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CONDITIONAL STABILITY ESTIMATES AND
REGULARIZATION WITH APPLICATIONS TO CAUCHY

PROBLEMS FOR THE HELMHOLTZ EQUATION

TERESA REGIŃSKA* AND ULRICH TAUTENHAHN

Abstract. In this paper we consider the problem of reconstructing solutions x†
of ill-posed problems Ax = y where A is a linear operator between Hilbert spaces
X and Y . We assume that instead of exact data some noisy data yδ ∈ Y with
‖y−yδ‖ ≤ δ are given and that x† possesses a certain solution smoothness which
we describe by x† ∈M with some source set M ⊂ X. We discuss the following
questions: (i) Which best possible accuracy can be obtained for identifying x†
from noisy data yδ ∈ Y under the assumptions ‖y − yδ‖ ≤ δ and x† ∈M? (ii)
How to regularize such that the best possible accuracy can be guaranteed? We
apply our results to Cauchy problems for the Helmholtz equation and show that,
depending on different smoothness situations, the best possible accuracy may
be of Hölder type, of logarithmic type or of some other type. In addition, we
study regularization methods that provide the best possible accuracy. In case of
appropriate a posteriori parameter choice, the best possible order of accuracy
can be obtained without using any smoothness information for x†.

1. Introduction

In this paper we consider ill-posed problems

Ax = y (1.1)

where A : X → Y is a bounded linear operator between infinite dimensional Hilbert
spaces X and Y with non-closed range R(A). We shall denote the inner product
and the corresponding norm on the Hilbert spaces by (·, ·) and ‖ · ‖ respectively.
We assume throughout the paper that the operator A is injective and that the
exact right hand side y belongs to R(A) so that (1.1) has a unique solution x† ∈ X.
We are interested in problems (1.1) where instead of y ∈ R(A) we have a noisy
right hand side yδ ∈ Y with

‖y − yδ‖ ≤ δ. (1.2)
Since R(A) is assumed to be non-closed, the solution x† of problem (1.1) does
not depend continuously on the data. Hence, the numerical treatment of problem
(1.1), (1.2) requires the application of special regularization methods.

Linear ill-posed problems arise in different applications such as geophysics, fi-
nance, astronomy, biology, medicine, technology and others. Important examples
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are the identification of a derivative from noisy data (see, e. g., [7, 15]), deconvolu-
tion problems for modeling the problem of image deblurring (see, e. g., [4]), inverse
heat conduction problems (see, e. g., [1, 3, 8]) or problems of computerized tomog-
raphy (see, e. g., [22]). For some overview on further applications we recommend
the books [5, 13].

In this paper we are interested in applications connected with Cauchy problems
for the Helmholtz equation. Such problems arise, e.g., in optoelectronics, and in
particular in laser beam models, see [2, 24, 25, 26]. For a mathematical formulation
we follow the paper [25], denote by r = (x, y) the first two variables and consider
the Helmholtz equation

∆u+ k2u = 0 for (r, z) ∈ Ω = R2 × (0, d)

u(·, z) ∈ L2(R2) for z ∈ (0, d)

}
(1.3)

where ∆u = uxx + uyy + uzz and k > 0 is the wave number. Connected with
(1.3) we define the space H = L2(R2) with norm ‖ · ‖ and inner product (·, ·) and
formulate the following problem:

Problem P1 (Identification of u(r, z) from u(r, d)). Given uz(r, d) = 0 and noisy
data uδ(r, d) ∈ H for u(r, d) satisfying

‖u(·, d)− uδ(·, d)‖ ≤ δ,

find for some fixed z ∈ [0, d) the solution u(r, z) of problem (1.3).

The problem of identifying u(r, z) from (unperturbed) data u(r, d) can be
formulated as an operator equation

A(z)u(r, z) = u(r, d), A(z) ∈ L(H,H) (1.4)

which is a special case of the operator equation (1.1). However, the operator A(z)
is only bounded for small wave numbers k(d− z) < π

2
, see Section 3. Hence, in the

case of large wave numbers k(d− z) ≥ π
2
the general results for operator equations

(1.1) with bounded operators A cannot be applied.
The paper is organized as follows. In Section 2 we consider linear ill-posed

problems (1.1) and discuss the question concerning the best possible accuracy for
identifying x† under the assumptions ‖y − yδ‖ ≤ δ and x† ∈M where M is some
general source set. By using interpolation techniques we derive an explicit formula
for the best possible worst case error and the best possible conditional stability
estimate on a general source set M . In Section 3 we consider Problem P1 and
discuss properties of the operator A(z). We apply the general results of Section
2 and obtain best possible conditional stability estimates of Hölder type on the
source set M = ME = {u(·, z) ∈ H |u ∈ D, ‖u(·, 0)‖ ≤ E}, where D denotes
the set of all solutions of (1.3). In Section 4 we study three generalizations for
Problem P1. In a first generalization we allow more general source sets. In a
second generalization we allow in (1.3) noisy data for uz(·, d) with noise level δ and
in a third generalization we allow noisy Dirichlet and Neumann data. Section 5 is
devoted to regularization methods that provide optimal and order optimal error
bounds on source sets M and in Section 6 we discuss the discrepancy principle for
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choosing the regularization parameter. This a posteriori rule adapts automatically
to the generally unknown solution smoothness.

2. Worst case analysis and conditional stability estimates

2.1. Worst case analysis. Let us give some comment on order optimal con-
vergence rates for identifying x† from noisy data yδ ∈ Y under the assumption
(1.2) and x ∈M where M ⊂ X is some centrally symmetric and convex set. We
remember that a set M is called centrally symmetric if for all x ∈M also −x is an
element of M . We follow the books [11, 33] and start with some notational issues:

(i) Let R : Y → X be an arbitrary operator and R(yδ) be an approximate
solution for x†. Then the quantity

∆R(δ, A,M) = sup
{
‖R(yδ)− x‖

∣∣∣ ‖Ax− yδ‖ ≤ δ, x ∈M
}

is called worst case error of the method R on the set M . This quantity
characterizes the accuracy of the method R in the worst case sense.

(ii) An optimal method Ropt is characterized by

∆Ropt(δ, A,M) = inf
R

∆R(δ, A,M) (0 < δ ≤ δ0)

and this quantity is called best possible worst case error on the set M .
(iii) The quantity

ω(δ, A,M) = sup
{
‖x‖

∣∣∣x ∈M, ‖Ax‖ ≤ δ
}

(2.1)

is called modulus of continuity of the inverse operator A−1 on the set M .
The best possible worst case error obeys following estimate (see [11, 33]):

Proposition 2.1. Let M ⊂ X be centrally symmetric and convex. Then the
best possible worst case error on M and the modulus of continuity of the inverse
operator A−1 on M are related by

ω(δ, A,M) ≤ inf
R

∆R(δ, A,M) ≤ 2ω(δ, A,M).

We are now interested in special sets

M = Mϕ,E =
{
x ∈ X

∣∣∣x = [ϕ(A∗A)]1/2v, ‖v‖ ≤ E} (2.2)

with some index function ϕ(λ), 0 ≤ λ ≤ ‖A∗A‖. We note that
(i) according to [9, 17] a function ϕ : (0, a]→ (0, b] is called an index function

if it is continuous and monotonically increasing with lim
t→+0

ϕ(t) = 0,
(ii) any set defined by (2.2) is called source set.
The source sets defined by (2.2) are centrally symmetric, convex and bounded.

The best possible worst case error and the modulus of continuity of the inverse
operator A−1 on Mϕ,E obey following relations:

Proposition 2.2. Let Mϕ,E be the source set (2.2) and let %(t) := tϕ−1(t).
(i) For the best possible worst case error on Mϕ,E there holds

inf
R

∆R(δ, A,Mϕ,E) = ω(δ, A,Mϕ,E).
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(ii) If δ2/E2 ∈ σ(G) with G := A∗Aϕ(A∗A), then

ω(δ, A,Mϕ,E) ≥ E
√
%−1(δ2/E2).

(iii) If the index function % is convex, then

ω(δ, A,Mϕ,E) ≤ E
√
%−1(δ2/E2).

The proof of part (i) of the proposition follows from a more general result
in [10, Theorem 3]. For the proof of the parts (ii) and (iii) of the proposition
see, e. g., [30, Theorem 2.1]. Note that the spectrum σ(G) of the operator G
obeys σ(G) ⊂ [0, aϕ(a)] with a = ‖A∗A‖. Hence, in order to guarantee that
δ2/E2 ∈ σ(G) we need that δ2/E2 ≤ aϕ(a). Due to Proposition 2.2, the magnitude
E
√
%−1(δ2/E2) will serve us as benchmark for the best possible accuracy for

identifying x† from noisy data yδ ∈ Y under the assumptions (1.2) and x ∈Mϕ,E.

2.2. Conditional stability estimates. The modulus of continuity of the inverse
operator A−1 on the set M which is defined by (2.1) is closely related with the
notion of conditional stability. An operator A ∈ L(X, Y ) is called to satisfy
a conditional stability estimate on the set M if there exists an index function
β : (0, a]→ (0, b] such that

‖x‖ ≤ β (‖Ax‖) for all x ∈M. (2.3)
The function β is called modulus of conditional stability of the operator A−1 on
the set M . As it can easily be seen, there always holds the estimate

ω(δ, A,M) ≤ β(δ). (2.4)
Clearly, there are infinitely many moduli of conditional stability of A−1 on the
special set Mϕ,E defined by (2.2). An optimal modulus of conditional stability βopt

satisfying (2.3) arises if there is equality in (2.4). Therefore, following definition
makes sense.

Definition 2.3. We call βopt as best possible modulus of conditional stability
of the operator A−1 on the set Mϕ,E if βopt satisfies (2.3) and if for all δ with
δ2/E2 ∈ σ(A∗Aϕ(A∗A)) there holds

ω(δ, A,Mϕ,E) = βopt(δ).

Interpolation techniques allow to derive a formula for the best possible modulus
of conditional stability of the operator A−1 on the set Mϕ,E.

Theorem 2.4. Assume x ∈Mϕ,E where Mϕ,E is given by (2.2). Assume further
that %(λ) := λϕ−1(λ) is convex. Then,

‖x‖ ≤ βopt(‖Ax‖) with βopt(δ) = E
√
%−1(δ2/E2). (2.5)

Proof. We follow the ideas outlined in [30, Theorem 2.1]. Let Eλ the spectral
family of A∗A. Since % is convex we may employ Jensen’s inequality and obtain
due to %(ϕ(λ))[ϕ(λ)]−1 = λ that

%

(
‖x‖2

‖[ϕ(A∗A)]−1/2x‖2

)
≤
∫
%(ϕ(λ))[ϕ(λ)]−1 d‖Eλx‖2

‖[ϕ(A∗A)]−1/2x‖2
=

‖Ax‖2

‖[ϕ(A∗A)]−1/2x‖2
,
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or equivalently,

‖[ϕ(A∗A)]−1/2x‖2 %
(

‖x‖2

‖[ϕ(A∗A)]−1/2x‖2

)
≤ ‖Ax‖2.

Since % is convex, t→ t−1%(t) is increasing. Consequently, t→ t%(1/t) is decreasing.
Hence, since ‖[ϕ(A∗A)]−1/2x‖ ≤ E, the above estimate gives

E2%(‖x‖2/E2) ≤ ‖Ax‖2.

Rearranging terms gives

‖x‖ ≤ β (‖Ax‖) with β(δ) = E
√
%−1(δ2/E2).

Due to part (ii) of Proposition 2.2 and estimate (2.4) we have for for all δ with
δ2/E2 ∈ σ(A∗Aϕ(A∗A)) the inequality chain β(δ) ≤ ω(δ, A,Mϕ,E) ≤ β(δ), which
gives ω(δ, A,Mϕ,E) = β(δ). That is, β(δ) = E

√
%−1(δ2/E2) is the best possible

modulus of conditional stability of the operator A−1 on the set Mϕ,E. �

Our estimate (2.5) of Theorem 2.4 is a conditional stability estimate on the
set Mϕ,E which cannot be improved. It tells us that for different data y1, y2

and corresponding solutions x1, x2 with x1 − x2 ∈Mϕ,E we have the conditional
stability estimate

‖x1 − x2‖ ≤ E
√
%−1(‖y1 − y2‖2/E2) .

Let us give a further comment on our central Theorem 2.4. In many inverse
partial differential equation problems this theorem makes it possible to derive
explicit or implicit formulae for the best possible modulus of conditional stability
on special sets M that arise by imposing a bound on a part of the solution of the
partial differential equation. Special formulae that arise from (2.5) have successfully
been derived for backward heat equation problems in one and more dimensions
in [21, 27, 30], for sideways parabolic problems in [6, 29], for Cauchy problems
for the Laplace equation in [28] for fractional differentiation problems in [31] and
for Cauchy problems for the Helmholtz equation in [34]. In the next section we
apply Theorem 2.4 for obtaining conditional stability estimates for special Cauchy
problems for the Helmholtz equation. In particular, we extend the problems from
[34] and improve the results. Our way of deriving formulae for conditional stability
estimates consists roughly speaking in following three steps:

(1) Derive the index function ϕ such that the set M coincides with the set
Mϕ,E given by (2.2).

(2) Compute the function %(λ) := λϕ−1(λ) and prove its convexity.
(3) Derive a formula for βopt given in (2.5).

Note that formulae for the modulus of conditional stability may sometimes also
be obtained by so called logarithmic convexity arguments, see, e. g., [5, 12, 23].

3. Cauchy problem for the Helmholtz equation

3.1. Operator equation formulation in the frequency space. Transforming
the operator equation (1.4) into the frequency domain provides (see [25, formula
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(2.11)]) the equivalent operator equation

Â(z)û(ξ, z) = û(ξ, d) ⇔ 1

cosh
(
(d− z)

√
|ξ|2 − k2

) û(ξ, z) = û(ξ, d) (3.1)

with ξ = (ξ1, ξ2) and |ξ|2 = ξ2
1 + ξ2

2 where Â(z) = FA(z)F−1, F ∈ L(H,H) is the
Fourier operator and û(ξ, z) is the Fourier transform of u(r, z) with respect to the
variable r = (x, y), that is,

û(ξ, z) = F (u(r, z)) =
1

2π

∫
R2
u(r, z)e−i r·ξ dr.

3.2. Properties and solution smoothness. The operator Â(z) given in (3.1)
is a multiplication operator. We use the identity

cosh
(
(d− z)

√
|ξ|2 − k2

)
= cos

(
(d− z)

√
k2 − |ξ|2

)
for |ξ| ≤ k

and realize that following properties are true:
(i) If there exists a solution of the equation (3.1), then this solution is unique.
(ii) The existence of a solution of equation (3.1) is guaranteed if the right

hand side ĝ(ξ) = û(ξ, d) decays sufficiently fast for |ξ| → ∞. More
accurate, the existence of a solution is guaranteed if the Picard condition∫
R2 cosh2

(
(d− z)

√
|ξ|2 − k2

)
ĝ2(ξ) dξ <∞ is satisfied.

(iii) Since cosh
(
(d− z)

√
|ξ|2 − k2

)
→ ∞ exponentially for |ξ| → ∞, both

inverse operators A−1(z) and Â−1(z) are unbounded operators. It follows
that both problems (1.4) and (3.1), respectively, are severely ill-posed
problems. The ill-posedness becomes worse as z decreases.

(iv) Under the assumption k(d − z) < π
2
both operators A(z) and Â(z) are

linear bounded self-adjoint operators with spectrum in [0, 1/ cos k(d− z)].
For k(d− z) ≥ π

2
both operators A(z) and Â(z) are unbounded.

In Figures 1 and 2 the multiplicator function

a(|ξ|) = 1/ cosh
(
(d− z)

√
|ξ|2 − k2

)
of the operator Â(z) of the operator equation (3.1) is displayed for d = 1 and
different values of k and z. Figure 1 illustrates the situation k(d− z) < π

2
in which

the operator Â(z) is bounded by 1/ cos k(d− z).
Figure 2 illustrates the situation k(d− z) > π/2 in which the operator Â(z) is

unbounded. Note that in the case k(d− z) = π/2 we have σ(Â(z)) = [0,∞), that
in the case π/2 < k(d− z) < π we have σ(Â(z)) = R \ ( 1

cos k(d−z) , 0) and that in
the case π ≤ k(d− z) <∞ we have σ(Â(z)) = R \ (−1, 0).

Now let us impose some solution smoothness for the unknown solution u(r, z)
of the operator equation (1.4). Let D ⊂ H2(Ω) denote the set of solutions of the
Helmholtz equation (1.3). Clearly, since u(r, z) satisfies the differential equation
problem (1.3) we expect for any fixed z ∈ [0, d) some inherent smoothness for
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z = 0.3
z = 0.4
z = 0.6
z = 0.8

|ξ|
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0
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5

Figure 1. Multiplicator function a(|ξ|) for d = 1, k = 2 and different z

spectral gap

|ξ|

a(|ξ|)
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0

4

−4
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−8

spectral gap

|ξ|

a(|ξ|)

2 4 6 8
0

4

−4

8

−8

Figure 2. Multiplicator function a(|ξ|) in the both cases d = 1, k = 2, z = 0.1 (left)
and d = 1, k = 6, z = 0.1 (right)

u(r, z) which may be expressed by

u(r, z) ∈M = ME =
{
u(·, z) ∈ H

∣∣∣u ∈ D, ‖u(·, 0)‖ ≤ E
}

(3.2)

with some E > 0. Now we ask the question if the set (3.2) is equivalent to some
general source set

Mϕ,E =
{
u(·, z) ∈ H

∣∣∣u(·, z) = [ϕ(A∗(z)A(z))]1/2v, ‖v‖ ≤ E
}

(3.3)

with some index function ϕ = ϕ(λ).

Proposition 3.1. For Problem P1 we have equality ME = Mϕ,E with ME and
Mϕ,E given by (3.2) and (3.3), respectively, if ϕ(λ) is given (in parameter repre-
sentation) by

λ(t) = 1/ cosh2
(
(d− z)

√
t2 − k2

)
ϕ(t) = cosh2

(
(d− z)

√
t2 − k2

)
/ cosh2

(
d
√
t2 − k2

)
 (0 ≤ t <∞). (3.4)

Proof. We observe that we have equality ME = Mϕ,E if M̂E = M̂ϕ,E where

M̂E =
{
û(·, z) ∈ H

∣∣∣ û ∈ D̂, ‖û(·, 0)‖ ≤ E
}
,

M̂ϕ,E =
{
û(·, z) ∈ H

∣∣∣ û(·, z) = [ϕ(Â∗(z)Â(z))]1/2v̂, ‖v̂‖ ≤ E
}
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and D̂ = {û(ξ, z) |u ∈ D}. That is, we have equality ME = Mϕ,E if ‖û(·, 0)‖ =

‖[ϕ(Â∗(z)Â(z))]−1/2û(·, z)‖, or equivalently,

ϕ(Â∗(z)Â(z)) = cosh2
(

(d− z)
√
|ξ|2 − k2

)
/ cosh2

(
d
√
|ξ|2 − k2

)
with

Â∗(z)Â(z) = 1/ cosh2
(

(d− z)
√
|ξ|2 − k2

)
.

That is, we have equality ME = Mϕ,E for ϕ given by (3.4). �

We observe following properties:

Case 1. If the wave number k satisfies k < π
2d
, then the operator Â(z) is bounded

and ϕ = ϕ(λ) defined by (3.4) is an index function. It can be shown that the
resulting index function %(λ) = λϕ−1(λ) is convex for the whole t-range t ∈ [0,∞).
The convexity proof for the restricted t-range t ∈ [k,∞) may be found in [28].
This Case 1 allows the application of Theorem 2.4 without any problems. Figure
3 illustrates the situation of this case.

λ

ϕ

0 0.5 1 1.5
0

0.5

1

1.5

λ

%

0 0.5 1 1.5
0

1

2

3

Figure 3. Source function ϕ for d = 1, z = 0.3, k = 1 (left) and corresponding
function %(λ) = λϕ−1(λ) (right)

Case 2. If the wave number k satisfies π
2d
≤ k < π

2(d−z) , then Â(z) is still bounded,
however ϕ has poles and is therefore not an index function. If the wave number k
is in the range k ≥ π

2(d−z) , then the operator Â(z) is unbounded and ϕ has again
poles and in addition different branches. As a consequence, Theorem 2.4 cannot be
applied directly. We will handle this case by a special decomposition idea. Figure
4 illustrates the situation of Case 2 for π

2d
≤ k < π

2(d−z) .

3.3. Conditional stability estimate for small wave numbers. We study in
this section the case of small wave numbers k satisfying k < π

2d
.

Theorem 3.2. Let the wave number k satisfy k < π
2d
. Then the modulus of

continuity and the best possible modulus of conditional stability of the inverse
operator Â−1(z) on the set M̂E :=

{
û(·, z) ∈ H

∣∣∣ û ∈ D̂ , ‖û(·, 0)‖ ≤ E
}
are given

by

ω(δ, Â(z), M̂E) = βopt(δ) = δ cosh

(
d− z
d

arcosh
E

δ

)
. (3.5)
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λ

ϕ

0 3 6
0

10

20

30

λ

ϕ

0 2 4 6
0

2

4

6

Figure 4. Source functions ϕ for d = 1, z = 0.4, k = 2 (left) and for d = 1, z = 0.9,
k = 12 (right)

Proof. The set M̂E is equivalent to

M̂ϕ,E =
{
û(·, z) ∈ H

∣∣∣ û(ξ, z) = [ϕ(Â∗(z)Â(z))]1/2v̂(ξ), ‖v̂‖ ≤ E
}
,

where ϕ = ϕ(λ) is given by (3.4). The function ϕ is an index function and
%(λ) := λϕ−1(λ) is given (in parameter representation) by

λ(t) = cosh2
(
(d− z)

√
t2 − k2

)
/ cosh2

(
d
√
t2 − k2

)
%(t) = 1/ cosh2

(
d
√
t2 − k2

)
 (0 ≤ t <∞). (3.6)

The function % defined by (3.6) is convex (compare [28, Prop. 3.4] for the restricted
range t ∈ [k,∞)) and the inverse %−1 is given by

λ(t) = 1/ cosh2
(
d
√
t2 − k2

)
%−1(t) = cosh2

(
(d− z)

√
t2 − k2

)
/ cosh2

(
d
√
t2 − k2

)
 (k ≤ t <∞).

This function possesses the explicit form ρ−1(λ) = λ cosh2
(
d−z
d
arcosh 1√

λ

)
. Now

we apply Theorem 2.4 and obtain (3.5). �

Remark 3.3. We note that for δ ≤ E the best possible modulus of conditional
stability βopt from (3.5) can be estimated by

βopt(δ) ≤ E1−z/dδz/d. (3.7)

That is, we have an upper bound which is of Hölder type. In the special case k = 0
this bound can also be obtained by logarithmic convexity arguments as outlined
in [5, 12, 23]. For applying this concept to our Cauchy problem for the Helmholtz
equation with k = 0 we introduce the differential operator L by Lu = −uxx − uyy
and execute following three steps:

(i) We define the function F (z) := ‖u(·, z)‖2.

(ii) We show that [lnF (z)]′′ =
F ′′(z)F (z)− [F ′(z)]2

F 2(z)
≥ 0.

(iii) We conclude that F (z) ≤ F 1−z/d(0)F z/d(d) which gives (3.7).
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For the proof of the right estimate of (ii) we observe that F ′(z) = 2(u, uz) and
F ′′(z) = 2(uz, uz) + 2(u, uzz) = 2(uz, uz) + 2(u, Lu). From the two identities

d

dz
(u, Lu) = 2(uz, Lu) and

d

dz
(uz, uz) = 2(uz, uzz) = 2(uz, Lu)

we conclude that d
dz

(u, Lu) = d
dz

(uz, uz). Integration with respect to z and observ-
ing that uz(r, d) = 0 yields (u, Lu) = (uz, uz) + (u(r, d), Lu(r, d)). Hence, F ′′(z)
attains the form F ′′(z) = 4(uz, uz) + 2(u(r, d), Lu(r, d)). That is, [lnF (z)]′′ ≥ 0 is
equivalent to

2|(u, uz)|2 ≤ 2‖uz‖2‖u‖2 + (u(r, d), Lu(r, d)) ‖u‖2.
This estimate, however, is a consequence of the Cauchy-Schwarz inequality and
the fact that the operator L is positive definite.

3.4. Conditional stability estimate in the general case. In this subsection
we will show that the conditional stability estimate of Theorem 3.2 is also valid in
the case of large wave numbers. However, in case of large wave numbers k ≥ π

2d
our Theorem 2.1 cannot be applied directly for obtaining a formula for βopt(δ).
Alternatively, we can use a decomposition idea as outlined in [34] that makes it
possible to apply Theorem 2.4. Our decomposition consists in

(i) decomposing R2 into the ill-posed part I and the well-posed part W where

I =
{
ξ ∈ R2

∣∣∣ |ξ| ≥ k
}

and W =
{
ξ ∈ R2

∣∣∣ |ξ| ≤ k
}
,

(ii) decomposing the space H = L2(R2) into the direct sum

H = H1 ⊕H2 with H1 = L2(I) and H2 = L2(W ),

(iii) decomposing the elements û(ξ, z) ∀z ∈ [0, d] into the sum

û(ξ, z) = û1(ξ, z) + û2(ξ, z)

where û1(·, z) := P1û(·, z), û2(·, z) := P2û(·, z) and P1, P2 are the orthopro-
jections onto H1 and H2, respectively,

(iv) decomposing the set of solutions D̂ into the direct sum

D̂ = D̂1 ⊕ D̂2 with D̂1 = P1D̂ and D̂2 = P2D̂,

(v) decomposing the operator equation (3.1) in the frequency domain into two
separate problems, one ill-posed problem

Â1(z)û1(ξ, z) = û1(ξ, d), Â1 ∈ L(H1, H1)

and one well-posed problem

Â2(z)û2(ξ, z) = û2(ξ, d), Â2 ∈ L(H2, H2),

(vi) decomposing the set M̂E =
{
û(·, z) ∈ H

∣∣∣ û ∈ D̂, ‖û(·, 0)‖ ≤ E
}
into two

subsets

M̂1,E =
{
û(·, z) ∈ H1

∣∣∣ û ∈ D̂1, ‖û(·, 0)‖H1 ≤ E
}
,

M̂2,E =
{
û(·, z) ∈ H2

∣∣∣ û ∈ D̂2, ‖û(·, 0)‖H2 ≤ E
}
.
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Let ϕ1(λ) be defined by parameter representation (similarly as ϕ(λ) in (3.4)), but
now the range of the parameter t is restricted to [k,∞):

λ(t) = 1/ cosh2
(
(d− z)

√
t2 − k2

)
ϕ1(t) = cosh2

(
(d− z)

√
t2 − k2

)
/ cosh2

(
d
√
t2 − k2

)
 (k ≤ t <∞). (3.8)

Then, in analogy to Proposition 3.1 we have

Proposition 3.4. If Mϕ1,E is given by (3.3) then we have equality M1,E = Mϕ1,E.

Since the function ϕ1 is an index function, for the best possible modulus of
conditional stability of the operator Â−1

1 (z) on the set M̂1,E we have in analogy to
Theorem 3.2 the following result:

Proposition 3.5. The modulus of continuity and the best possible modulus of
conditional stability of the operator Â−1

1 (z) on the set M̂1,E are given by

ω(δ, Â1(z), M̂1,E) = βopt(δ) = δ cosh

(
d− z
d

arcosh
E

δ

)
.

For the well-posed part we have ‖Â−1
2 (z)‖ ≤ 1. That is, for all elements

û ∈ H2 = L2(W ) we have the estimate ‖û‖ ≤ ‖Â2(z)û‖. Hence, the modulus of
continuity and the best possible modulus of conditional stability of Â−1

2 (z) on an
arbitrary subset of H2 can be estimated by δ and we have

ω(δ, Â2(z), M̂2,E) ≤ δ.

From this property, Proposition 3.5 and the Pythagoras Theorem we get

Theorem 3.6. The modulus of continuity and the best possible modulus of condi-
tional stability of the inverse operator Â−1(z) on the set

M̂E =
{
û(·, z) ∈ H

∣∣∣ û ∈ D̂, ‖û(·, 0)‖ ≤ E
}

are given by the formula (3.5) for arbitrary wave number k.

This in turn implies that the modulus of continuity of the inverse operator
A−1(z) and the best possible modulus of conditional stability of the operator
A−1(z) on the set (3.2) are also given by the right hand side of (3.5). For δ ≤ E
the right hand side of (3.5) can be estimated by E1−z/dδz/d which is an upper
bound of Hölder type.

4. Generalizations

In this section we discuss three generalizations of our model problem P1 from
Section 1. In a first subsection we allow more general source sets. In a second
subsection we treat the case of noisy Neumann data at z = d and in a third
subsection we discuss the general case of noisy Dirichlet and Neumann data. This
general case is illustrated in Figure 5.
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y

x

z

d

∆u+ k2u = 0

{
u(r, d) = g(r)
uz(r, d) = h(r){
solution smoothness
‖u(·, 0)‖p ≤ E

Figure 5. Extension of Problem P1: Identify u(r, z) ∈ H for fixed z ∈ [0, d) from
noisy data gδ(r) ∈ H and hδ(r) ∈ H with ‖g − gδ‖ ≤ δ and ‖h− hδ‖ ≤ δ

4.1. More general source sets. In this subsection we reconsider Problem P1
and allow more general source sets, that is, instead of (3.2) we allow more general
solution smoothness

u(r, z) ∈M = Mp,E =
{
u(·, z) ∈ H

∣∣∣u ∈ D, ‖u(·, 0)‖p ≤ E
}

(4.1)

with some generally unknown p ≥ 0. In (4.1) the norm ‖ · ‖p is the norm in the
classical Sobolev scale (Hp)p∈R (see [14]), that is,

‖w‖p =
(∫

R2

(
1 + |ξ|2

)p
|ŵ|2dξ

)1/2

.

Note that for larger p the smoothness assumption (4.1) becomes more restrictive.
In analogy to Proposition 3.1 we have

Proposition 4.1. For Problem P1 we have equality Mp,E = Mϕ,E with Mp,E

and Mϕ,E given by (4.1) and (3.3), respectively, if ϕ(λ) is given (in parameter
representation) by

λ(t) =
1

cosh2
(
(d− z)

√
t2 − k2

)
ϕ(t) =

cosh2
(
(d− z)

√
t2 − k2

)
(1 + t2)p cosh2

(
d
√
t2 − k2

)


(0 ≤ t <∞). (4.2)

The function ϕ implicitly defined by (4.2) is an index function for small wave
numbers k satisfy k < π

2d
. From (4.2) we have that in this case the function

%(λ) := λϕ−1(λ) is given (in parameter representation) by

λ(t) =
cosh2

(
(d− z)

√
t2 − k2

)
(1 + t2)p cosh2

(
d
√
t2 − k2

)
%(t) =

1

(1 + t2)p cosh2
(
d
√
t2 − k2

)


(0 ≤ t <∞).



CONDITIONAL STABILITY ESTIMATES AND REGULARIZATION 13

Theorem 4.2. The modulus of continuity and the best possible modulus of condi-
tional stability of the inverse operator A−1(z) on the set Mp,E are given by

ω(δ, A(z),Mp,E) = βopt(δ) = E
cosh

(
(d− z)

√
t20 − k2

)
(1 + t20)

p/2 cosh
(
d
√
t20 − k2

) (4.3)

where t0 is the solution of the equation
1

(1 + t2)p/2 cosh
(
d
√
t2 − k2

) =
δ

E
.

For δ → 0 we have the asymptotic representation

ω(δ, A(z),Mp,E) = βopt(δ) = E1−z/d
(
δ

2

)z/d [
1

d
ln
E

δ

]−p(1−z/d)
(1 + o(1)) . (4.4)

Proof. For the wave number k satisfying k < π
2d

we can apply our general Theorem
2.4 and obtain (4.3). By using the decomposition idea of Subsection 3.4 it can be
shown that this result is also valid in case of large wave numbers k ≥ π

2d
. �

Remark 4.3. From (4.4) we conclude that for p > 0 the modulus of continuity
and the best possible modulus of conditional stability improve slightly by the
logarithmic factor

[
1
d

ln E
δ

]−p(1−z/d)
. In addition, formula (4.4) shows that for z = 0

and p > 0 we have logarithmic stability.

4.2. Noisy Neumann data. Connected with equation (1.3) we consider

Problem P2 (Identification of u(r, z) from uz(r, d)). Given u(r, d) = 0 and noisy
data uδz(r, d) ∈ H for uz(r, d) satisfying

‖uz(·, d)− uδz(·, d)‖ ≤ δ,

find for some fixed z ∈ [0, d) the solution u(r, z) of problem (1.3).

The problem of identifying u(r, z) from (unperturbed) data uz(r, d) can be
formulated as an operator equation

A(z)u(r, z) = uz(r, d), A(z) ∈ L(H,H) (4.5)

which is a special case of the operator equation (1.1). Transforming the operator
equation (4.5) into the frequency domain provides the equivalent operator equation

Â(z)û(ξ, z) = ûz(ξ, d) ⇔
−
√
|ξ|2 − k2

sinh
(
(d− z)

√
|ξ|2 − k2

) û(ξ, z) = ûz(ξ, d). (4.6)

The operator Â(z) given in (4.6) is a multiplication operator with the multiplicator
function a(|ξ|) = −

√
|ξ|2 − k2/ sinh

(
(d− z)

√
|ξ|2 − k2

)
. We use the identity

sinh
(
(d− z)

√
|ξ|2 − k2

)
= i sin

(
(d− z)

√
k2 − |ξ|2

)
for |ξ| ≤ k

and realize that following properties are true:
(i) If there exists a solution of the equation (4.5), then this solution is unique.
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(ii) The existence of a solution of equation (4.5) is guaranteed if the right
hand side ĥ(ξ) = ûz(ξ, d) decays sufficiently fast for |ξ| → ∞. More
accurate, the existence of a solution is guaranteed if the Picard condition∫

R2

(
|ξ|2 − k2

)−1
sinh2

(
(d− z)

√
|ξ|2 − k2

)
ĥ2(ξ) dξ <∞ is satisfied.

(iii) Since (|ξ|2 − k2)
−1

sinh2
(
(d− z)

√
|ξ|2 − k2

)
→ ∞ for |ξ| → ∞, both in-

verse operators A−1(z) and Â−1(z) are unbounded operators. It follows
that both problems (4.5) and (4.6), respectively, are ill-posed problems.
The ill-posedness becomes worse as z decreases.

(iv) Under the assumption k(d − z) < π both operators A(z) and Â(z) are
linear bounded self-adjoint operators with spectrum in [−k/ sin k(d− z), 0].
For k(d− z) ≥ π both operators A(z) and Â(z) are unbounded.

(iv) Note that in the case k(d− z) = π we have σ(Â(z)) = (−∞, 0], that in the
case π < k(d− z) < 3π

2
we have σ(Â(z)) = R \ (0, −k

sin k(d−z)) and that in the
case 3π

2
≤ k(d− z) <∞ we have σ(Â(z)) = R \ (0, k).

In our next proposition we look for a function ϕ such that Mp,E = Mϕ,E holds.
We proceed as in the proof of Proposition 3.1 and obtain
Proposition 4.4. For Problem P2 we have equality Mp,E = Mϕ,E with Mp,E

and Mϕ,E given by (4.1) and (3.3), respectively, if ϕ(λ) is given (in parameter
representation) by

λ(t) =
t2 − k2

sinh2
(
(d− z)

√
t2 − k2

)
ϕ(t) =

sinh2
(
(d− z)

√
t2 − k2

)
(1 + t2)p sinh2

(
d
√
t2 − k2

)


(0 ≤ t <∞). (4.7)

The function ϕ implicitly defined by (4.7) is an index function for small wave
numbers k satisfy k < π

d
. From (4.7) we have that in this case the function

%(λ) := λϕ−1(λ) is given (in parameter representation) by

λ(t) =
sinh2

(
(d− z)

√
t2 − k2

)
(1 + t2)p sinh2

(
d
√
t2 − k2

)
%(t) =

t2 − k2

(1 + t2)p sinh2
(
d
√
t2 − k2

)


(0 ≤ t <∞).

We use the decomposition idea of Subsection 3.4, apply our general Theorem 2.4
and obtain
Theorem 4.5. For Problem P2 the modulus of continuity and the best possible
modulus of conditional stability of the inverse operator A−1(z) on the set Mp,E are
given by

ω(δ, A(z),Mp,E) = βopt(δ) = E
sinh

(
(d− z)

√
t20 − k2

)
(1 + t20)

p/2 sinh
(
d
√
t20 − k2

) (4.8)
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where t0 is the solution of the equation
√
t2 − k2

(1 + t2)p/2 sinh
(
d
√
t2 − k2

) =
δ

E
.

For δ → 0 we have the asymptotic representation

ω(δ, A(z),Mp,E) = E1−z/d
(
δ

2

)z/d [
1

d
ln
E

δ

]−p(1−z/d)−z/d
(1 + o(1)) . (4.9)

Proof. For the small wave numbers k < π
d
we apply Theorem 2.4. By using the

decomposition idea of Subsection 3.4 it can be shown that the result of Theorem
4.5 is also valid in case of large wave numbers k ≥ π

d
. �

Remark 4.6. From (4.9) we conclude that for p > 0 the modulus of continuity im-
proves slightly by the logarithmic factor

[
1
d

ln E
δ

]−p(1−z/d)−z/d
. In addition, formula

(4.9) shows that for z = 0 and p > 0 we have logarithmic stability. Comparing
the asymptotic representations (4.4) for Problem P1 and (4.9) for Problem P2,
respectively, we realize that for z > 0 the modulus of continuity for Problem P2 is
better by the logarithmic factor

[
1
d

ln E
δ

]−z/d
.

4.3. Noisy Dirichlet and Neumann data. Connected with equation (1.3) we
consider

Problem P3 (Identification of u(r, z) from g(r) := u(r, d) and h(r) := uz(r, d)).
Given noisy data uδ(r, d) ∈ H for u(r, d) and uδz(r, d) ∈ H for uz(r, d) satisfying

‖u(·, d)− uδ(·, d)‖ ≤ δ1 and ‖uz(·, d)− uδz(·, d)‖ ≤ δ2,

find for some fixed z ∈ [0, d) the solution u(r, z) of problem (1.3).

The problem of identifying u(r, z) from (unperturbed) data u(r, d) and uz(r, d)
can be decomposed into two separate problems: P1 with zero Neumann data
and P2 with zero Dirichlet data. The corresponding solutions will be denoted by
u1(r, z) and u2(r, z), respectively.

Remark 4.7. If the exact data are such that solutions u1(r, z) and u2(r, z) exist,
then there exists a solution u(r, z) of Problem P3 which has the form u(r, z) =

u1(r, z) + u2(r, z), or equivalently, û(·, z) = Â−1(z)ĝ(·) + B̂−1(z)ĥ(·), where Â(z)

is the forward map of (3.1) and B̂(z) is the forward map of (4.6). Moreover, by
triangle inequality and the results of Theorems 4.2 and 4.5 we obtain for Problem
P3 that under the a priori assumption ‖u(·, 0)‖p ≤ E we have for all z ∈ [0, d] the
stability estimate

‖u(·, z)‖ ≤ βAopt(‖g‖) + βBopt(‖h‖)
with βAopt defined by (4.3) and βBopt defined by (4.8).

Assume now that for the exact data the Problem P3 has a solution. We can
decompose it into the sum of a solution v(r, z) of the boundary value problem
(1.3) with boundary conditions v(r, 0) = 0 and vz(r, d) = h(r), which will be
denoted by Problem P4, and the solution w(r, z) of Problem P1 with boundary
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data w(r, d) = g(r)− v(r, d). It can be proved (see [25, Lemma 2.1]) that for small
wave numbers k < π

2d
the Problem P4 is well posed. Thus, Problem P1 with data

g(r) − v(r, d) has a solution and u(r, z) = v(r, z) + w(r, z). Now, following the
proof of [25, Lemma 2.1] and Theorem 4.2, we obtain the following result:

Theorem 4.8. Let the wave number k satisfy k < π
2d
. Then a solution of Problem

P3 is the sum of a solution v(·, z) of a well posed boundary value problem with
inverse operator bounded by

C =
√
dmax

{
d,

1

k
tan(dk)

}
and the solution w(·, z) of Problem P1 with data g(·)− v(·, d). Under the a priori
assumption ‖w(·, 0)‖p ≤ E, the solution w(·, z) obeys for all z ∈ [0, d] the stability
estimate

‖w(·, z)‖ ≤ βopt(‖g(·)− v(·, d)‖)
with βopt defined by (4.3).

5. Regularization

In the foregoing sections we have clarified the question which best possible
error bound can be obtained for identifying x† ∈ X from noisy data yδ ∈ Y
under the assumptions ‖y − yδ‖ ≤ δ and x† ∈Mϕ,E given by (2.2). Now we will
look for special regularization methods that guarantee this accuracy. We will
distinguish our studies into regularization in case of known solution smoothness and
regularization in case of unknown solution smoothness. We start by introducing a
general regularization scheme.

5.1. A general regularization scheme. Let us consider a general regularization
scheme in which the regularized solutions with exact and noisy data y and yδ,
respectively, are defined by

xα = Ggα(T ∗T )T ∗y , xδα = Ggα(T ∗T )T ∗yδ with T = AG. (5.1)

Here G : X → X is some linear self-adjoint operator that controls the smoothness
to be introduced into the regularization and gα : (0, ‖T‖2]→ R is a piecewise con-
tinuous nonnegative function with the property that lim

α→0+
gα(λ) = 1/λ. Different

regularization methods are characterized by different operators G and functions gα
in (5.1). Let us discuss some methods that fit into the framework of the general
regularization scheme (5.1).

Example 5.1 (Ordinary Tikhonov regularization). This method is characterized
by (5.1) with gα(λ) = 1/(λ+ α). The regularized solution xδα can be obtained by
solving the minimization problem

min
x∈X

Jα(x) , Jα(x) = ‖Ax− yδ‖2 + α‖G−1x‖2,

that is, by solving the Euler equation (A∗A+ αG−2)xδα = A∗yδ.



CONDITIONAL STABILITY ESTIMATES AND REGULARIZATION 17

Example 5.2 (Tikhonov regularization of order m). These methods are character-
ized by (5.1) with gα(λ) =

(
1−

(
α

λ+α

)m)
/λ. The regularized solutions xδα := xδα,m

can be obtained by solving the m operator equations

(A∗A+ αG−2)xδα,k = A∗yδ + αG−2xδα,k−1 , k = 1, . . . ,m , xδ0 = 0.

For m = 1, this method coincides with the method of Example 5.1.

Example 5.3 (Asymptotical regularization). This method is characterized by
(5.1) with gα(λ) = (1− e−λ/α)/λ. In this method one solves the Cauchy problem

G−2u̇(t) + A∗Au(t) = A∗yδ , 0 < t ≤ τ , u(0) = 0

and the regularized solution is defined by xδα = u(τ). Here τ and α are related by
τ = 1/α. For G = I this method is known as Showalter’s method.

Example 5.4 (Explicit iteration scheme). As a special case of more general
explicit iteration methods, let us consider the Landweber iteration. This method
is characterized by (5.1) with gα(λ) =

(
1− (1− µλ)1/α

)
/λ with some constant

µ ∈ (0, 1/‖G2A∗A‖]. The regularized solution xδα := uδn can be obtained by
performing n iterations according to

uδk = uδk−1 −G2A∗(Auδk−1 − yδ) , k = 1, . . . , n

with uδ0 = 0. Here, n and α are related by α = 1/n.

Example 5.5 (Implicit iteration scheme). This method is characterized by (5.1)

with gα(λ) =
(

1−
(

µ
λ+µ

)1/α
)
/λ. The regularized solution xδα := uδn can be

obtained by by solving the n operator equations

(A∗A+ µG−2)uδk = A∗yδ + µG−2uδk−1 , k = 1, . . . , n

with uδ0 = 0. Here, n and α are related by α = 1/n. For µ = 1 and G = I we have
Lardy’s method.

Example 5.6 (Spectral method). This method (also called spectral cutt-off) is
characterized by (5.1) with

gα(λ) =

{
1/λ for λ ≥ α

0 for λ < α.

For problems with compact operators A and G, the numerical computation of xδα
can be done by

xδα =
∑

si≥
√
α

(yδ, vi)

si
ui

where {si, ui, vi}i∈N is the generalized singular system of the operator A satisfying
A∗Aui = λiG

−2ui, si =
√
λi and vi = 1

si
Aui. In fact, {si, ui, vi}i∈N is a singular

system of the compact operator T = AG.
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Example 5.7 (Modified spectral method). This method is characterized by

gα(λ) =

 1/λ for λ ≥ α

1/
√
αλ for λ < α.

Let T = AG be compact with singular system {si, ui, vi}i∈N. In this case the
regularized solution (5.1) is given by

xδα =
∑

si≥
√
α

(yδ, vi)

si
ui +

∑
si<
√
α

(yδ, vi)√
α

ui.

If one wants to apply a special regularization method, one has to make different
decisions: First, one has to choose the function gα, second one has to choose the
operator G and third one has to choose the regularization parameter α. For a
wrong choice of gα, G or α, one may get bad regularized solutions xδα. Results on
error bounds for ‖xδα − x†‖ may be helpful for a proper choice of gα, G and α. For
deriving order optimal error bounds for ‖xδα − x†‖ with xδα defined by (5.1) the
following error representations with T = AG will be useful:

xδα − xα = Ggα(T ∗T )T ∗(yδ − y),

x† − xα = G[I − gα(T ∗T )T ∗T ]G−1x†.

For an analysis of these two error parts under different assumptions we recommend
the papers [18, 19] and the references cited there.

Constructing regularized solutions for our problem (1.4) with noisy data uδ(r, d)
by the regularization methods of Examples 5.6 and 5.7 gives

uδα(r, z) = F−1(ûδα(ξ, z)) (5.2)
where the regularized solutions in the frequency domain are given as follows:

(i) For the spectral method of Example 5.6 we have

ûδα(ξ, z) =


(
1/
√
λ(|ξ|)

)
ûδ(ξ, d) for λ(|ξ|) ≥ α

0 for λ(|ξ|) < α
(5.3)

with λ(|ξ|) = 1/ cosh2
(
(d− z)

√
|ξ|2 − k2

)
. Note that for k(d − z) < π/2

the function |ξ| → λ(|ξ|) is monotonically decreasing for |ξ| ∈ (0,∞).
Moreover, for arbitrary k, the function λ(|ξ|) is monotonically decreasing
on the domain [k,∞).

(ii) For the modified spectral method of Example 5.7 we have

ûδα(ξ, z) =


(
1/
√
λ(|ξ|)

)
ûδ(ξ, d) for λ(|ξ|) ≥ α

(1/
√
α ) ûδ(ξ, d) for λ(|ξ|) < α.

(5.4)

We note that for computational purposes we have the following equivalent
representation uδα(r, z) = (1/

√
α ) uδ(r, d) + F−1(ŵδα(ξ, z)) with

ŵδα(ξ, z) =


(
1/
√
λ(|ξ|)− 1/

√
α
)
ûδ(ξ, d) for λ(|ξ|) ≥ α

0 for λ(|ξ|) < α.
(5.5)
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As we can see, in contrast to the regularization methods discussed in the above
Examples 5.1 – 5.5, the computation of both regularized solutions (5.3) and (5.5)
does not require the spectrum λ(|ξ|) of the operator Â(z) for λ(|ξ|) < α.

5.2. Optimal regularization. In this subsection we are interested in regulariza-
tion methods which are optimal on the set Mϕ,E defined by (2.2), that is, regular-
ization methods that guarantee optimal error bounds ‖xδα− x†‖ ≤ E

√
%−1(δ2/E2).

These regularization methods require the knowledge of the index function ϕ, the
constant E and the noise level δ. In case of source sets (2.2) with power type
index functions ϕ(λ) = λp, different optimal regularization methods have been
given in [32, 33]. For the more general case of index functions ϕ(λ) for which
%(t) := tϕ−1(t) is convex, three optimal regularization methods may be found in
[30]: the method of Tikhonov regularization of Example 5.1 with G2 = ϕ(A∗A), the
modified spectral method of Example 5.7 with G = I and some further modified
spectral method which is similar to that of Example 5.7. In all three methods
formulae for the regularization parameter α have been derived leading to optimal
error bounds. In our next theorem we consider the modified spectral method of
Example 5.7 with G = I, apply this method to Problem P1 of Section 1 and show
how to choose the regularization parameter such that this method is an optimal
regularization method. We provide a new proof which simplifies the general way
of proof given in [30] and allows (due to the decomposition idea of Subsection 3.4)
more general situations.

Theorem 5.8. Assume that the solution u(r, z) of the operator equation (1.4) obeys
the a priori bound ‖u(·, 0)‖ ≤ E. Let the data at z = d satisfy ‖u(·, d)−uδ(·, d)‖ ≤ δ
with δ ≤ E and let the regularized solution be defined by the modified spectral
method (5.2), (5.4). If α := α0 < 1 is chosen by (5.13), then we have the optimal
error bound

‖uδα(·, z)− u(·, z)‖ ≤ δ cosh

(
d− z
d

arcosh
E

δ

)
. (5.6)

Proof. Let uα(r, z) be the regularized solution (5.2), (5.4) with exact data û(ξ, d)
instead of noisy data ûδ(ξ, d). Then we obtain from (5.4)

ûδα(ξ, z)− ûα(ξ, z) =


(
1/
√
λ(|ξ|)

)
(ûδ(ξ, d)− û(ξ, d)) for λ(|ξ|) ≥ α

(1/
√
α ) (ûδ(ξ, d)− û(ξ, d)) for λ(|ξ|) < α.

(5.7)

From (5.7) and ‖ûδ(·, d)− û(·, d)‖ ≤ δ we have the estimate

‖ûδα(·, z)− ûα(·, z)‖ ≤ δ/
√
α . (5.8)

Due to (5.4), for the error part ûα(ξ, z)− û(ξ, z) there holds

ûα(ξ, z)− û(ξ, z) =

 0 for λ(|ξ|) ≥ α(
1/
√
α− 1/

√
λ(|ξ|)

)
û(ξ, d) for λ(|ξ|) < α.

Now we use the decomposing idea of Section 3.4. We have ûα = û1,α + û2,α where
û1,α, û2,α are the orthogonal projections of ûα onto H1 and H2, respectively, and

‖ûα(·, z)− û(·, z)‖2 = ‖û1,α(·, z)− û1(·, z)‖2 + ‖û2,α(·, z)− û2(·, z)‖2. (5.9)
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If ξ ∈ W then λ(ξ) = 1/ cos2
(
(d− z)

√
k2 − |ξ|2

)
≥ 1 and

‖û2,α(·, z)− û2(·, z)‖ = 0 for α < 1. (5.10)

On the other hand, for ξ ∈ I, the element û1(ξ, d) possesses the representation

û1(ξ, d) =
√
λ(|ξ|) û1(ξ, z) =

√
λ(|ξ|)

√
ϕ1(λ(|ξ|)) û1(ξ, 0)

with ϕ1 defined by (3.8). Hence, by (5.2) and ‖û1(·, 0)‖ ≤ E we have

‖û1,α(·, z)− û1(·, z)‖ ≤ E sup
0<λ<α

{(
1−
√
λ/
√
α
)√

ϕ1(λ)
}
. (5.11)

From (5.8), (5.9),(5.10) and (5.11), for α < 1 we obtain the estimate

‖ûδα(·, z)− û(·, z)‖ ≤ sup
0<λ<α

{
δ√
α

+ E

(
1−
√
λ√
α

)√
ϕ1(λ)

}
. (5.12)

The function f(α, λ) := δ√
α

+ E
(
1−

√
λ√
α

)√
ϕ1(λ) possesses one stationary point

(α0, λ0) which is given by the two equations

λ0ϕ1(λ0) =
δ2

E2
and

√
α0 =

ϕ1(λ0) + λ0ϕ
′
1(λ0)√

λ0 ϕ′1(λ0)
. (5.13)

For this regularization parameter α = α0 our estimate (5.12) provides

‖ûδα(·, z)− û(·, z)‖ ≤ sup
0<λ<α0

{
δ
√
α0

+ E

(
1−

√
λ

√
α0

)√
ϕ1(λ)

}
. (5.14)

For |ξ| > k the function ϕ1 is monotonically increasing and the resulting function
%(t) := tϕ−1

1 (t) is convex. Exploiting the convexity of % it can be shown that the
function f(α0, λ) attains its maximum at λ = λ0. Hence, from (5.14) there follows

‖ûδα(·, z)−û(·, z)‖ ≤ δ
√
α0

+E

(
1−
√
λ0√
α0

)√
ϕ1(λ0) = E

√
ϕ1(λ0) = E

√
%−1(δ2/E2).

Since %−1(λ) = λ cosh2
(
d−z
d

arcosh 1√
λ

)
, this estimate provides (5.6). �

Remark 5.9. The regularization parameter α0 defined by (5.13) can be given
explicitly. By elementary computations we find that

√
α0 =

δ d sinh
(
arcoshE

δ

)
δ cosh

(
d−z
d

arcoshE
δ

)
+ E(d− z) sinh

(
d−z
d

arcoshE
δ

) .
From this formula we obtain the asymptotic representation

√
α0 =

2d

d− z

(
δ

2E

)1−z/d

(1 + o(1)) for δ → 0.
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5.3. Order optimal regularization. A regularized solution xδα is called order
optimal on the set Mϕ,E if ‖xδα − x†‖ ≤ cE

√
%−1(δ2/E2) with some c ≥ 1. We

follow the paper [25] and define a regularized solution for problem (1.4) with noisy
data uδ(r, d) by the spectral method (5.2), (5.3).

Theorem 5.10. Let the solution u(r, z) of the operator equation (1.4) obey the a
priori bound ‖u(·, 0)‖ ≤ E, let the data at z = d satisfy ‖u(·, d)−uδ(·, d)‖ ≤ δ with
δ ≤ E and let the regularized solution uδα(r, z) be defined by the spectral method
(5.2), (5.3). Let ϕ1 be defined by (3.8) and let α be chosen as the unique solution
of the equation

αϕ1(α) = δ2/E2. (5.15)
Then the regularized solution obeys the order optimal error bound

‖uδα(·, z)− u(·, z)‖ ≤ 2δ cosh

(
d− z
d

arcosh
E

δ

)
. (5.16)

Proof. Let uα(r, z) be the regularized solution (5.2), (5.3) with the exact data
û(ξ, d) instead of noisy data ûδ(ξ, d). Then we obtain from (5.3)

ûδα(ξ, z)−ûα(ξ, z) =


(
1/
√
λ(|ξ|)

)
(ûδ(ξ, d)− û(ξ, d)) for λ(|ξ|) ≥ α

0 for λ(|ξ|) < α.
(5.17)

From (5.17) and ‖ûδ(·, d)− û(·, d)‖ ≤ δ we have the estimate

‖ûδα(·, z)− ûα(·, z)‖ ≤ δ/
√
α . (5.18)

Due to (5.3), for the error part û(ξ, z)− ûα(ξ, z) there holds

û(ξ, z)− ûα(ξ, z) =

 0 for λ(|ξ|) ≥ α(
1/
√
λ(|ξ|)

)
û(ξ, d) for λ(|ξ|) < α.

(5.19)

Now we use the decomposing idea of Section 3.4. We have ûα = û1,α + û2,α where
û1,α, û2,α are the orthogonal projections of ûα onto H1 and H2, respectively, and

‖ûα(·, z)− û(·, z)‖2 = ‖û1,α(·, z)− û1(·, z)‖2 + ‖û2,α(·, z)− û2(·, z)‖2.

If ξ ∈ W , then λ(ξ) = 1/ cos2
(
(d− z)

√
k2 − |ξ|2

)
≥ 1. Thus,

‖û2,α(·, z)− û2(·, z)‖ = 0 for α < 1. (5.20)

On the other hand, for ξ ∈ I, the element û1(ξ, d) possesses the representation

û1(ξ, d) =
√
λ(|ξ|) û1(ξ, z) =

√
λ(|ξ|)

√
ϕ1(λ(|ξ|)) û1(ξ, 0)

with ϕ1 defined by (3.8). Hence, by (5.19), ‖û1(·, 0)‖ ≤ E and the monotonicity
of ϕ1 which is guaranteed for |ξ| ≥ k we have

‖û1,α(·, z)− û1(·, z)‖ ≤ E sup
0<λ<α

√
ϕ1(λ) ≤ E

√
ϕ1(α). (5.21)

From (5.18), (5.20) and (5.21) we obtain for α < 1 the estimate

‖ûδα(·, z)− û(·, z)‖ ≤ δ√
α

+ E
√
ϕ1(α) . (5.22)
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For α chosen as the unique solution of the equation (5.15) we have δ√
α

= E
√
ϕ1(α).

Moreover, since δ2

E2 = αϕ1(α) = ϕ1(α)ϕ−1
1 (ϕ1(α)), for % defined by %(t) = tϕ−1

1 (t)

we have %(ϕ1(α)) = δ2

E2 and

ϕ1(α) = %−1(δ2/E2). (5.23)

Taking into account the explicite form %−1(λ) = λ cosh2
(
d−z
d

arcosh 1√
λ

)
we get

(5.16) from (5.22) and (5.23). �

Remark 5.11. The parameter α defined by (5.15) possesses the explicit form

α = 1/ cosh2

(
d− z
d

arcosh
E

δ

)
. (5.24)

For this regularization parameter the regularized solution (5.3) attains the form

ûδβ(ξ, z) =

 cosh
(
(d− z)

√
|ξ|2 − k2

)
ûδ(ξ, d) for |ξ|2 ≤ β

0 for |ξ|2 > β

with β given by β = k2 +
(

1
d
arcoshE

δ

)2
. The regularized solution in [25] has the

same form, but with some other β given by β = k2 +
(

1
d

ln 2E
δ

)2
. However note

that both β-values are asymptotically equal.

6. Discrepancy principle

The use of formula (5.24) for choosing the regularization parameter in the
spectral method (5.2), (5.3) requires to know the smoothness of the unknown
solution. Generally, both E and the index function ϕ of the source set Mϕ,E

defined by (2.2) are unknown. In this case a posteriori rules for choosing the
regularization parameter have to be used. One of the most applied a posteriori
rules for choosing α is the discrepancy principle. Under general source conditions,
this principle has well been studied in [16, 20].

6.1. Discrepancy principle for spectral methods. Let us consider the spec-
tral methods of Examples 5.6 and 5.7 with G = I. In the discrepancy principle
the regularization parameter α is chosen such that the discrepancy

d(α) := ‖Axδα − yδ‖ (6.1)

has the order of the noise level δ. The function d defined by (6.1) possesses the
following properties:

(1) d obeys the relations d(0) = 0 and lim
α→∞

d(α) = ‖yδ‖.
(2) d(α) is monotonically increasing.
From these properties we conclude that the equation d(α) = Cδ has a unique

solution provided d is continuous and Cδ < ‖yδ‖. We assume throughout this
section that the noise level δ is sufficiently small such that Cδ < ‖yδ‖ is guaranteed.
Then, in the case of continuous functions d defined by (6.1), the discrepancy
principle for choosing α can be applied as follows:
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Rule R1 (Discrepancy principle for continuous functions d(α)). For given constant
C ≥ 1, choose α = αD as the unique solution of the nonlinear equation

d(α) := ‖Axδα − yδ‖ = Cδ. (6.2)

For the spectral method of Example 5.6 the function gα(λ) is discontinuous with
respect to α. As a consequence, d(α) is discontinuous in case of compact operators
A with singular system {si, ui, vi}i∈N. In this case we consider the regularized
solution

xδn =
n∑
i=1

(yδ, vi)

si
ui (6.3)

and modify the discrepancy principle has as follows:
Rule R2 (Discrepancy principle for method (6.3)). For given constant C ≥ 1,
choose n = nD as the first integer for which

‖Axδn − yδ‖ ≤ Cδ < ‖Axδk − yδ‖ for 0 ≤ k < n.

Theorem 6.1. Assume that the solution x† of the equation (1.1) obeys x† ∈Mϕ,E

where Mϕ,E is defined by (2.2). Let %(t) := tϕ−1(t) be convex, let the data yδ ∈ Y
satisfy (1.2) and let xδα be defined by the spectral method of Example 5.6. Then,
for α chosen by rule R1 or rule R2 with C > 1,

‖xδα − x†‖ ≤ (C + 1)E

√√√√%−1

(
δ2

E2

)
+

E

C − 1

√√√√%−1

(
(C − 1)2δ2

E2

)
. (6.4)

Proof. We prove the theorem for rule R1. Let xα = gα(A∗A)A∗y be the regularized
solution of Example 5.6 with exact data and let α = αD the regularization
parameter chosen by rule R1. Then, from [20, Proposition 4.1] we have

‖xα − x†‖ ≤ (C + 1)E
√
%−1(δ2/E2). (6.5)

We introduce the residual function rα(λ) := 1− λgα(λ) and obtain from (6.2) and
the smoothness assumption x† ∈Mϕ,E that

Cδ ≤ ‖rα(AA∗)(y − yδ)‖+ ‖rα(AA∗)y‖ ≤ δ + E
∥∥∥∥rα(A∗A)

√
A∗Aϕ(A∗A)

∥∥∥∥ .
From this estimate we have (C − 1)δ ≤ E

√
αϕ(α), or equivalently,

δ√
α
≤ E

C − 1

√√√√%−1

(
(C − 1)2δ2

E2

)
. (6.6)

From (6.5), the estimate ‖xδα − xα‖ ≤ δ/
√
α and (6.6) we obtain (6.4). The proof

of the theorem for rule R2 in case of compact operators A is similar. �

Remark 6.2. We note that (6.4) can further be estimated by

‖xδα − x†‖ ≤ κE
√
%−1(δ2/E2) with κ = C + 1 +

max{1, C − 1}
C − 1

from which we see the order optimality of the discrepancy principle. For C = 2 we
have κ = 4.
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Some sharper estimate can be obtained for the modified spectral method of
Example 5.7. This estimate even holds true for C = 1. For the modified spectral
method of Example 5.7 we have

Theorem 6.3. Assume that the solution x† of the equation (1.1) obeys x† ∈Mϕ,E

where Mϕ,E is defined by (2.2). Let %(t) := tϕ−1(t) be convex, let the data yδ ∈ Y
satisfy (1.2) and let xδα be defined by the spectral method of Example 5.7. Then,
for α chosen by rule R1 with C ≥ 1,

‖xδα − x†‖ ≤ (C + 2)E
√
%−1 (δ2/E2).

Proof. The proof follows from [20, Theorem 4.3]. �

6.2. Application to problem P1. In this subsection we apply the results of
the foregoing subsection to the Cauchy problem for the Helmholtz equation and
discuss in addition computational aspects for the realization of the discrepancy
principle. Applying Theorems 6.1 and 6.3 yields

Corollary 6.4. Let k < π
2d

and assume that the solution u(r, z) of the operator
equation (1.4) obeys the a priori bound ‖u(·, 0)‖ ≤ E. Let the data at z = d satisfy
‖u(·, d)−uδ(·, d)‖ ≤ δ with δ ≤ E and let uδα(r, z) be defined by the spectral method
(5.2), (5.3). Then, for α chosen by rule R1 with C > 1,

‖uδα(·, z)− u(·, z)‖ ≤ κ δ cosh

(
d− z
d

arcosh
E

δ

)

with κ = C + 1 +
max{1, C − 1}

C − 1
.

Corollary 6.5. Let k < π
2d

and assume that the solution u(r, z) of the operator
equation (1.4) obeys the a priori bound ‖u(·, 0)‖ ≤ E. Let the data at z = d satisfy
‖u(·, d) − uδ(·, d)‖ ≤ δ with δ ≤ E and let uδα(r, z) be defined by the modified
spectral method (5.2), (5.4). Then, for α chosen by rule R1 with C = 1,

‖uδα(·, z)− u(·, z)‖ ≤ 3δ cosh

(
d− z
d

arcosh
E

δ

)
.

Now let us discuss computational aspects of solving the nonlinear equation
‖Axδα − yδ‖ = Cδ for the Cauchy problem for the Helmholtz equation. In our
studies we will treat the spectral method of Example 5.6. For this regularization
method equation (6.2) attains the form

f(α) :=
∫
λ(|ξ|)<α

[
ûδ(ξ, d)

]2
dξ − C2δ2 = 0

with λ(|ξ|) = 1/ cosh2
(
(d− z)

√
|ξ|2 − k2

)
. Clearly, this equation is equivalent to

f(α) := ‖uδ(·, d)‖2 −
∫
λ(|ξ|)≥α

[
ûδ(ξ, d)

]2
dξ − C2δ2 = 0.

We introduce β = k2 +
(

1
d−z arcosh

1√
α

)2
and obtain the equivalent equation

f(β) := ‖uδ(·, d)‖2 −
∫
|ξ|2≤β

[
ûδ(ξ, d)

]2
dξ − C2δ2 = 0. (6.7)
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The function f defined by (6.7) possesses the following properties:
(1) f obeys the relations f(0) = ‖uδ(·, d)‖2 − C2δ2 and lim

β→∞
f(β) = −C2δ2.

(2) Let uδ(ξ, d) be bounded, then f is continuous.
From these properties we conclude that equation (6.7) has a unique solution
β = βD provided Cδ < ‖uδ(·, d)‖. The regularized solution defined by (5.2), (5.3)
with α chosen by rule R1, or equivalently, β chosen by (6.7), can therefore be
computed by following steps:

(i) For given data uδ(r, d), compute ‖uδ(·, d)‖2 and ûδ(ξ, d) = F(uδ(r, d)).
(ii) For given C > 1, solve the equation (6.7) to obtain β = βD.
(iii) Compute ûδβ(ξ, z) according to

ûδβ(ξ, z) =


cosh

(
(d− z)

√
|ξ|2 − k2

)
ûδ(ξ, d) for |ξ|2 ≤ β

0 for |ξ|2 > β.

(iv) Perform back-transformation to obtain uδβ(r, z) = F−1
(
ûδβ(ξ, z)

)
.

Remark 6.6. We observe one important property of the steps (i) – (iv) for computing
the regularized solution uδβ(r, z). Namely, the solution β = βD of equation (6.7)
does not depend on z. As a consequence, if one is interested in the regularized
solutions uδβ(r, z) for all z ∈ [0, d), one has to compute the regularization parameter
β = βD from steps (i) and (ii) only once.

Acknowledgement. This joint work has been started during a stay of the second
author at the Institute of Mathematics of the Polish Academy of Sciences, Warsaw,
Poland, in July 2008. Thanks are due to Professor Teresa Regińska for the kind
invitation and for the hospitality during the visit.

References

1. D. D. Ang, R. Gorenflo, V. K. Le, and D. D. Trong, Moment Theory and some Inverse
Problems in Potential Theory and Heat Conduction, Lect. Notes Math. 1792, Springer, Berlin,
2002.

2. W. Arendt and T. Regińska, An ill-posed boundary value problem for the Helmholtz equation
on Lipschitz domain, J. Inv. Ill-Posed Problems (2009).

3. J. V. Beck, B. Blackwell, and R. C. St. Clair, Inverse Heat Conduction: Ill-Posed Problems,
Wiley-Interscience, New York, 1985.

4. M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging, IOP Publishing,
Bristol, 1998.

5. H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Kluwer,
Dordrecht, 1996.

6. Chu-Li Fu, Hong-Fang Li, Xiang-Tuan Xiong, and Peng Fu, Optimal Tikhonov approximation
for a sideways parabolic equation, Int. J. Math. Math. Sci. 8 (2005), 1221–1237.

7. M. Hanke and O. Scherzer, Inverse problems light: numerical differentiation, Amer. Math.
Monthly 108 (2001), 512–521.

8. D. N. Hao, Methods for Inverse Heat Conduction Problems, Lang, Frankfurt am Main, 1998.
9. M. Hegland, Variable Hilbert scales and their interpolation inequalities with application to

Tikhonov regularization, Appl. Anal. 59 (1995), 207–223.
10. B. Hofmann, P. Mathé, and M. Schieck, Modulus of continuity for conditionally stable

ill-posed problems in Hilbert space, J. Inv. Ill-Posed Problems 16 (2008), 567–585.



26 TERESA REGIŃSKA AND ULRICH TAUTENHAHN

11. V. K. Ivanov, V. V. Vasin, and V. P. Tanana, The Theory of Linear Ill-Posed Problems and
Its Applications, Nauka, Moscow, 1978, In Russian.

12. S. I. Kabanikhin and M. Schieck, Impact of conditional stability: Convergence rates for
general linear regularization methods, J. Inv. Ill-Posed Problems 16 (2008), 267–282.

13. A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Springer, New
York, 1996.

14. S. Krein and Y. I. Petunin, Scales of Banach spaces, Russian Math. Surveys 21 (1966),
85–159.

15. S. Lu and S. V. Pereverzev, Numerical differentiation from a viewpoint of regularization
theory, Math. Comp. 75 (2006), 1853–1870.

16. P. Mathé, What do we learn from the discrepancy principle?, Z. Anal. Anw. 25 (2006),
411–420.

17. P. Mathé and S. V. Pereverzev, Geometry of linear ill-posed problems in variable Hilbert
scales, Inverse Problems 19 (2003), 789–803.

18. P. Mathé and U. Tautenhahn, Interpolation in variable Hilbert scales with application to
inverse problems, Inverse Problems 22 (2006), 2271–2297.

19. M. T. Nair, S. V. Pereverzev, and U. Tautenhahn, Regularization in Hilbert scales under
general smoothing conditions, Inverse Problems 21 (2005), 1851–1869.

20. M. T. Nair, E. Schock, and U. Tautenhahn, Morozov’s discrpancy principle under general
source conditions, Z. Anal. Anw. 22 (2003), 199–214.

21. M. T. Nair and U. Tautenhahn, Lavrentiev regularization for linear ill-posed problems under
general source conditions, Z. Anal. Anw. 23 (2004), 167–185.

22. F. Natterer, The Mathematics of Computerized Tomography, Wiley, New York, 1986.
23. L. E. Payne, Improperly Posed Problems in Partial Differential Equations, SIAM, Philadelphia,

1975.
24. T. Regińska and K. Regiński, A Cauchy problem for the Helmholtz equation: application to

analysis of light propagation in solids, Tech. Report 06-04, Univ. Kiel, 2006.
25. , Approximate solution of a Cauchy problem for the Helmholtz equation, Inverse

Problems 22 (2006), 975–989.
26. T. Regińska and A. Wakulicz, Wavelet moment method for the Cauchy problem for the

Helmholtz equation, J. Comput. Appl. Math. 223 (2009), 218–229.
27. T. Schröter and U. Tautenhahn, On optimal regularization methods for the backward heat

equation, Z. Anal. Anw. 15 (1996), 475–493.
28. U. Tautenhahn, Optimal stable solution of Cauchy problems for elliptic equations, Z. Anal.

Anw. 4 (1996), 961–984.
29. , Optimal stable approximations for the sideways heat equation, J. Inv. Ill-Posed

Problems 5 (1997), 287–307.
30. , Optimality for linear ill-posed problems under general source conditions, Num. Funct.

Anal. and Optimiz. 19 (1998), 377–398.
31. U. Tautenhahn and R. Gorenflo, On optimal regularization methods for fractional differenti-

ation, Z. Anal. Anw. 18 (1999), 449–467.
32. G. M. Vainikko, On the optimality of methods for ill-posed problems, Z. Anal. Anw. 6 (1987),

351–362.
33. G. M. Vainikko and A. Y. Veretennikov, Iteration Procedures in Ill-Posed Problems, Nauka,

Moscow, 1986, In Russian.
34. Xiang-Tuan Xiong and Chu-Li Fu, Two approximate methods of a Cauchy problem for the

Helmholtz equation, Comput. Appl. Math. 26 (2007), 285–307.



CONDITIONAL STABILITY ESTIMATES AND REGULARIZATION 27

Teresa Regińska, Institute of Mathematics, Polish Academy of Sciences, Śni-
adeckich 8, 00-956 Warsaw, Poland

E-mail address: reginska@impan.gov.pl

Ulrich Tautenhahn, Department of Mathematics, University of Applied Sciences
Zittau/Görlitz, P.O.Box 1454, 02754 Zittau, Germany

E-mail address: u.tautenhahn@hs-zigr.de


