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Secret Sharing Matrices

StanisÃlaw Spież∗ Marian Srebrny† Jerzy Urbanowicz‡

Abstract

We consider a secret sharing scheme given in terms of the secret
sharing matrices which are introduced and investigated in this paper.
The secret sharing matrices enable secret sharing with several secrets.
The participants can use the same shares to recover more than one
secret. We show that the secret sharing matrices provide a practical
secret sharing scheme not necessarily determined by polynomial in-
terpolation. Using Gaussian elimination we give some algorithms for
constructing and extending all such matrices. The obtained scheme
generalizes the original Shamir’s scheme and its generalization due to
Lai and Ding [5]. We also answer some of the questions of [5].

Key words. Secret sharing, key management, multiparty computa-
tion, threshold cryptography, polynomial interpolation, finite fields,
generalized Vandermonde determinants, elementary symmetric poly-
nomials, Gaussian elimination.

1 Introduction

Secret sharing, introduced by Shamir [11] and Blakley [2] independently in
1979, refers to methods for distributing a secret amongst a group of partici-
pants, each of which is allocated a share of the secret. In a k-out-of-n scheme
a dealer (or admin) gives some secret data (typically a cryptographic secret
key) D to n players by dividing it into n shadow shares D0, D1, . . . , Dn−1

and distributing one of them to each of the players in such a way that any
group of k (threshold) or more players can collectively efficiently reconstruct
the secret but no coalition of less than k players can get any information on
D at all.
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Let p be a large prime number and let k ≤ n < p. The original
secret sharing scheme introduced by Shamir [11] is based on the polyno-
mial interpolation theorem in the field Fp. Here we consider some secret
sharing schemes based on an arbitrary finite field F. One can think of
Shamir’s secret sharing scheme as determined by the standard polynomial
basis Bpoly = {1, t, t2, . . . , tk−1} in the linear subspace of polynomials of de-
gree < k in the vector space F[t] over F and a set of n points in F2.

The admin of the system chooses a (pseudo)random sequence of coeffi-
cients a1, . . . , ak−1 ∈ F which (with given a0 = D) can be identified with the
polynomial q(t) = a0 +a1t+a2t

2 + · · ·+ak−1t
k−1 (a linear combination of the

elements of Bpoly). Next he computes and distributes as the shares n points
D0 = (t0, y0), D1 = (t1, y1), . . . , Dn−1 = (tn−1, yn−1) of the graph of q with
non-zero pairwise different t0, t1, . . . , tn−1 ∈ F applying the matrix equation




t00 t10 . . . tk−1
0

t01 t11 . . . tk−1
1

...
...

. . .
...

t0n−1 t1n−1 . . . tk−1
n−1







a0

a1
...

ak−1


 =




y0

y1

...

yn−1




.

In the original Shamir secret sharing scheme F = Fp and the ti’s are integers
such that 0 < t0 < t1 < · · · < tn−1 < p. Let t = (t0, t1, . . . , tn−1) be
an n-tuple over F. The matrix Apoly(t) =

(
tji

)
0≤i≤n−1, 0≤j≤k−1

is uniquely

determined by the standard polynomial basis Bpoly and the tuple t.
The shares in Shamir’s secret sharing scheme can be also identified with

the pairs D0 = (r0, y0), D1 = (r1, y1), . . . , Dn−1 = (rn−1, yn−1), where ri =
(t0i , t

1
i , . . . , t

n−1
i ) for 0 ≤ i ≤ n− 1) is the i-th row of Apoly(t). In this paper

we generalize Shamir’s scheme in such a way that the admin distributes as
the shares the pairs (ri, yi), where ri ∈ Fk is the i-th row of a secret sharing
matrix A = (r0, r1, . . . , rn−1)

T introduced in the paper and yi = ri · a for
0 ≤ i ≤ n− 1.

By definition a secret sharing matrix is said to be at level i if one can
use it to construct a secret sharing scheme with the secret placed as the i-th
coefficient of the vector a = (a0, a1, . . . , ak−1) (Definition 1). If such a matrix
allows placement of the secret as an arbitrary ai (0 ≤ i ≤ k − 1), then we
call it an all-level secret sharing matrix (Definition 2).

We show that if card(F) is sufficiently large the entries of a secret shar-
ing matrix A can be chosen at random. On the other hand, we give fast
deterministic algorithms for constructing such matrices based on Gaussian
elimination. The shares can be also identified, as in Blakley’s scheme [2],
with some (k − 1)-dimensional hyperplanes Hi = {a ∈ Fk : ri · a = yi}
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(0 ≤ i ≤ n− 1) in Fk. Since every k of the hyperplanes intersect at a specific
point, the secret may be encoded as any single coordinate of the point of
intersection. However, as one of the results of this paper, some of the coordi-
nates may not be secure enough since in some cases less than k shares could
be enough to reconstruct the secret.

Shamir’s secret sharing matrix Apoly(t) for t = (t0, t1, . . . , tn−1) ∈ Fn is
an example of a more general secret sharing matrix – the Shamir type secret
sharing matrix AB(t) (Definition 4). This matrix is related to a basis B ={
v0(t), v1(t), . . . , vk−1(t)

}
in the linear subspace of polynomials of degree < k

in the vector space F[t] over F. We have AB(t) = (r0(t), r1(t), . . . , rn−1(t))
T ,

where ri(t) = (v0(ti), v1(ti), . . . , vn−1(ti)). Another example of the Shamir
type secret sharing matrix is the matrix Abinom(t) =

((
ti
j

))
0≤i≤n−1, 0≤k≤k−1

,

corresponding to the binomial basis Bbinom =
{(

t
0

)
,
(

t
1

)
, . . . ,

(
t

k−1

)}
.

Generally, we have AB(t) = Apoly(t)M with some k × k non-singular
matrix M over F (which is the change-of-basis matrix of the bases B and
Bpoly). For example, the change-of-basis matrices of the bases Bpoly and
Bbinom consist of the Stirling numbers of the first or second kind. For more
details see [10].

We also consider some secret sharing schemes related to the bases B of
a k-dimensional vector subspace of polynomials of degree < K (with some
K ≥ k) in the vector space F[t] over F. Throughout the paper we denote this
subspace by F[t]<K . An example of such a basis is Bc =

{
tc0 , tc1 , . . . , tck−1

}
,

where c = (c0, c1, . . . , ck−1) is an increasing sequence of non-negative integers
with K = ck−1 + 1. The secret sharing schemes corresponding to the bases
Bc with some special c were considered by Lai and Ding [5] who generalized
Shamir’s scheme using a more general polynomial q(t) = a0t

c0 +a1t
c1 + · · · +

ak−1t
ck−1 , for some special c.

In the sequel we write en for the standard n-th tuple (0, 1, . . . , n − 1).
Every coalition of k participants with the shares Dρ0 = (tρ0 , yρ0), Dρ1 =
(tρ1 , yρ1), . . . , Dρk−1

= (tρk−1
, yρk−1

) for a subsequence ρ = (ρ0, ρ1, . . . , ρk−1)
of en, can recover the secret because the determinant of the k× k submatrix
of the matrix Apoly(t) consisting of the rows rρ0(t), rρ1(t), . . . , rρk−1

(t) is the
classical Vandermonde determinant

∏
0≤j<i≤k−1

(
tρi
− tρj

)
, which is 6= 0 in

F whenever tρi
6= tρj

. This means that the k × k submatrix of Apoly(t) is
non-singular and the matrix equation




t0ρ0
t1ρ0

. . . tk−1
ρ0

t0ρ1
t1ρ1

. . . tk−1
ρ1

...
...

. . .
...

t0ρk−1
t1ρk−1

. . . tk−1
ρk−1







a0

a1

...

ak−1


 =




yρ0

yρ1

...

yρk−1



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has the unique solution a = (a0, a1, . . . , ak−1) ∈ Fk.
Since the secret is placed as D = a0 and tρi

6= 0, for all 0 ≤ i ≤ k − 1,
to recover the secret by the polynomial interpolation formula we have to use
all the shares yρi

(0 ≤ i ≤ k− 1). This means that all the yρi
(0 ≤ i ≤ k− 1)

play essential role in recovering the secret and no coalition of less than k
shareholders can recover it.

In the paper we study the above matrix equations for an arbitrary n× k
secret sharing matrix A = (r0, r1, . . . , rn−1)

T over F with the secret placed
as D = ai for a fixed 0 ≤ i ≤ k − 1, both in a general case and in the case
when A = AB(t) (in particular if A = Apoly(t)) (Theorems 1 and 2).

Our approach was inspired by Blakley [2] and Shamir [11], and by a short
note in Koblitz [4], Chapter I, §5, p. 10. As for the other related work, in
secret sharing the Chinese Remainder Theorem can also be used, as proposed
by Asmuth and Bloom [1] and Mignotte [6]. In [1] the shares are generated by
reduction of D modulo some n coprime positive integers m0, m1, . . . ,mn−1

such that D <
∏k−1

i=0 mρi
, for all subsequences (ρ0, ρ1, . . . , ρk−1) of the se-

quence (0, 1, . . . , n − 1). The secret is recovered by solving the system of
k or more congruences using the Chinese Remainder Theorem in Z which
provides a method to uniquely determine D modulo

∏k−1
i=0 mρi

.
Asmuth-Bloom’s arithmetical scheme and Shamir’s polynomial scheme

are special cases of a more general secret sharing scheme based on the Chinese
Remainder Theorem in a ring A. See [7]. In the scheme of [1] A = Z. In
the scheme of [11] A = Fp[t]. Then the Chinese Remainder Theorem is the
Lagrange Interpolation Theorem on polynomials.

The paper is organized as follows. In section 2 we set up notation and
terminology, and introduce the concept of secret sharing matrices which allow
to extend Shamir’s secret sharing scheme. In this section we also prove a
natural intrinsic characterization of secret sharing matrices (Theorem 1). We
pursue secret sharing matrices giving secret sharing schemes with the secret
placed as the coefficient ai for a fixed i, or for an arbitrary i (0 ≤ i ≤ k− 1).
This enables a new feature of secret sharing that an authorized coalition can
reconstruct not only one but up to k many different secrets, using the same
shares.

In section 3 we consider Lai and Ding’s generalization of Shamir’s scheme.
Answering their question, we use Theorem 1 to give necessary and sufficient
conditions for placing the secret as any of the coefficients ai for a fixed i, or
for an arbitrary i (Theorem 2 with corollaries). That was an open problem
of Lai and Ding [5]. To solve this problem we use some techniques concern-
ing the generalized Vandermonde determinants and elementary symmetric
polynomials.

In section 4 we give two algorithms for constructing or extending secret
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sharing matrices at level i with a fixed 0 ≤ i ≤ k−1 or all-level secret sharing
matrices (Algorithms 4.1.1 and 4.2.1, respectively). In the algorithms we ap-
ply Gaussian elimination. All the secret sharing matrices can be constructed
in this way.

In section 5 we show that not every secret sharing matrix corresponds to
a basis of the vector space of polynomials of degree less than the threshold k.
Thus the secret sharing matrices give some essentially new practical secret
sharing schemes (Theorem 3). Making use of Theorem 1 and Lemma 2 we
give examples of all-level secret sharing matrices of size n× k which are not
of the Shamir type: with n = 3, k = 2, char(F) > 3 and the rows r0 =
(1, 1), r1 = (1, 2), r2 = (2, 3), or with n = 5, k = 3, char(F) > 31 and the
rows r0 = (1, 1, 1), r1 = (1, 2, 4), r2 = (1, 3, 9), r3 = (1, 4, 16), r4 = (2, 3, 1).
Both the matrices are all-level secret sharing matrices (Theorem 1) and are
not of the Shamir type (Lemma 2).

2 Secret sharing matrices

2.1 Terminology and notation

We follow the standard terminology and notation of [8]. Throughout the
paper, let F be a (finite) field. Let n and k be natural numbers such that
k ≤ n < card(F). As described in the Introduction above the original secret
sharing scheme of Shamir [11] can be viewed as given by a system of linear
equations

AaT = yT (1)

with A = Apoly(t), a = (a0, a1, . . . , ak−1), y = (y0, y1, . . . , yn−1).
We use the row notation for the vectors. For a vector c = (c0, c1, . . . , ck−1)

the column vector cT denotes its transpose. We adhere to the convention that
the indexing of rows and columns in the matrices starts with zero. We also
apply this convention to the vectors.

Let A be an n × k matrix over F and let m ∈ N (m ≤ n), s ∈ N
(s ≤ k). Given subsequences ρ = (ρ0, ρ1, . . . , ρm−1) and γ = (γ0, γ1, . . . , γs−1)
of the sequences en and ek respectively, we denote by A(ρ, γ) the matrix
of size m × s obtained from A by removing all its r-th rows for r 6= ρi,
0 ≤ i ≤ m − 1 and all its l-th columns for l 6= γj, 0 ≤ j ≤ s − 1. In this
notation, we have A(en, ek) = A, and as usual A(i, j) = aij if A = (aij).
Applying the notation to the vector y = (y0, y1, . . . , yn−1) ∈ Fn, we write
y(ρ) = (yρ0 , yρ1 , . . . , yρm−1).

Given a sequence u = (u0, u1, . . . , us−1) and 0 ≤ i ≤ s − 1, denote by ûi

the sequence obtained from u by deleting the term ui. In particular by ês,i
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we denote the subsequence of the sequence es with the term i deleted, and by
A(en, êk,i) the matrix obtained from matrix A by deleting its i-th column.

Note that the submatrices of size k × k of the matrix A = Apoly(t) have
the form A(ρ, ek) = (tjρi

)0≤i,j≤k−1, where ρ = (ρ0, ρ1, . . . , ρk−1) is a subse-
quence of the sequence en. Then det(A(ρ, ek)) is the classical Vandermonde
determinant. As in the Introduction above the submatrices are non-singular
and form some consistent systems of linear equations

A(ρ, ek)a
T = (y(ρ))T , (2)

with the unique solution a = (a0, a1, . . . , ak−1) ∈ Fk.
Applying the classical Cramer and Laplace theorems to equation (2) gives

ai =
1

det(A(ρ, ek))

k−1∑
j=0

(−1)i+j det(A(ρ̂j, êk,i))yρj
. (3)

In fact formulas (3) boil down to the interpolating formulas. When the deter-
minants of A(ρ̂j, êk,i) are 6= 0 for all 0 ≤ j ≤ k − 1, each participant’s share
(tρj

, yρj
) is clearly there and we can place the secret as the i-th coefficient ai.

This gives a characterization of such matrices.

2.2 Basic definitions

In Shamir’s scheme any coalition of k or more shareholders can easily recover
the secret D, but no k−1 or less shareholders can. The scheme is perfect and
ideal; that is, knowing k − 1 or fewer shares all values of the secret remain
equally probable and the size of the shares is equal to the size of the secret.
It is also extendable for new users. See [8], pp. 524–526.

The above properties of Shamir’s scheme follow from the appropriate
properties of the matrix Apoly(t). In this section we introduce some more
general matrices which can be used to define a sharing scheme with the secret
placed as D = ai for any 0 ≤ i ≤ k − 1 and with the same basic properties
as the matrix Apoly(t).

Given 0 ≤ i ≤ k − 1, we say that for a given A and y the equation
AxT = yT has solutions with the i-th component as a free variable if for
any g ∈ F there exists a solution x = (x0, x1, . . . , xk−1) with xi = g. If the
equation is consistent and the i-th components of any two of its solutions
coincide then we say that it has a unique solution in the i-th component.

First we prove a theorem which will allow us to define the secret sharing
matrices. The theorem is a consequence of the following two elementary facts
from linear algebra.
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Proposition. Let F be a field and let y ∈ Fm. Set m,m′ ∈ N, m < m′.
Assume that all matrices in the proposition are defined over the field F. Then,
we have

(i) for an m×m matrix B, the equation BxT = yT has a unique solution
in x if and only if B is non-singular;

(ii) for an m×m′ matrix B with rank m and 0 ≤ i ≤ m′− 1, the equation
BxT = yT has solutions with the i-th component as a free variable if
and only if rank(B(em, êm′,i)) = rank(B).

Theorem 1. Let A be a matrix over F of size n × k, 2 ≤ k ≤ n, a =
(a0, . . . , ak−1) ∈ Fk, 0 ≤ i ≤ k − 1. Suppose

y = (AaT )T .

Then, all k×k submatrices of the matrix A and all (k−1)×(k−1) submatrices
of the matrix A(en, êk,i) are non-singular if and only if

(i) for each subsequence ρ of the sequence en of length k, the equation

A(ρ, ek)x
T = (y(ρ))T

has a unique solution in the i-th component; i.e., if x = (x0, x1, . . . , xk−1)
is a solution of the equation then xi = ai;

(ii) for each subsequence ρ′ of the sequence en of length k− 1, the equation

A(ρ′, ek)x
T = (y(ρ′))T

has solutions with the i-th component as a free variable.

Proof. First, we observe that if all k × k submatrices of the matrix A are
non-singular then by Proposition (i) for each subsequence ρ of the sequence
en, the equation A(ρ, ek)x

T = (y(ρ))T has a unique solution in x, which
implies condition (i) of Theorem 1.

Next, we show that the conditions (i) and (ii) of Theorem 1 imply that
all k × k submatrices of the matrix A are non-singular. Suppose, on the
contrary, that there is a k × k submatrix A(ρ, ek) of the matrix A which is
singular. Then, by (i) of Theorem 1, there exists a (k − 1) × k submatrix
A(ρ′, ek) of the matrix A(ρ, ek), where ρ′ is a subsequence of ρ such that the
equation A(ρ′, ek)x

T = (y(ρ′))T has a unique solution in the i-th component,
contrary to (ii) of Theorem 1.
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It remains to show that, under the assumption that all k×k submatrices
of A are non-singular, the condition (ii) of Theorem 1 is equivalent to the
condition that all (k−1)×(k−1) submatrices of A(en, êk,i) are non-singular.
This follows by applying part (ii) of the Proposition to (k−1)×k submatrices
of A. This completes the proof.

We are now in a position to define the secret sharing matrices at any level
i for 0 ≤ i ≤ k − 1.

Definition 1. Let A be a matrix of size n× k over F, where k ≤ n, and let
0 ≤ i ≤ k − 1. We call A a secret sharing matrix at level i if and only if all
k × k submatrices of the matrix A and all (k − 1) × (k − 1) submatrices of
the matrix obtained from A by removing its i-th column are non-singular.

By Theorem 1, the secret sharing matrix A = (r0, r1, . . . , rn−1)
T at level i

is a generic matrix of a sharing scheme with the secret placed as D = ai. For
each of such matrices A, following Shamir’s idea, we choose a random (k−1)-
tuple âi. Then we determine the shares (r0, y0), (r1, y1), . . . , (rn−1, yn−1) from
equation (1), and the secret D = ai can be determined from equation (2) by
Gaussian elimination.

In the case when i = 0 or k − 1 the matrix Apoly(t) for any sequence
t = (t0, t1, . . . , tn−1) with pairwise different ti (and non-zero if i = 0) is a
secret sharing matrix at level i in the sense of Definition 1. When i 6= 0, k−1
it is true for some special t. For more details see [5] or the corollaries to
Theorem 2 below. In the paper we also investigate secret sharing matrices
at every level.

Definition 2. Let A be a matrix of size n× k over F, where 2 ≤ k ≤ n. We
call the matrix A an all-level secret sharing matrix if it is a secret sharing
matrix at every level i for 0 ≤ i ≤ k − 1.

An all-level secret sharing matrix A is a generic matrix of a secret sharing
scheme with the secret placed as D = ai, for arbitrary 0 ≤ i ≤ k − 1. In
practice the matrices allow the admin to change the secret not changing the
shares of users. They also allow to construct a secret sharing scheme in which
the shareholders can use the same shares to recover more than one secret.

In the case of the original Shamir’s scheme we shall characterize the se-
quences t ∈ Fn such that Apoly(t) is a secret sharing matrix at a fixed level
i, resp. at every level simultaneously.
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3 Generalizations of Shamir’s scheme

3.1 Lai-Dings’s generalization of Shamir’s scheme

As usual, for an r-tuple of indeterminates x = (x0, x1, . . . , xr−1) and an r-
tuple of increasing non-negative integers c = (c0, c1, . . . , cr−1) we call Vc(x) =
det

(
(x

cj

i )0≤i,j≤r−1

)
the generalized Vandermonde determinant. If c = er it

equals the classical Vandermonde determinant.
In this section we pursue Lai-Ding’s scheme with a more general polyno-

mial

qc(t) = a0t
c0 + a1t

c1 + · · ·+ ak−1t
ck−1 ,

where c = (c0, c1, . . . , ck−1) is an increasing sequence of non-negative integers.
Given such a polynomial and t = (t0, t1, . . . , tn−1) ∈ Fn we use the generalized
Vandermonde determinants to prove necessary and sufficient conditions for
coordinates t0, t1, . . . , tn−1 to determine secret sharing matrices.

Some special cases of the scheme based on the polynomial qc(t) with
c = (0, 1, . . . , k − 2, r), r ≥ k − 1 were considered in [5]. The Lai-Ding’s
scheme is determined by the basis Bc = {tc0 , tc1 , . . . , tcn−1} and the sequence
t and can be viewed as given by equations (1) and (2) with A = Ac(t) =
(t

cj

i )0≤i≤n−1, 0≤j≤k−1.
Shamir’s scheme is a special case of Lai-Ding’s scheme related to the clas-

sical Vandermonde determinant. Then Bpoly = Bek
, Apoly(t) = Aek

(t) and
i = 0. In the paper we answer some interesting questions of [5] using re-
lations between the generalized Vandermonde determinants and elementary
symmetric polynomials (Lemma 1). We conclude this section with the defini-
tion of the Shamir type secret sharing matrices corresponding to some bases
in k-dimensional subspaces of the space of polynomials over F.

As usual the admin chooses a random vector of polynomial coefficients
âi for a fixed 0 ≤ i ≤ k − 1 and some appropriate elements t0, t1, . . . , tn−1

of F, and next distributes as shares n points (t0, y0), (t1, y1), . . . , (tn−1, yn−1)
of the graph of polynomial q placing the secret as D = ai. By finding the
conditions on t0, t1, . . . , tn−1 (Theorem 2) we solve some open problems of
Lai and Ding [5].

The generic polynomial q in the scheme will be well-matched if and only
if every coalition of ≥ k but not of < k shareholders will be able to recover
the secret. This means, by Theorem 1, that

det(A(ρ, ek)) = Vc(t(ρ)) 6= 0 , (4)

resp.

det(A(ρ′, êk,i)) = Vĉi
(t(ρ′)) 6= 0 , (5)
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for any subsequence ρ of length k, resp. any subsequence ρ′ of length k −
1 of the sequence en. Note that, by (3), the secret D = ai is a linear
combination of yρj

(write ρ = (ρ0, ρ1, . . . , ρk−1)) for 0 ≤ j ≤ k − 1, with
non-zero coefficients. The latter means that all the shares yρ0 , yρ1 , . . . , yρk−1

have to participate in recovering the secret.

Remark. In the case of Shamir’s scheme (recall that i = 0 then) (4) and (5)
hold if and only if t0, t1, . . . , tn−1 are pairwise different and non-zero elements
of F. Note that if the admin would place in Shamir’s scheme as the secret
D = ak−1 then (4) and (5) hold if and only if t0, t1, . . . , tn−1 are pairwise
different. We need not assume that they are non-zero.

3.2 Generalized Vandermonde determinants

Let x = (x0, x1, . . . , xk−1), where xi (0 ≤ i ≤ k − 1) are indeterminates.
As above, for 0 ≤ i ≤ k − 1 we denote by x̂i the sequence obtained from
the sequence x by striking out the indeterminate xi. It is well-known that
the polynomial Vc(x) is divisible by Vek

(x) in the polynomial ring Z[x], and
their quotient is a homogeneous polynomial having exactly Vek

(c)/Vek
(ek)

non-negative “terms” (see [3] or [7]). In [9] the quotient was determined in
terms of the elementary symmetric polynomials.

The elementary symmetric polynomial τr(x) of degree r (0 ≤ r ≤ k) is
the sum of all distinct products of r distinct variables out of x0, x1, . . . , xk−1.
By convention we have τ0(x) = 1. Moreover, τr(x) = τr(x0, x1, . . . , xk−2) +
τr−1(x0, x1, . . . , xk−2)xk−1.

Definition 3. Let k, l ∈ N. For any tuples c = (c0, c1, . . . , ck−1) and d =
(d0, d1, . . . , dl−1) we call the tuples c and d complementary with respect to the
standard (k + l)-tuple ek+l if

{0, 1, . . . , k + l − 1} = {co, c1, . . . , ck−1} ∪ {d0, d1, . . . , dl−1}
and

{c0, c1, . . . , ck−1} ∩ {d0, d1, . . . , dl−1} = Ø.

Remark. Let 0 ≤ j ≤ k − 1. Then the sequences c = êk,j and d = (j) are
complementary with respect to the sequence ek.

Lemma 1. (See [9], Chapter XI, p. 334.) Let c = (c0, c1, . . . , ck−1) and
d = (d0, . . . , dl−1) be some increasing sequences of non-negative integers. Let
x be a k-tuple of indeterminates xi. Assume that c and d are complementary
with respect to the standard (k + l)-tuple ek+l with ck−1 = k + l− 1. Then we
have

Vc(x) = (−1)bk/2c+bl/2cdet
((

τk−di+j(x)
)
0≤i,j≤l−1

)
Vek

(x) .
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Corollary. (See [9], Chapter XI, p. 333.) For fixed 0 ≤ i, j ≤ k− 1 we have

Vek,j
(x̂i) = (−1)bk/2cτk−1−j(x̂i)Vek−1

(x̂i) .

3.3 Some open problems of Lai-Ding’s

Let c = (c0, c1, . . . , ck−1) be an increasing sequence of non-negative integers
and let t = (t0, t1, . . . , tn−1) be an n-tuple over F. Lai and Ding asked a
question about restrictions for t which allow to use the polynomial qc(t) =
a0t

c0 + a1t
c1 + · · · + ak−1t

ck−1 as a generic polynomial for a secret sharing
scheme. See [5], pp. 457-458. In Theorem 2, for a fixed c and for a fixed
0 ≤ i ≤ k−1, we give some necessary and sufficient conditions for the matrix
Ac(t) to be a secret sharing matrix at level i.

Let c = (c0, c1, . . . , ck−1) and d = (d0, d1, . . . , dl−1) be complementary
increasing sequences of non-negative integers with respect to the standard
(k+l)-tuple ek+l for some l ≥ 1 and ck−1 = k+l−1. For a fixed 0 ≤ i ≤ k−1,
d is the concatenation of two sequences d1,i and d2,i, where d1,i consists of
the terms less than ck−2 if i = k− 1, and of the terms less than ci otherwise.
If i 6= k − 1 the sequences ĉi and d′ = d1,i||ci||d2,i are complementary with
respect to the sequence ek+li , where li = l. In the case when i = k − 1
the sequences ĉk−1 and d′ = d1,k−1 are complementary with respect to the
sequence ek+lk−1

, where lk−1 = ck−2 − k + 1.
The following theorem answers an open question of Lai and Ding [5].

Theorem 2. Let c = (c0, c1, . . . , ck−1) and d = (d0, d1, . . . , dl−1) be com-
plementary increasing subsequences of non-negative integers with respect to
the standard (k + l)-tuple ek+l, for some l ≥ 1 with ck−1 = k + l − 1. Let
t = (t0, t1, . . . , tn−1) be an n-tuple over F with pairwise different coordinates.
Fix 0 ≤ i ≤ k − 1. In the above notation, the matrix Ac(t) related to the
polynomial qc(t) is a secret sharing matrix at level i if and only if for any
subsequences ρ of length k and ρ′ of length k − 1 of the sequence en,

det
((

τk−ds+u(t(ρ))
)
0≤s,u≤l−1

) 6= 0

and
det

((
τk−d′s+u(t(ρ

′))
)
0≤s,u≤li−1

) 6= 0,

where ĉi and d′ = (d′0, d
′
1, . . . , d

′
li−1) are complementary sequences with respect

to the standard (k + li)-tuple ek+li.

Proof. The theorem follows from Theorem 1, (4), (5) and Lemma 1. It follows
from Theorem 1 that the matrix A = Ac(t) is a secret sharing matrix at level
i if and only if (4) and (5) hold. Since t0, t1, . . . , tk−1 are pairwise different
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elements of F, we have in Lemma 1 Vek
(t(ρ)) 6= 0 and Vek−1

(t(ρ′)) 6= 0. This
completes the proof.

The following corollary solves an open problem of Lai and Ding [5] related
to Shamir’s scheme.

Corollary. In the above notation, let t = (t0, t1, . . . , tn−1) be an n-tuple over
F with pairwise different coordinates. In the original Shamir’s scheme the
secret can be placed as D = ai for a fixed 0 ≤ i ≤ k−1 (or in other words the
matrix Apoly(t) is a secret sharing matrix at level i) if and only if for every
subsequence ρ of length k − 1 of the sequence en,

τk−1−i(t(ρ)) 6= 0 . (6)

The matrix Apoly(t) is an all-level secret sharing matrix if and only if (6)
holds for every 0 ≤ i ≤ k − 1.

Proof. The corollary is a consequence of Theorem 2 and the corollary to
Lemma 1.

Remarks. (i) Here a question is whether there exists some t ∈ Fn with
pairwise different coordinates such that (6) holds for any subsequence ρ of
length k − 1 of the sequence en with a fixed 1 ≤ i ≤ k − 2, resp. with
all 0 ≤ i ≤ k − 1. This means that the matrix Apoly(t) is a secret sharing
matrix at level i, resp. an all-level secret sharing matrix. We can extend this
question to more general matrices Ac(t) with c = (c0, c1, . . . , ck−1).
(ii) In particular, if F = Fq a question is whether (6) holds for sufficiently
large q with k ≤ n < q and 0 ≤ i ≤ k−1. For i = 0 or i = k−1, the answers
to the question are positive for any q and any t with pairwise different (and
non-zero if i = 0) coordinates.

Corollary. (Cf. [5].) Given an n-tuple t over F with pairwise different
coordinates, the secret in Shamir’s scheme can be placed as D = ak−1, and
if the coordinates are non-zero also as D = a0. (In other words the matrix
Apoly(t) is a secret sharing matrix at level k − 1 and 0, respectively then.)

Proof. If i = k− 1, the left hand side of (6) equals 1 (and is not equal to 0),
and if k = 0, it equals

∏k−1
j=0 tρj

6= 0, and hence the corollary follows at once.

Corollary. (Cf. [5]). The secret in the Shamir scheme can be placed as
D = ak−2 for some pairwise different t0, t1, . . . , tn−1 ∈ F, if and only if for
every subsequence ρ = (ρ0, ρ1, . . . , ρk−2) of the sequence en,

tρ0 + tρ1 + · · ·+ tρk−2
6= 0 .
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Proof. If i = k−2 then τk−i−1 = τ1, and the corollary follows easily from the
previous one.

It is easy to see that not always the secret in Shamir’s scheme can be
placed as D = ak−2.

Example. Let F = F7, n = 5, k = 3 and q(t) = a0 + a1t + a2t
2. If we place

the secret as D = a1 and use t = (1, 2, 3, 4, 5), a coalition of 2 participants
can reconstruct the secret. Then Di = q(ti) = q(i + 1). Then D2 = q(3) =
a0 + 3a1 + 2a2 and D3 = q(4) = a0 + 4a1 + 2a2. Hence a1 = D3 + 6D2.
Similarly D1 = q(2) = a0 + 2a1 + 4a2 and D4 = q(5) = a0 + 5a1 + 4a2. Hence
a1 = 2D1 + 5D4. Note that if D = a0 or a2, the secret can be reconstructed
by 3 but not by 2 shareholders. Note that for the subsequence (3, 4) of the
sequence (1, 2, 3, 4, 5) we have 3 + 4 = 0, and the corollary above shows that
the secret cannot be placed as D = a1.

3.4 Secret sharing schemes related to bases

As in the Introduction we generalize Shamir-Lai-Ding’s secret sharing schemes
by using more general bases B = {v0(t), v1(t), . . . , vk−1(t)} in a k-dimensional
vector subspace of the vector space F[t]<K with some K ≥ k.

In this section, a secret sharing scheme is given by a generic matrix of
the form A = AB(t) = (vs(tu))0≤u≤n−1, 0≤s≤k−1 and t = (t0, t1, . . . , tn−1) over
F. An example of such a matrix is Shamir’s matrix Apoly(t). Another (more
general) example is Lai-Ding’s matrix Ac(t) defined for increasing sequences
c = (c0, c1, . . . , ck−1) of non-negative integers. Shamir’s matrix is related to
the basis Bpoly and Lai-Ding’s to the basis Bc.

The matrix A = AB(t) is a secret sharing matrix at level i, for a fixed
0 ≤ i ≤ k − 1, if and only if it satisfies conditions (i) and (ii) of Theorem 1.
These conditions give some additional assumptions on the t similar to those
in Theorem 2.

It is clear that for a given secret sharing matrix A and sufficiently large K,
there exists a basis B of the vector space F[t]<K such that A = AB. We shall
show in section 5 that the assertion is false for K = k. For illustration, see
two examples of secret sharing matrices not corresponding to any polynomial
basis in F[t]<k, which are given in the Introduction.

Now we are ready to define the Shamir type secret sharing matrices.

Definition 4. An n × k secret sharing matrix A is said to be the Shamir
type secret sharing matrix if there exists a basis B of the vector space of
polynomials of degree < k in F[t] such that A = AB(t) for some t ∈ Fn.
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Example. A non-trivial example of a polynomial basis in F[t]<k is the bi-
nomial basis. Given r ∈ N with r! not divisible by char(F), we define a

polynomial
(

t
r

) ∈ F[t] of degree r by
(

t
r

)
= t(t−1)···(t−r+1)

r!
(by convention(

t
0

)
= 1). This polynomial equals 0 at t = 0, 1, . . . , r − 1 and 1 at t = r.
Assume that (k − 1)! is not divisible by char(F). Consider the basis

Bbinom =
{(

t
0

)
,
(

t
1

)
, . . . ,

(
t

k−1

)}
of the linear space F[t]<k over F. Let t =

(t0, t1, . . . , tn−1) ∈ Fn. The secret sharing matrix related to this basis is
given by Abinom(t) = (

(
ti
j

)
)0≤i≤n−1, 0≤j≤k−1. All the k-order minors of the

matrix are the classical Cauchy determinants C(t(ρ)) = det((
(

tρi
j

)
)0≤i,j≤k−1),

and so differ from the classical Vandermonde determinants by the factor( ∏k−1
i=0 i!

)−1
. Thus if t0, t1, . . . , tn−1 are pairwise different (recall that by

assumption (k − 1)! is not divisible by char(F)), the minors are 6= 0. Under
this assumptions, the matrix Abinom(t) satisfies condition (i) of Theorem 1.

The matrix Abinom(t) satisfies condition (ii) of Theorem 1 with i = k− 1
and i = 0 under the same assumptions on the tuple t as in Shamir’s scheme
(and under the same assumptions on char(F)) as in the case of condition
(i) of Theorem 1. Indeed, for any subsequence ρ of the sequence en and
every 0 ≤ s ≤ k − 1, the determinants of the matrices A(ρ̂s, ek−1) =
(
(

tρi
j

)
)0≤i≤k−1,0≤j≤k−2, i 6=s and A(ρ̂s, êk,0) = (

(
tρi
j

)
)0≤i≤k−1,1≤j≤k−1, i 6=s are the

classical Cauchy determinants. They differ from the classical Vandermonde

determinant by the factor
( ∏k−2

s=0 s!
)−1

if i = k − 1 and by the factor( ∏
0≤i≤k−1, i 6=s tρi

) · ( ∏k−1
i=1 i!

)−1
if i = 0. Thus the matrices are non-singular

because by assumption (k − 1)! is not divisible by char(F).
If we place the secret as D = ai for i 6= 0, k − 1, conditions (i) and (ii)

of Theorem 1 generate some other assumptions on the sequence t just as in
Shamir’s scheme.

4 Algorithms for constructing secret sharing

matrices

In this section we describe two algorithms for constructing secret sharing
matrices. One algorithm is for secret sharing matrices at a fixed level i
(0 ≤ i ≤ k − 1), and the other is for all-level secret sharing matrices. The
algorithms allow to determine all such matrices both in the case of secret
sharing matrices at level i and in the case of all-level secret sharing matrices.

First we recall some notation and basic facts related to Gaussian elimi-
nation, which will be the main tool of the section. The Gaussian elimination
algorithm is a well-known efficient algorithm for solving systems of linear
equations; we refer the reader to [12], section 15.4, p. 326.
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A matrix over a field F is said to be in reduced row echelon form if the
following conditions hold:

(i) All non-zero rows are above any zero rows.

(ii) The first non-zero entry of a non-zero row is 1 and it is always strictly
to the right of the leading coefficient of the row above it. It is called a
leading 1 or a pivot.

(iii) Every leading coefficient is the only non-zero entry in its column.

It is well known that the Gaussian elimination algorithm involving ele-
mentary row operations reduces any matrix to a matrix in reduced row ech-
elon form. We denote by R(A) the (unique) matrix in reduced row echelon
form corresponding to the matrix A.

If the rank of an n× k matrix A is equal to r then the matrix R(A) has
exactly r non-zero rows (so exactly r pivots), and hence it has exactly k − r
columns which do not contain a pivot. Note that these columns and their
numbers determine the matrix R(A). In the algorithms below we determine
the number n(A) of the first column of R(A) which does not contain a pivot
and the vector c(A) which consists of the first n(A) entries of this column.
(Recall that in the paper the rows and columns in the matrices are numbered
as from zero.)

4.1 Algorithm for constructing or extending a secret
sharing matrix at level i

In this subsection we describe an algorithm of finding a secret sharing n× k
matrix over F at level i = k− 1. By using a column permutation one can get
an algorithm for finding a secret sharing n× k matrix at level i for arbitrary
0 ≤ i ≤ k − 1.

We adopt the notation of the previous section. The algorithm gives a
method of constructing a secret sharing matrix or appending some additional
rows to a given secret sharing matrix at level i = k− 1. Both the cases differ
by an initializing matrix A0, and in both we append some additional rows
to A0.

We start with A0 as an n × k secret sharing matrix A when we extend
A to a larger secret sharing matrix at level i = k − 1, and with A0 as an
arbitrary (k− 1)× k matrix over F such that its (k− 1)× (k− 1) submatrix
obtained by removing its (k−1)-th column is non-singular when we construct
a secret sharing matrix at level i = k − 1 from the outset. Here any such
matrix can be obtained from a (k − 1) × k matrix over F such that its first
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k−1 columns form the identity (k−1)×(k−1) matrix (and the last column is
arbitrary) by performing elementary row operations. The size of the matrix
A0 is m× k, where m = n and m = k − 1 respectively.

In steps 2-5 in the algorithm below we make use r times of a subprocedure
computing a vector v = (v0, v1, . . . , vk−1) ∈ Fk extending the m × k matrix
A0 to an (m+1)×k secret sharing matrix at level i = k−1. The components
vt (0 ≤ t ≤ k − 1) of the vector v are determined by induction on t.

4.1.1 Algorithm for constructing or extending secret sharing ma-
trices at level i = k − 1

INPUT: positive integers n, k, r (2 ≤ k ≤ n), and an m× k matrix A0.

OUTPUT: an (m + r) × k secret sharing matrix B at level i = k − 1
extending the matrix A0.

SUMMARY: r additional rows are appended to the matrix A0.

1. (Initializing) B ← A0.

2. (Computing v0, v1, . . . , vk−2) Compute the first k − 1 components v0,
v1, . . ., vk−2 of the vector v as follows.

2.1. (Computing nρ and cρ) For all increasing subsequences ρ of length
k − 2 of the sequence em do the following:

2.1.1. Use Gaussian elimination to compute R(B(ρ, ek)).

2.1.2. Set nρ ← n(B(ρ, ek)).

2.1.3. Set cρ ← c(B(ρ, ek)).

2.2. (Computing Sl) For l = 0 to k − 2 do the following:

2.2.1. Set Jl=the set of all subsequences ρ of length k − 2 of the
sequence em such that nρ = l.

2.2.2. Set S0 ← Ø if J0 = Ø and S0 ← {0} otherwise.

2.2.3. For 1 ≤ l ≤ k − 2 set Sl ← {(v0, v1, . . . , vl−1) · cρ : ρ ∈ Jl}.
2.2.4. Select as vl an arbitrary element of F \ Sl.

3. (Computing S and vk−1) Compute the component vk−1 of vector v as
follows.

3.1. (Computing c∗ρ) For all increasing subsequences ρ of length k − 1
of the sequence em do the following:

3.1.1. Use Gaussian elimination to compute R(B(ρ, ek)).
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3.1.2. Set c∗ρ=the last column of R(B(ρ, ek)).

3.2. Set J=the set of all subsequences ρ of length k−1 of the sequence
em.

3.3. Set S ← {(v0, v1, . . . , vk−2) · c∗ρ : ρ ∈ J }.
3.4. Select as vk−1 an arbitrary element of F \ S.

4. Set v ← (v0, v1, . . . , vk−1).

5. Update B by appending r additional rows repeating r times steps 2-4.

6. Return B.

Remarks. (i) In step 2.2.4, note that such an element exists whenever(
m

k−2

)
< card(F). Similarly, in step 3.4, such an element exists whenever(

m
k−1

)
< card(F). In practise, F is a finite field and card(F) is very large,

much greater than max{( m
k−1

)
,
(

m
k−2

)}. Therefore with a high probability any
extension of a non-singular matrix chosen at random gives a secret sharing
matrix at level i for an arbitrary i. In fact, the probability that any extension
of a given secret sharing matrix at level i, by appending a (pseudo)random
row-vector, is a secret sharing matrix at level i too is greater than

(
1−

(
m

k−2

)

card(F)

)
·
(
1−

(
m

k−1

)

card(F)

)

because

card(F \ Sl) = card(F)− card(Sl) ≥ card(F)− card(Jl) ,

and hence

k−2∏

l=0

(
1− card(Jl)

card(F)

)
≥ 1−

∑k−2
l=0 card(Jl)

card(F
= 1−

(
m

k−2

)

card(F)
.

In typical situation, when k, m ≤ 10, F = Fp and p is a several-dozen-bit
prime number, this probability is close to certainty.
(ii) Note that to find nρ and cρ we need only to apply the Gaussian elimination
algorithm until we find the first column which does not contain a pivot.
We also may assume that nρ and cρ (or only nρ), which have been already
computed in the preceding steps, are stored in the memory. To save the
memory, we may slightly modify the above algorithm assuming that only the
numbers nρ are remembered. Then we additionally need to compute cρ, for
each ρ ∈ Jl.
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4.1.2 Proof of correctness of Algorithm 4.1.1

It suffices to show that the algorithm produces a secret sharing matrix at level
i = k − 1 in the case when r = 1. Thus let B be the matrix obtained from
A0 by appending the row v = (v0, v1, . . . , vk−1) defined in the step 4 as the
(m+1)st row of B. Note that we need only to show that all (k−1)× (k−1)
submatrices of B(em+1, ek−1) which contain the last row of B(em+1, ek−1) and
all k× k submatrices of B which contain the last row of B are non-singular.

Let ρ = (ρ0, ρ1, . . . , ρk−2) be a subsequence of the sequence em+1 with
ρk−2 = m and let ρ′ = (ρ0, ρ1, . . . , ρk−3). By the assumptions on A0, the
the rank of B(ρ′, ek−1) is equal to k − 2. It follows that column nρ′ =
n(B(ρ′, ek−1)) of R(B(ρ′, ek−1)) is the only column of this matrix without
pivot. By step 2, vnρ′ 6= (v0, v1, . . . , vnρ′−1) · cρ′ , where cρ′ = c(B(ρ′, ek−1)).
It follows that the vector (v0, v1, . . . , vk−2) is not a linear combination of the
rows of R(B(ρ′, ek−1)), so B(ρ, ek−1) is non-singular.

Now, let ρ = (ρ0, ρ1, . . . , ρk−1) be a subsequence of the sequence em+1

with ρk−1 = m and let ρ′ = (ρ0, ρ1, . . . , ρk−2). By the assumptions on A0,
the the rank of B(ρ′, ek−1) is equal to k− 1. It follows that R(B(ρ′, ek−1)) is
the identity matrix. By step 3, vk−1 6= (v0, v1, . . . , vk−2) · c∗ρ′ , where c∗ρ′ is the
last column of R(B(ρ′, ek)). By similar arguments as above we deduce that
B(ρ, ek) is non-singular.

4.1.3 Efficiency of Algorithm 4.1.1

The main ingredient of the algorithm is Gaussian elimination which requires
at most

(
m

k−2

)
(k−2)k2 operations in F in step 2.1 and at most

(
m

k−1

)
(k−1)k2

operations in step 3.1 (see [12], p. 327), and so a total of m
(

m
k−2

)
k2 operations

in F.

Indeed the loop in step 2.1 is executing
(

m
k−2

)
times, and in step 3.1

(
m

k−1

)

times. Therefore the step 2.2.3 requires at most (k− 2)
(

m
k−2

)
operations and

the step 3.2 at most (k−1)
(

m
k−1

)
operations, so a total of m

(
m

k−2

)
operations in

F. Hence the whole algorithm performs a total of Φ(m, k) = m
(

m
k−2

)
(k2 + 1)

operations in F.

In typical situation, when k − 1 ≤ m ≤ 10, an easy computation shows
that 10 ≤ Φ(m, 2) ≤ 50, 40 ≤ Φ(m, 3) ≤ 1000, 153 ≤ Φ(m, 4) ≤ 7650, and
416 ≤ Φ(m, 5) ≤ 31200.
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4.2 Algorithm for constructing an all-level secret shar-
ing matrix

In this subsection we give an algorithm, which is a slight modification of
that from the previous section, for finding or extending an all-level secret
sharing matrix. The algorithm gives a method for constructing an all-level
secret sharing matrix or gives the same but extending a given all-level secret
sharing matrix. Again we introduce an initializing matrix A0 and construct
the matrices by appending some additional rows to A0.

We start with A0 as an n× k all-level secret sharing matrix A if we want
to extend A, or with A0 as an arbitrary (k− 1)× k matrix over F such that
all its (k − 1) × (k − 1) submatrices are non-singular otherwise. Here any
such matrix A0 can be obtained by performing elementary row operations,
from a (k − 1)× k matrix over F such that its first k − 1 columns form the
identity (k − 1)× (k − 1) matrix and all components of its k-th column are
non-zero.

The size of the matrix A0 is again m× k, where m = n or m = k− 1. In
the algorithm we apply r times a similar inductive subprocedure computing
a vector v ∈ Fk extending the m × k matrix A0 to an all-level (m + 1) × k
secret sharing matrix.

4.2.1 Algorithm for constructing or extending all-level secret shar-
ing matrices

INPUT: positive integers n, k, r (2 ≤ k ≤ n), and an m× k matrix A0.

OUTPUT: an all-level (m + r)× k secret sharing matrix B extending
the matrix A0.

SUMMARY: r additional rows are appended to the matrix A0.

1. (Initializing) B ← A0.

2. (Computing v0, v1, . . . , vk−2) Compute the first k − 1 components v0,
v1, . . ., vk−2 of the vector v as in steps 2.1-2.2 of Algorithm 4.1.1. and
set v′ ← (v0, v1, . . . , vk−2).

3. (Computing vk−1) Compute the component vk−1 of the vector v as
follows

3.1. (Computing Si) For all increasing subsequences ρ of length k − 2
of the sequence em and for each 0 ≤ i ≤ k − 2 do the following:

3.1.1. Use Gaussian elimination to compute R(B(ρ, êk,i)).
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3.1.2. Set c∗ρ,i=the last column of R(B(ρ, êk,i)).

3.1.3. Set Ji=the set of all ρ such that c∗ρ,i does not contain a pivot.

3.1.4. Set Si ← {v̂′i · c∗ρ,i : ρ ∈ Ji}.
3.2. (Computing S) Compute the set S as in steps 3.1-3.3 of Algorithm

4.1.1.

3.3. Select as vk−1 an arbitrary element of F \ (
S ∪⋃k−2

i=0 Si

)
.

4. Set v ← (v0, v1, . . . , vk−1).

5. Update B by appending r additional rows repeating r times steps 2-5.

6. Return B.

Remark. In step 3.3, note that such an element exists whenever
(

m

k − 1

)
+ (k − 1)

(
m

k − 2

)
< card(F) .

Following the first remark to Algorithm 4.1.1, with a high probability any
extension of a non-singular matrix chosen at random gives an all-level secret
sharing matrix. In typical situation, when m, k ≤ 10, F = Fp and p is a
several-dozen-bit prime number this probability is close to certainty again.

4.2.2 Proof of correctness of Algorithm 4.2.1

As before, it suffices to show that the algorithm produces an all-level secret
sharing matrix in the case when r = 1. Let B be the matrix obtained from
A0 by appending the row v = (v0, v1, . . . , vk−1) defined in the step 4 as the
(m + 1)st row of B.

By the same argument as in the proof in subsection 4.1.2, all (k − 1) ×
(k − 1) submatrices of B(em+1, ek−1) all k × k submatrices of B are non-
singular. Thus it remains to show that that for each i, 0 ≤ i ≤ k − 2, all
(k − 1)× (k − 1) submatrices of B(em+1, êk,i) which contain the last row of
B(em+1, êk,i) are non-singular. Notice that the rank of any (k− 1)× (k− 2)
submatrix of B(em+1, êk−1,i) is equal to k − 2.

Let ρ = (ρ0, ρ1, . . . , ρk−2) be a subsequence of the sequence em+1 with
ρk−2 = m. By the assumptions on A0, the rank of B(ρ′, êk,i), where ρ′ =
(ρ0, ρ1, . . . , ρk−3), is equal to k − 2. It follows that R(B(ρ′, êk,i)) has exactly
one column without a pivot. If the last column of R(B(ρ′, êk,i)) contains
a pivot then, by applying the Gaussian elimination algorithm, we obtain
that R(B(ρ, êk,i)) is the identity matrix since the rank of R(B(ρ, êk−1,i)) is
equal to k − 2. Suppose now that the last column of R(B(ρ′, êk,i)) does
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not contain a pivot. By step 4, vk−1 6= v̂′i · c∗ρ′,i, where c∗ρ′,i is the last
column of R(B(ρ′, êk,i)). Consequently, by applying the Gaussian elimination
algorithm, we obtain again that R(B(ρ, êk,i)) is the identity matrix.

4.2.3 Efficiency of Algorithm 4.2.1

Similarly as in the previous algorithm, the main ingredient of the algorithm is
Gaussian elimination performed in steps 2 and 3. Some similar loops are also
executed. We leave it to the reader to compare the numbers of operations in
F in both the above algorithms in typical situation m, k ≤ 10.

5 The Shamir type secret sharing matrices

In this section we prove that a secret sharing matrix need not be the Shamir
type secret sharing matrix. See Definition 4 in section 3. A set of vectors
{v0,v1, . . . ,vs−1} in the vector space Fk is said to be in general position if
no l of them are linearly dependent, for each l ≤ k. An example of vectors in
general position in Fk are the rows in a secret sharing matrix. In the original
Shamir secret sharing scheme the rows lie on the curve s : F→ Fk given by

s(t) = (1, t, . . . , tk−1) .

They are of the form s(t0), s(t1), . . . , s(tn−1) for some t0, t1, . . . , tn−1 ∈ F.
We have q(t) = s(t) · a, where q is Shamir’s generic polynomial and a =
(a0, a1, . . . , ak−1).

More generally, in the secret sharing scheme related to a basis B =
{v0(t), v1(t), . . . , vk−1(t)} of a k-dimensional vector subspace of the space
F[t]<K (for some K ≥ k) the rows lie on the curve v : F → Fk ⊆ FK given
by

v(t) = (v0(t), v1(t), . . . , vk−1(t)) .

Lemma 2 yields some crucial information about the rows of the secret
sharing matrix AB related to a basis B of the vector space F[t]<k over F (in
the case when K = k).

Lemma 2. Let 2 ≤ k ≤ n be natural numbers and let B be a basis of the
vector space F[t]<k over F. Let t = (t0, t1, . . . , tn−1) be an n-tuple over F with
pairwise different t0, t1, . . . , tn−1. Assume that A = AB(t). Let ri (0 ≤ i ≤
n− 1) denote the i-th row of A. Then each ri is a unique linear combination
of r0, r1, . . . , rk−1 with some coefficients which sum up to 1. Consequently,
if the first components of the rows r0, r1, . . . , rk−1 are equal then the first
components of all the rows r0, r1, . . . , rn−1 are equal.
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Proof. Let B = {v0(t), v1(t), . . . , vk−1(t)}. Then ri = v(ti), where v(t) =
(v0(t), v1(t), . . . , vk−1(t)) . Note that there exists a non-singular k× k matrix
M with coefficients in F such that

v(t) = s(t)M .

Thus, ri = v(ti) = s(ti)M, and

A = Apoly(t)M .

Note that the rows s(t0), s(t1), . . . , s(tn−1) of the matrix Apoly(t) have
the property that each s(tj) is a unique linear combination of the rows
s(t0), s(t1), . . . , s(tk−1) with some coefficients which sum up to 1. Therefore,
the first assertion of the theorem follows, since the multiplication of a vector
in Fk by M induces a linear isomorphism Fk → Fk. The second assertion is
a direct consequence of the first one.

Note that for any n×k matrix A over F, where n < card(F), there exists
a basis B of a k-dimensional vector subspace of the space F[t]<K over F and
pairwise different t0, t1, . . . , tn−1 ∈ F such that A = AB(t0, t1, . . . , tn−1) for
sufficiently large K.

Here a question is whether for a given n × k matrix A over F, where
n ≤ card(F), which is a secret sharing matrix at level i (0 ≤ i ≤ k − 1) (or
more specifically an all-level secret sharing matrix), there exists a basis B of
the vector space F[t]<k over F and pairwise different t0, t1, . . . , tn−1 ∈ F such
that A = AB(t). Lemma 2 provides a negative answer to the above question.

Theorem 3. Let 2 ≤ k < n be natural numbers. There exists a secret
sharing n × k matrix A at level i for a fixed 0 ≤ i ≤ k − 1 (or an all-
level secret sharing matrix) such that A 6= AB(t) for any basis B of the
k-dimensional vector space F[t]<k over F and any tuple t ∈ Fn with pairwise
different coordinates.

Proof. By using the algorithm of subsection 4.1 (resp. 4.2), we construct a
secret sharing (k + 1)× k matrix A at level i over F for a fixed 0 ≤ i ≤ k− 1
(resp. an all-level secret sharing matrix over F) such that all its entries,
except for the last one in the first column are equal. W can do it under
assumption

max
(k(k + 1)

2
,
(k − 1)k(k + 1)

6

)
< card(F)

(resp.
k(k + 1)(k2 − 2k + 4)

6
< card(F)).
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Consequently, by Lemma 2, the rows of the matrix A do not satisfy the
condition for the rows of matrices AB(t), where B is a basis of the vector
space F[t]<k, which is the desired conclusion.

6 Conclusion

We have proposed a new secret sharing scheme which has all the features
of the original Shamir’s scheme, and some new features too. In general in
Shamir’s polynomial interpolation secret sharing scheme the secret cannot
be placed at any level. We have showed that the secret can be placed at
level i if we give some additional assumptions on the values of elementary
symmetric polynomials of t0, t1, . . . , tn−1. The assumptions define an n-tuple
t = (t0, t1, . . . , tn−1) ∈ Fn such that the matrix Apoly(t) is a secret sharing
matrix at level i.

Corollary 1 to Theorem 2 (formula (6)) specifies where the secret can
be placed for a fixed n-tuple t; i.e., as what coefficient. Our scheme, based
on an arbitrary secret sharing matrix, allows placement of the secret at any
level; i.e., as any of the coefficients a0, a1, . . . , ak−1. It results in an option of
applying our scheme not only to a single secret but to up to k many secrets
with the same shares, and with the same threshold.
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