

Conclusion 4.6. En+1 is the ν(n)-fold suspension of En, provided that n is sufficiently large.

Define ρ : N∗ → N∗ by ρ(0) = 0 and ρ(n) =
∑n−1

i=0 ν(i). According to definition of cohomological Conley
index we have an isomorphism

CHq(hLS ({0}, φt)) ∼= Hq+ρ(n)(h({0}, φt
n)), n ≥ n0.

It follows that CHq(hLS ({0}, φt)) ∼= Hq+ρ(n)(Sdim bHn
− , ∗) ∼= Z for q = dim Ĥn

− − ρ(n) and hence

χ(hLS ({0}, φt)) = (−1)dim bHn
−−ρ(n), n ≥ n0.

In particular we have χ(hLS ({0}, φt)) = (−1)dim bHn0
− −ρ(n0).
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By the stability of an LS -degree we have

degL(f,B(0, ρ), 0) = degLS (I + L−1K, B(0, ρ), 0) = deg(I + L−1PnK, Bn(0, ρ), 0)

for n ≥ n0. From the fact that deg(L|Hn , Bn, 0) = (−1)ρ(n) and deg(L + PnK, Bn, 0) = (−1)dim bHn
− we

conclude that

deg(I + PnL−1K, Bn, 0) = deg(L + PnK, Bn, 0) · [deg(L|Hn , Bn, 0)]−1 = (−1)dim bHn
−−ρ(n)

for n ≥ n0 and the proof of (4.1) is completed.
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