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Abstract

This paper is based on a paper of B. Hofmann, P. Matheé and H. von
Weizsäcker. Basic notions in regularization theory for linear operators are in-
vestigated We show how one may get the fundamental regularization results
with various Hilbert space methods.

1 Preface

This preprint presents the results published in [1], however the proofs differ from
the original ones. The aim was to present the theory as simple as possible with hope
it will be easy to understand.

This section summarize basic knowledge from the theory of operators acting in
Hilbert space. The facts presented here are all what we need to present regularization
theory of linear operators acting in Hilbert spaces.

The operators we consider are acting in a Hilbert space H. We assume that the
domains of these operators are dense in H. The domain, range and kernel of an
operator A are denoted by D(A), ranA, kerA, respectively. Let us recall some well
known definitions.

Operator A is closed if for any sequence {xn}∞n=1 such that xn ∈ D(A),
‖xn−x0‖ → 0 and ‖Axn− y‖ → 0 for some y ∈ H implies x0 ∈ D(A) and Ax0 = y.

Operator A is closable if there exists a closed extension of A, i.e. there exists a
closed operator B such that D(A) ⊂ D(B) and Ax = Bx for x ∈ D(A).

An operator B is adjoint to A if 〈Ax, y〉 = 〈x,By〉 for any x ∈ D(A). The domain
of B is the set of all those y ∈ H that there exists z ∈ H such that 〈Ax, y〉 = 〈x, z〉.
Then z = By and we write A∗ = B.

1.1 Polar decomposition

Because A∗A ≥ 0 there exists the operator B ≥ 0 such that A∗A = B2.
Let us define B† = 0| kerB ⊕ cl((B|D(B)∩(kerB)⊥)−1), cl denotes here the closure

of an operator.
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We have the identity

〈Ax,Ay〉 = 〈Bx,By〉 for x, y ∈ D(A).

Note that

ranB = (kerB)⊥ = (kerA∗A)⊥ = (kerA)⊥ = ranA∗.

Hence for u, v ∈ ranB we have the identity

〈AB†u,AB†v〉 = 〈u, v〉.

which shows that AB† is an isometry on ranB. The closure U of AB† is partial
isometry – it isometrically transforms ranB = ranA∗ on ranU = ranAB† = ranA
and vanishes on its kernel – kerU = kerB† = kerB = kerA.

We have
UBx = AB†Bx = Ax for x ∈ D(A).

A = UB is called right polar decomposition of A.
U∗ is also a partial isometry – it isometrically transforms ranA∗ on ranA and

kerU∗ = (ranU)⊥ = (ranA)⊥ = kerA∗.
Moreover the equality

〈U∗Uu, v〉 = 〈Uu,Uv〉 = 〈u, v〉 valid for u, v ∈ ranB = ranA∗

shows that

U∗Uu =

{
u for u ∈ ranA∗,
0 for u ∈ kerA.

Therefore A = UBU∗U = CU , where C = UBU∗ is also a selfadjoint non-
negative operator. This is the left polar decomposition of A. Note that U is
the same in both polar decompositions. The above in particullary implies that
AA∗ = UB2U∗ = U(A∗A)U∗.

1.2 Examples

Let H = L2(0, 1) and A be the differentiation operator Ax(t) = x′(t). D(A) = {x ∈
H such that x′ ∈ H}. A is closed. What is A∗? The equality

〈Ax, y〉 =
∫
x′ȳ = −

∫
xȳ′ + (xȳ)|10

shows that if supp y ⊂ (0, 1) then A∗y = −y′, and that for y ∈ D(A∗) we should
have additionally y(0) = y(1).

Thus
A∗y = −y′, D(A∗) = {x ∈ H;x′ ∈ H,x(0) = x(1) = 0}.
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We can easily see, that AA∗y = −y′′ and A∗Ay = −y′′, However domains of
these operators differ.

D(AA∗) = {x ∈ H;x′′ ∈ H and x(0) = x(1) = 0},

D(A∗A) = {x ∈ H;x′′ ∈ H and x′(0) = x′(1) = 0}.

The operator AA∗ has eigenfunctions sin kπx, with eigenvalues (kπ)2, k = 1, 2, . . . ,
The operator A∗A has eigenfunctions cos kπx, with eigenvalues k2π2, k = 0, 1, 2, . . . ,
all these eigenfunctions have norm 1√

2
except cos 0πx, which has norm 1. Thus

setting sk = sk(x) =
√

2 sin kπx, ck = ck(x) =
√

2 cos kπx, k = 1, 2, . . . and c0 = 1
we have expansions:

AA∗ =
∞∑
k=1

k2π2〈·, sk〉sk, A∗A =
∞∑
k=1

k2π2〈·, ck〉ck

Defining

B =
∞∑
k=1

kπ〈·, sk〉sk, C =
∞∑
k=1

kπ〈·, ck〉ck,

U =
∞∑
k=1

〈·, sk〉ck, V = −
∞∑
k=1

〈·, ck〉sk,

we have AA∗ = B2, A∗A = C2 with nonnegative selfadjoint operators B,C.
We have also Ack = −kπsk = BV ck = V Cck, and A∗sk = −kπck = −CUsk =

−UBsk
Now it is easy to see that we have polar decompositions:

A = BV = V C, A∗ = −CU = −UB.

U is an isometry, but its range is not all H, V is partial isometry with kernel spanned
by c0. Here U∗ = −V .

The operator A has a lot of eigenfunctions, namely any function eλx with complex
number λ is its eigenfunction. From this set of eigenfunctions we may get a subset,
which forms an orthonormal basis of H, for example ek = ek(x) = e2πkxi, k =
0,±1,±2, . . . .

Hence one may write

A = 2πi
∞∑
−∞

k〈·, ek〉ek,

and such equality implies that A is a normal operator, with polar decompositions
A = U0B0 = B0U0, where

B0 = 2π
∞∑
−∞

|k|〈·, ek〉ek, U0 = i

∞∑
−∞

signk〈·, ek〉ek.
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Of course it contradicts our previus considerations. What is wrong? We have
choosen a basis which consists from periodic functons, as a derivative of a periodic
function is again periodic we have silently restricted the domain of A to periodic
functions only. Thus the operator A with the above expansion this time has a
domain {x ∈ H;x′ ∈ H,x(0) = x(1)}. A similar efect happens, when one tries to
use sine basis (sk) for approximation operator A. This shows that one has to be
carefull while approximating unbounded operators.

1.3 Stone–von Neumann operator calculus

Operator calculus enables us to define f(A), where f is a complex valued functions
defined on a subset of the complex plane, and A an operator. If f is a polynomial
f(A) expands in powers of A in the same way as the polynomial.

In the case when A is a diagonalizable operator, i.e. A =
∑
λj〈·, ek〉ek we

set f(A) =
∑
f(λj)〈·, ek〉ek and this definiton is consistent with the definition for

polynomials.
Defining functions of selfadjoint operators is nearly the same task as that for

diagonal ones. Let µ be a nonnegative Borel mesure defined on Borel subsets of
real line. Let H = L2(µ), and A be an operator defined by Ax(t) = tx(t). This
operator is selfadjoint, its spectrum coincides with the support of µ, and for any
Borel function f the operator f(A) is defined by f(A)x(t) = f(t)x(t).

Operators of this kind are blocks from which any selfadjoint operator is com-
posed. Namely, if A is a selfadjoint operator acting in a Hilbert space H then
there exists a family {µα}α of nonnegative Borel measures and a unitary operator
U : H →

⊕
α L

2(µα) such that A = U∗(
⊕

αAα)U , where Aαx(t) = tx(t).
Spectral measure is a useful tool for studying selfadjoint operators. For each

Borel subset Ω ⊂ R E(Ω) is an orthogonal projection acting in H. Spectral measure
has properties similar to measure – E(Ω1)E(Ω2) = E(Ω1∩Ω2), E(∅) = 0, E(R) = I.
Moreover E(Ω)A = AE(Ω), and the operator A and any Borel measureable function
f of this opeator may be expressed as

A =
∫
tdE, f(A) =

∫
f(t)dE.

If ess sup |f | = supt≥0{t : E({x : |f(x)| ≥ t}) 6= 0} is bounded, then this quantity
equals ‖f(A)‖, if it is unbounded the operator f(A) is unbounded.

With the representation of A as the direct sum of operatores we can write

E(Ω)x = U∗

(⊕
α

χ(Ω)xα

)
U,

where χ(Ω) is the charecteristic function of the set Ω.
Note also that σ(A) = supp E =

⋃
α supp µα
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2 Regularization

While investigating the proofs of the results in [1], we can see that the most essentiall
parts are those which refer to properties of a selfadjoint operator. We shall give the
proofs in the case when H = L2(µ), and A is defined by Ax(t) = tx(t). We shall
refer to this case as the model case. The proofs in this case are the essence of the
proofs in the general case. These last are more technical and will be also presented.

2.1 Basic definitions

Definition 1. Family {gα}0<α<ᾱ of bounded Borel functions gα : R+ → R+ is
regularization if they are piecewise continuous in α and

(a) rα(t) = 1− tgα(t) → 0 as α→ 0,

(b) |rα(t)| = |1− tgα(t)| < γ1, for all α ∈ (0, ᾱ], t > 0,

(c)
√
t|gα(t)| < γ∗√

α
for all t > 0.

The solution of equation Ax = y will be denoted by x†, approximate solution xδα
of equation Ax = y is defined as

xδα = A∗gα(AA∗)yδ, where ‖yδ − y‖ ≤ δ.

The error may be splitted in two parts

x† − xδα = (x† − xα) + (xα − xδα), where xα = A∗gα(AA∗)y. (1)

x† − xα is called the bias. The error in algorithms for ill posed problems has two
sources, the bias – the error that algorithm produces on exact data, the second
source is the inexactness of given data which is measured by δ.

2.2 Impact of data error

Corollary 1. (c.f. [1, Corrolary 2]) With rα(t) = 1− tgα(t)

‖rα(A∗A)‖ ≤ γ1, ‖A∗gα(AA∗)‖ ≤ γ∗√
α
.

Proof. In our model case the thesis reads as

sup
t>0

|1− t2gα(t2)| ≤ γ1, sup
t>0

|tgα(t2)| ≤ γ∗√
α
,

so there is nothing to prove, as this is equivalent with definitions.
In the general case let A = BU be polar decomposition of A and E be spectral

measure for B ≥ 0, then A∗A = U∗B2U , AA∗ = B2 and

rα(A∗A) = U∗
∫
rα(t2)dEU, A∗gα(AA∗) = U∗

∫
tg(t2)dE.

Thesis follows form the fact that ‖rα(A∗A)‖ = ess sup t∈σ(A∗A)|rα(t)| ≤ γ1 and
similarily for ‖A∗gα(AA∗)‖.
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Lemma 1. (c.f. [1, Lemma 2]) With xα = A∗gα(AA∗)Ax† = A∗gα(AA∗)y we have

‖xα − xδα‖ ≤ γ∗
δ√
α
.

Proof. In the model case xα(t) = tgα(t2)y(t). Therefore

|xα(t)− xδα(t)| = |tgα(t2)(y(t)− yδ(t))| ≤ sup
t>0

|tgα(t2)||y(t)− yδ(t))|

≤ γ∗√
α
|y(t)− yδ(t)|

and this implies the thesis.
In the general case let BU = A be polar decomposition of A, and E be spectral

measure for B. Then xα = U∗Bgα(B2)y, xδα = U∗Bgα(B2)yδ and

xα − xδα = U∗Bgα(B2)(y − yδ)

and because
Bgα(B2) =

∫
tgα(t2)dE

where E is the spectral measure of B, we have

‖Bgα(B2)‖ ≤ sup
t>0

t|gα(t2)| ≤ γ∗√
α

and finally

‖xα − xδα‖ = ‖U∗Bgα(B2)(y − yδ‖ ≤ ‖U∗‖‖‖Bgα(B2)‖‖y − yδ‖ ≤ γ∗√
α
‖y − yδ‖.

2.3 Bias convergence

Using the notation of Lemma 1 we have

x† − xα =x† −A∗gα(AA∗)Ax† = U∗Ux† − U∗Bgα(B2)BUx†

=U∗(I −B2gα(B2))Ux† = U∗rα(B2)Ux†

and
‖x† − xα‖2 =

∫
r2α(t2)‖dEUx†‖2.

(‖dEUx†‖2 = dµ where the measure µ is defined by µ(Ω) = ‖E(Ω)Ux†‖2.) The
convergence ‖x† − xα‖ → 0 follows form definition of regularization (parts (a) and
(b)) and the Lebesgue’s dominated convergence theorem. However without any ad-
ditional knowledge about the solution and properties of regularization no estimation
are possible.
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2.4 Source condition

Source condition for the solution x† of the equation Ax = y is x† = ψ(A∗A)w.
We shall assume that ψ is an index function i.e.

ψ : (0,∞) → (0,∞),
ψ is increasing (non-decreasing) and continuous
limt→0 ψ(t) = 0.

Lemma 2. (c.f. [1, Lemma 7]) If the solution x† satisfies source condition x† =
ψ(A∗A)w then

‖x† − xα‖ ≤ ‖w‖ sup
s∈σ(A∗A)

|rα(s)|ψ(s). (2)

Proof. In the model case

x†(t)− xα(t) = ψ(t2)w(t)− t2gα(t2)ψ(t2)w(t) = ψ(t2)(1− t2gα(t2))w(t).

Hence
‖x† − xα‖ ≤ sup

t∈supp µ
|ψ(t2)rα(t2)| · ‖w‖.

Now the thesis follows form the fact that σ(A2) = {t2 : t ∈ σ(A)} and in the model
case σ(A) = supp µ.

In the general case with the notation used in proof of Lemma 6 we have A∗A =
U∗BBU and therefore

x† = ψ(A∗A)w = U∗ψ(B2)Uw,

xα =U∗Bgα(B2)y = U∗Bgα(B2)Ax†

=U∗Bgα(B2)BUU∗ψ(B2)Uw = U∗B2gα(B2)ψ(B2)Uw

Thus
x† − xα = U∗(I −B2gα(B2))ψ(B2)Uw. (3)

Note that
(I −B2gα(B2))ψ(B2) =

∫
(1− t2gα(t2))ψ(t2)dE

‖(I −B2gα(B2))ψ(B2)‖ ≤ sup
t∈σ(B)

|1− t2gα(t2)|ψ(t2) = sup
t∈σ(A∗A)

|r(t)|ψ(t), (4)

because σ(A∗A) may differ from σ(AA∗) = σ(B2) only by 0, and by the spectral
mapping theorem σ(B2) = {t2; t ∈ σ(B)}.

Because ‖U‖ = ‖U∗‖ = 1 (2) and (3) imply the thesis.
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3 Qualification

To effectively use the estimate in (2) we need to know some properties of the function
|rα(s)|ψ(s). Useful index functions ϕ’s has diserved for a special name.

An index function ϕ is a qualification of the regularisation gα if there are con-
stants γ = γϕ <∞, ᾱϕ such that

sup
s∈σ(A∗A)

|rα(s)|ϕ(s) ≤ γϕ(α), 0 < α ≤ ᾱϕ. (5)

Usually we do not know σ(A∗A) which appears in (5), all we know is that
σ(A∗A) ⊂ [0,∞), moreover qualification function is not defined at 0, therefore (5)
should be read as

sup
s>0

|rα(s)|ϕ(s) ≤ γϕ(α), 0 < α ≤ ᾱ. (6)

Proposition 1. (c.f. [1, Proposition 2]) Let gα be a regularization with some known
qualification ϕ. If ψ is an index function such that
there exists s0 > 0 such that the function s → ψ(s)/ϕ(s), 0 < s ≤ s0 is non-
increasing,

ψ(s) ≤ Cϕ(s) for s > s0 (GC)

then ψ is a qualification of gα.

Proof. If s ≤ α then ψ(s) ≤ ψ(α) and by the regularization definition (b)

|rα(s)|ψ(s) ≤ γ1ψ(α) for s ≤ α. (7)

We have
|rα(s)|ψ(s) = |rα(s)|ϕ(s)

ψ(s)
ϕ(s)

≤ γϕϕ(α)
ψ(s)
ϕ(s)

(8)

If α ≤ s ≤ s0 then
ψ(s)
ϕ(s)

≤ ψ(α)
ϕ(α)

.

This and (8) show that

|rα(s)|ψ(s) ≤ γϕϕ(α)
ψ(α)
ϕ(α)

= γϕψ(α) if α ≤ s ≤ s0 (9)

We write (8) in the form

|rα(s)|ψ(s) ≤ γϕψ(α)
ϕ(α)
ψ(α)

ψ(s)
ϕ(s)

.

If α ≤ s0 then

ψ(s0)
ϕ(s0)

≤ ψ(α)
ϕ(α)

or equivalently
ϕ(α)
ψ(α)

≤ ϕ(s0)
ψ(s0)
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Therefore
|rα(s)|ψ(s) ≤ γϕψ(α)

ϕ(s0)
ψ(s0)

ψ(s)
ϕ(s)

if α ≤ s0

If s ≥ s0 then ψ(s) ≤ Cϕ(s) and

|rα(s)|ψ(s) ≤ Cγϕ
ϕ(s0)
ψ(s0)

ψ(α) if α ≤ s0 and s ≥ s0. (10)

The inequalities (7), (8) and (10) show that ψ is a qualification for gα with constants
ᾱψ = min{ᾱ, s0} and γψ = min{Cγϕ ϕ(s0)

ψ(s0) , γϕ, γ1}.

It is easy to show, that if condition (GC) holds for some s0 then it holds for any
s0 > 0, the constant C may change only. However s0 appears also in the assumption
on the monotonicity of ψ(s)

ϕ(s) . Thus we cannot ignore the constant ᾱψ (c.f. [1, Remark
7]) .

Proposition 2. (c.f. [1, Proposition 3]) Let gα be a regularization with some known
qualification ϕ. If ψ is an index function such that
there exists s0 > 0 such that the function s → ψ(s)/ϕ(s), 0 < s ≤ s0 is non-
decreasing, and (GC) holds. then

|rα(s)|ψ(s) ≤ Cϕ(α) for α ∈ (0, ᾱ), s > 0.

Proof. We have
ψ(s)
ϕ(s)

≤ ψ(s0)
ϕ(s0)

for s ≤ s0,

hence from (8) it follows that

|rα(s)|ψ(s) ≤ γϕϕ(α)
ψ(s)
ϕ(s)

≤ γϕϕ(α)
ψ(s0)
ϕ(s0)

for s ≤ s0. (11)

On the other hand
ψ(s) ≤ Cϕ(s) for s > s0,

then again form (8) we have

|rα(s)|ψ(s) ≤ γϕϕ(α)
ψ(s)
ϕ(s)

≤ Cγϕϕ(α) for s > s0. (12)

The thesis follows form (11) and (12) with C replaced by γϕ max{C, ψ(s0)
ϕ(s0)}.

Lemma 2 and Propositions 1 and 2 lead to the bias estimation.

Proposition 3. Let gα be a regularization with qualification ϕ and x† = ψ(A∗A)w
a source condition with index function ψ, which satisfies (GC).

a) If the function ψ(s)
ϕ(s) is non-increasing in (0, s0] then for some C, ᾱ > 0

‖x† − xα‖ ≤ Cψ(α)‖w‖, α ∈ (0, ᾱ]
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b) If the function ψ(s)
ϕ(s) is non-decreasing in (0, s0] then for some C, ᾱ > 0

‖x† − xα‖ ≤ Cϕ(α)‖w‖, α ∈ (0, ᾱ]

Remark 1. Note that if we set

ϕ0(s) = ϕ(s), ψ0(s) = ψ(s) for s ∈ (0, s0]
ϕ0(s) = ϕ(s0), ψ0(s) = ψ(s0) for s ∈ (s0,∞)

then ϕ0 is also the qualification for gα (by Proposition 2) and the functions ϕ0, ψ0

satisfy the same assumptions as the functions ϕ,ψ in Propositions 2-4, therefore
also the same claims for these functions hold.

The expected solutions of ill posed problems may be very smooth, this smooth-
ness is measured with help of an index function of the source conditions. We end
this section showing that set of source conditions for any index function is nonvoid.

Theorem 1. (c.f. [1, Theorem 1]) Let A be a nonnegative selfadjoint operator
acting in H with kerA = {0}. Then

(a) For every x ∈ H and ε > 0 there exists a bounded index function ψ such that
the general source condition

x = ψ(A)w with w ∈ H and ‖w‖ ≤ (1 + ε)‖x‖

is satisfied.

(b) If x ∈ ranψ(A) for some unbounded index function ψ, then x ∈ ranψ0(A) for
every bounded index function ψ0 which coincides with ψ on (0, t0] for some t0 > 0.

Proof. of Th. 1 part (a) – model case version. We assume H = L2(µ), Ax(t) = tx(t)
and ‖x‖ = 1. We have ‖x‖2 =

∫∞
0 |x(t)|2dµ = 1, therefore for any α ∈ (0, 1) there

exists decreasing and converging to 0 sequence of numbers {τn}∞n=0 such that∫
(0,τn)

|x(t)|2dµ ≤ εαn, for n = 0, 1, . . . .

Define with β > 1 and such that αβ2 < 1

ψ0(t) =

{
1 for t ≥ τ0

β−n for t ∈ [τn, τn−1), n = 1, 2, . . . , .
(13)

Then ∫
[τn,τn−1)

|ψ−1
0 (t)x(t)|2dµ ≤ εβ2nαn−1
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and
‖ψ−1

0 (A)x‖2 =
∫

(0,∞)
|ψ−1

0 (t)x(t)|2dµ

=
∫

[τ0,∞)
|x(t)|2dµ+

∞∑
n−1

∫
[τn,τn−1)

|ψ−1
0 (t)x(t)|2dµ

≤1 +
ε

α

∞∑
n=1

(αβ2)n = 1 + ε
β2

1− αβ2
.

Thus with α = 1
4 , β2 = 4

3 (then β2

1−αβ2 = 2) we have ‖ψ−1
0 (A)x‖ ≤

√
1 + 2ε < 1+ε

and therefore w = ψ−1
0 (A)x satisfies the thesis (part (a)).

If we require ψ to be a continuous function we may define it as a continuous
piece-wise linear function, linear in the intervals [τn, τn−1] and such that ψ(τn) =
ψ0(τn). Then ψ0(t) ≥ ψ(t) and ‖ψ−1(A)x‖2 =

∫
|ψ−1(t)x(t)|2 ≤

∫
|ψ−1

0 (t)x(t)|2 =
‖ψ−1

0 (A)x‖2 and the thesis is satisfied for ψ.

Proof. of Th. 1 part (a) – general version Let E be spectral measure for operator A,
ε > 0 and α = 1

4 . We can find decreasing and converging to 0 sequence of numbers
{τn}∞n=0 such that ‖E((0, τn))x‖2 < εαn. With ψ0 defined by (13) and β2 = 4

3 we
have

‖ψ0(τn)−1E([τn, τn−1)x‖2 ≤ εαn−1β2n

Because
∞∑
n=1

ψ−1
0 (τn)−1E([τn, τn−1) + E((τ0,∞)) = ψ−1

0 (A)

we have

‖ψ−1
0 (A)x‖2 =

∞∑
n=1

‖ψ−1
0 (τn)−1E([τn, τn−1)x‖2 + ‖E((τ0,∞))x‖2

< 1 + 2ε < (1 + ε)2

Thus w = ψ−1
0 (A)x satisfies part (a) of the thesis.

Proof. of part (b). Assume H = L2(µ) and action of A on a function is its multi-
plication by the argument. Then

‖ψ0f‖2 =

(∫
(0,t0)

+
∫

[t0,∞)

)
|ψ0(t)f(t)|2 ≤

∫
(0,t0)

|ψ(t)f(t)|2

+sup
t
ψ2

0(t)
∫

[t0,∞)

|f(t)|2 ≤ ‖ψf‖2 + sup
t
ψ2

0(t)‖f‖2.

In the general case, with each nonzero x ∈ H we may associate Borel measure
on the line by µ(Ω) = ‖E(Ω)x‖2. For any Borel measureable function ψ we then
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have

‖ψ(A)x‖2 = ‖
∫
ψ(t)xdE‖2 =

∫
‖ψ(t)xdE‖2 =

∫
|ψ(t)|2‖xdE‖2

=
∫
|ψ(t)|2dµ.

The proof is analogous to the proof for H = L2(µ) with f = f(t) = 1.

4 Convergence rates

With assumptions of Proposition 3 and (1) we get error estimates in the form

‖x† − xδα‖ ≤ Cψ(α)‖w‖+ γ∗
δ√
α
, α ∈ (0, ᾱ]

‖x† − xδα‖ ≤ Cϕ(α)‖w‖+ γ∗
δ√
α
, α ∈ (0, ᾱ]

If ψ(s) = sp then for each fixed δ we may find α = α(δ) which minimizes the
right hand side in these equalities. With such ψ or ϕ we get estimation of the form

‖x† − xδα‖ ≤ C

(
αp +

cδ√
α

)
.

The minimum is attained for α =
(
cδ
2p

) 2
2p+1 and equals cδ

2p
2p+1 with some new con-

stant c. With this choice of α we get

‖x† − xδα‖ ≤ Cδ
2p

2p+1 .

5 Splitting an operator

While working with an unbounded operator A we investigate what happens in a
neighborhood of zero of its spectrum and then we add some auxilary conditions so
that our analysis may be applied to the operator considered. Why not to split the
operator A into a bounded and an unbounded part? This idea has been used in [3],
however in a particular case. The general approach may be realised with help of the
polar decomosition and the spectral measure.

Let A = BU be the polar decomposition of A, A : D(A) → H2, D(A) ⊂ H1,
where H1,H2 are Hilbert spaces. B : D(B) → H2, D(B) ⊂ H2 is a positive
selfadjoint operator, and U : H1 → H2 is an isometry.

With E - the spectral measure of B we set

H2,b = E([0, s0])H2, H2,u = E((s0,∞))H2,

H1,b = U−1H2,b, H1,u = U−1H2,u.
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Now
Ab = A|H1,b

:H1,b → H2,b,

Au = A|H1,u :D(Au) → H2,u, D(Au) = D(A) ∩H1,u.

In the model case H1,b = H2,b = L2
µ([0, s0]), H1,u = H2,u = L2

µ((s0,∞))
Ab is a bounded operator ‖Ab‖ ≤ s0, Au may be unbounded, however it has a

bounded inverse, because for x ∈ D(Au) ⊂ H1,u we have

‖Aux‖ = ‖BUx‖ ≥ s0‖Ux‖ = s0‖x‖.

With this splitting regularization splits also

xδα = A∗gα(AA∗)yδ = A∗bgα(B2)yδb ⊕A∗ugα(B2)yδu,

where yδb = U−1E([0, s0])Uyδ, yδu = U−1E((s0,∞))Uyδ, and therefore
‖yδu‖2 + ‖yδb‖2 = ‖yδ‖2.

Regularization theory for bounded operators is known it suffices to check, how
it may be applied for unbounded operators with bounded inverse.

If ϕ is a qualification for {gα} then for any s0 > 0

|rα(ξ)|ϕ(s0) ≤ |rα(ξ)|ϕ(ξ) ≤ sup
s>0

|rα(s)|ϕ(s) ≤ γϕ(α), 0 < α ≤ ᾱ, ξ > s0.

Then we can estimate some part of bias.
In the model case we have

E([s0,∞))(x† − xα) = (I −A2
ugα(A2

u))E([s0,∞))x†

and

‖E([s0,∞))(x† − xα)‖2 =
∫

[s0,∞)

|rα(t2)x†(t)|2 ≤ γ2ϕ2(α)
ϕ2(s20)

‖E([s0,∞))x†‖2

In the general case we have

U∗E([s0,∞))U(x† − xα) = U∗(I −B2gα(B2))E([s0,∞))Ux†

and therefore

‖U∗E([s0,∞))U(x† − xα)‖2 =
∫

[s0,∞)
r2α(t2)‖dEUx†‖2

≤ γ2ϕ2(α)
ϕ2(s20)

‖E([s0,∞))Ux†‖2.

Hence
‖U∗E([s0,∞))U(x† − xα)‖ ≤ γϕ(α)

ϕ(s20)
‖x†‖.
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Part (c) of regularization definition is mainly applicable to operators for which
their positive part in polar decompsition is not strictly bounded by 0 from below.
It is not the case for Au.

‖U∗E([s0,∞))U(xα − xδα)‖ ≤ sup
t≥s0

t|gα(t2)‖y − yδ‖ ≤ δ sup
t≥s0

t|gα(t2).

For Tikhonov regularization gα(t) = 1
t+α and

sup
t≥s0

t|gα(t2) =
s0

s20 + α
≤ s−1

0 for α ≤ s20

because the derivative or t
t2+α

is negative for α ≤ s20. Thus the bound does not
depend on α.

The results of this paper have been presented at the Numerical Analysis Seminar
in IM PAN. Let me thank prof. Regińska for encouraging me to write down these
results and helpful comments.
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