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Abstract

This paper is based on a paper of B. Hofmann, P. Matheé and H. von
Weizsédcker. Basic notions in regularization theory for linear operators are in-
vestigated We show how one may get the fundamental regularization results
with various Hilbert space methods.

1 Preface

This preprint presents the results published in [1], however the proofs differ from
the original ones. The aim was to present the theory as simple as possible with hope
it will be easy to understand.

This section summarize basic knowledge from the theory of operators acting in
Hilbert space. The facts presented here are all what we need to present regularization
theory of linear operators acting in Hilbert spaces.

The operators we consider are acting in a Hilbert space H. We assume that the
domains of these operators are dense in H. The domain, range and kernel of an
operator A are denoted by D(A),ran A, ker A, respectively. Let us recall some well
known definitions.

Operator A is closed if for any sequence {zy}22 such that z, € D(A),
|xn, — zol| — 0 and ||Az,, — y|| — O for some y € H implies xy € D(A) and Azg = y.

Operator A is closable if there exists a closed extension of A, i.e. there exists a
closed operator B such that D(A) C D(B) and Az = Bz for x € D(A).

An operator B is adjoint to A if (Az,y) = (x, By) for any x € D(A). The domain
of B is the set of all those y € H that there exists z € H such that (Az,y) = (z, 2).
Then z = By and we write A* = B.

1.1 Polar decomposition

Because A*A > 0 there exists the operator B > 0 such that A*A = B2.
Let us define Bf = O ker B @ (B p(B)n(ker B)L)_l), cl denotes here the closure
of an operator.



We have the identity
(Ax, Ay) = (Bzx, By) for x,y € D(A).
Note that
ran B = (ker B)* = (ker A*A)* = (ker A)* = ran A*.
Hence for u,v € ran B we have the identity
(ABTw, ABTv) = (u,v).

which shows that AB' is an isometry on ran B. The closure U of AB' is partial
isometry — it isometrically transforms ran B = ran A* on ranU = ran ABT = ran A
and vanishes on its kernel — ker U = ker Bt = ker B = ker A.

We have

UBz = AB'Bz = Az for z € D(A).

A = UB is called right polar decomposition of A.

U* is also a partial isometry — it isometrically transforms ran A* on ran A and
ker U* = (ranU)+ = (ran A)+ = ker A*.

Moreover the equality

(U*Uu,v) = (Uu,Uv) = (u,v) valid for u,v € ran B = ran A*

shows that

0 for u € ker A.

Therefore A = UBU*U = CU, where C = UBU* is also a selfadjoint non-
negative operator. This is the left polar decomposition of A. Note that U is

the same in both polar decompositions. The above in particullary implies that
AA* =UBU* = U(A*A)U*.

U — {u for u € ran A*,

1.2 Examples

Let H = L?(0,1) and A be the differentiation operator Ax(t) = 2/(t). D(A) = {z €
H such that 2’ € H}. A is closed. What is A*? The equality

(z,y) = [a'g == [aif + @)l

shows that if supp y C (0,1) then A*y = —y/, and that for y € D(A*) we should
have additionally y(0) = y(1).
Thus
A*y=—y ,D(A*) ={z € H;2' € H,z(0) = z(1) = 0}



We can easily see, that AA*y = —y” and A*Ay = —y”, However domains of
these operators differ.

D(AA*) ={z € H;2" € H and z(0) = z(1) = 0},

D(A*A) ={z € H;2" € H and 2/(0) = 2/(1) = 0}.

The operator AA* has eigenfunctions sin k7w, with eigenvalues (k)% k =1,2,...,
The operator A* A has eigenfunctions cos kmx, with eigenvalues k*7%, k =0,1,2,...,
all these eigenfunctions have norm % except cosOmx, which has norm 1. Thus
setting s;, = sp(z) = V2sinkrz, ¢ = cp(x) = V2coskrz, k =1,2,... and ¢y = 1
we have expansions:

AA* = Z K, se)se, ATA = Z K22 (-, e e
k=1 k=1
Defining

B = ka(-,sk>sk, C= Zkﬂ(-,ck>ck,
k=1 k=1

o0

U= Z(-,sk>ck, V=- Z<"Ck>8k’
k=1

k=1

we have AA* = B?, A*A = C? with nonnegative selfadjoint operators B, C.

We have also Ac,, = —kns, = BV, = VCoe, and A*sy = —kmwe, = —CUs, =
—UBs k

Now it is easy to see that we have polar decompositions:

A=BV =VC, A*=-CU=-UB.

U is an isometry, but its range is not all H, V is partial isometry with kernel spanned
by co. Here U* = V.

The operator A has a lot of eigenfunctions, namely any function e** with complex
number A is its eigenfunction. From this set of eigenfunctions we may get a subset,
which forms an orthonormal basis of H, for example e = eg(x) = €™ k =
0,41,4+2,....

Hence one may write

A

A =2mi Z k<-, 6k>€k,

and such equality implies that A is a normal operator, with polar decompositions
A= U()BO == BoUo, where

BU = 27‘(’2 |k"<-,€k>6k, UO = iZsignk(-,ek>ek.



Of course it contradicts our previus considerations. What is wrong? We have
choosen a basis which consists from periodic functons, as a derivative of a periodic
function is again periodic we have silently restricted the domain of A to periodic
functions only. Thus the operator A with the above expansion this time has a
domain {z € H;2' € H,z(0) = z(1)}. A similar efect happens, when one tries to
use sine basis (si) for approximation operator A. This shows that one has to be
carefull while approximating unbounded operators.

1.3 Stone—von Neumann operator calculus

Operator calculus enables us to define f(A), where f is a complex valued functions
defined on a subset of the complex plane, and A an operator. If f is a polynomial
f(A) expands in powers of A in the same way as the polynomial.

In the case when A is a diagonalizable operator, i.e. A = > A;(-,ex)ep we
set f(A) = > f(Nj)(, ex)er and this definiton is consistent with the definition for
polynomials.

Defining functions of selfadjoint operators is nearly the same task as that for
diagonal ones. Let p be a nonnegative Borel mesure defined on Borel subsets of
real line. Let H = L?(u), and A be an operator defined by Ax(t) = tz(t). This
operator is selfadjoint, its spectrum coincides with the support of u, and for any
Borel function f the operator f(A) is defined by f(A)z(t) = f(t)z(t).

Operators of this kind are blocks from which any selfadjoint operator is com-
posed. Namely, if A is a selfadjoint operator acting in a Hilbert space H then
there exists a family {yuq}o of nonnegative Borel measures and a unitary operator
U:H— @, L*(ua) such that A = U*(P, Aa)U, where Ayz(t) = tz(t).

Spectral measure is a useful tool for studying selfadjoint operators. For each
Borel subset 2 C R E(€2) is an orthogonal projection acting in H. Spectral measure
has properties similar to measure — E(21)E(Q2) = E(Q1NQs), E(0) =0, E(R) = I.
Moreover E(2)A = AE(Q2), and the operator A and any Borel measureable function
f of this opeator may be expressed as

A= /tdE, F(A) = /f(t)dE.
If ess sup |f| = sup;>o{t : E({z : [f(z)| > t}) # 0} is bounded, then this quantity

equals || f(A)]], if it is unbounded the operator f(A) is unbounded.
With the representation of A as the direct sum of operatores we can write

E(Q)z =U* (@ X(Q)xa> U,

where x(2) is the charecteristic function of the set .
Note also that o(A) = supp £ = [, supp fa



2 Regularization

While investigating the proofs of the results in [1], we can see that the most essentiall
parts are those which refer to properties of a selfadjoint operator. We shall give the
proofs in the case when H = L?(u), and A is defined by Ax(t) = tz(t). We shall
refer to this case as the model case. The proofs in this case are the essence of the
proofs in the general case. These last are more technical and will be also presented.

2.1 Basic definitions

Definition 1. Family {ga}o<a<a of bounded Borel functions g, : RT — RT is
regularization if they are piecewise continuous in « and

(a) 7o(t) =1 —tga(t) — 0 as a — 0,

(b) |ra(t)] =11 —tga(t)| < y1, for all « € (0,a], t > 0,

(c) Vtlga(t)| < j/a for all t > 0.

)

The solution of equation Az =y will be denoted by =T, approzimate solution x°

of equation Az = y is defined as
xl, = A*go(AA" ), where ||y’ —y|| < 6.
The error may be splitted in two parts

ot — 20 = (2 — z4) + (zq — 20), where 24 = A%go(AA")y. (1)

(e}

zf — x4 is called the bias. The error in algorithms for ill posed problems has two
sources, the bias — the error that algorithm produces on exact data, the second
source is the inexactness of given data which is measured by §.

2.2 Impact of data error

Corollary 1. (c.f. [1, Corrolary 2]) With ro(t) =1 — tga(t)

Ira(A"A) <, 14%ga(A47)] € T

Proof. In our model case the thesis reads as

2 2 2 TV«
sup|l —1© )| <v1, sup|tga(t)| < ,
o | 9o (t7)] o [tga(t7)] Ja

so there is nothing to prove, as this is equivalent with definitions.
In the general case let A = BU be polar decomposition of A and F be spectral
measure for B > 0, then A*A = U*B?U, AA* = B? and

ra(A*A) = U / ro(2)dEU, A*ga(AA®) = U / tg(#2)dE.

Thesis follows form the fact that |[ro(A*A)[| = ess sup ;e,(a-4)7a(t)| < 71 and
similarily for [|A*gn(AA")]|. O



Lemma 1. (c.f. [1, Lemma 2]) With x, = A*go(AA*) Azt = A*go(AA*)y we have
0 =21 < 7=
Proof. In the model case x4 (t) = tg,(t?)y(t). Therefore
[2a () = 2o (O] = ltga () (D) = 5" (O] < sup ltga(E)]Iy(1) =y (1)

< Tely®) =y (1)

and this implies the thesis.
In the general case let BU = A be polar decomposition of A, and E be spectral
measure for B. Then z, = U*Bga(B?)y, 5 = U*Bg,(B%)y’ and

To — x4 = U*Bga(B*)(y — 1)
and because
Bg.(B?) = /tga(tz)dE
where F is the spectral measure of B, we have

LS

Bga(B?)|| < supt|ga(t?)| <
| ( )H_t>10) 9a(t7)] < o
and finally

Ty =)
Va
0

lza — 20/l = 1U* Bga(B*)(y — Il < [U* |11 Bga(BA)Ily = 4°ll <

2.3 Bias convergence

Using the notation of Lemma 1 we have

ol — xq =21 — A*go(AA") Az’ = U*Ux' — U*Bgo(B?)BU !
=U*(I — B%g,(B?)Uz" = U*ro(B*)Uz'

and
ot = za]l? = / 2 ()| dEU= .

(|[dBEUzT||> = du where the measure p is defined by u(Q) = [|[E(Q)UxT||2.) The
convergence ||zt — 24| — 0 follows form definition of regularization (parts (a) and
(b)) and the Lebesgue’s dominated convergence theorem. However without any ad-
ditional knowledge about the solution and properties of regularization no estimation
are possible.



2.4 Source condition

Source condition for the solution z' of the equation Az =y is T = (A*A)w.
We shall assume that v is an index function i.e.
Y2 (0,00) — (0, 00),
1) is increasing (non-decreasing) and continuous
Lemma 2. (c.f. [1, Lemma 7]) If the solution x' satisfies source condition x¥ =
Y(A*A)w then
lz" —zall < Jlwl sup [ra(s)lw(s). (2)

s€o(A*A)

Proof. In the model case

2l (t) = za(t) = P(E)w(t) — ga ()Y ()w(t) = Y(1*)(1 — ga(t*))w(?).

Hence

lof 2ol < sup  [$(E)ra(t®)] - [wl.
tesupp p

Now the thesis follows form the fact that o(A?) = {t?: ¢ € 0(A4)} and in the model
case o(A) = supp u.

In the general case with the notation used in proof of Lemma 6 we have A*A =
U*BBU and therefore

zt = Y(A*A)w = U (B Uw,

Lo =U*Bga(B?)y = U* Bgo(B?)Ax’
=U*Bgo(B*)BUU*(B*)Uw = U* B¢, (B*)%/(B*)Uw
Thus
o' — o = U*(I — B%g4(B?))y(B*)Uw. (3)

Note that
(I — B?ga(B?)¢(B?) = / (1 = ga(t)y(t*)dE

I(Z = B?9a(B*)(B)|| < sup [1—ga(t*)[Y(t*) = sup [r()y(t),  (4)
tea(B) tea(A*A)
because o(A*A) may differ from o(AA*) = o(B?) only by 0, and by the spectral
mapping theorem o(B?) = {t?;t € o(B)}.
Because ||U|| = ||U*|| =1 (2) and (3) imply the thesis. O



3 Qualification

To effectively use the estimate in (2) we need to know some properties of the function
|ra(s)|1(s). Useful index functions ¢’s has diserved for a special name.

An index function ¢ is a qualification of the regularisation g, if there are con-
stants v = 7, < 00, @, such that

sup  |ra(s)]p(s) < vp(a), 0<a < a,. (5)
s€o(A*A)

Usually we do not know o(A*A) which appears in (5), all we know is that
o(A*A) C [0,00), moreover qualification function is not defined at 0, therefore (5)
should be read as

sup [ra(s)[(s) < vp(a), O<a<a (6)
S
Proposition 1. (c.f. [1, Proposition 2]) Let g, be a reqularization with some known
qualification . If Y is an index function such that
there exists so > 0 such that the function s — (s)/¢(s), 0 < s < s¢ is non-
mncreasing,

U(s) < Cp(s)  for s> so (GO)
then v is a qualification of g, .

Proof. If s < « then 9(s) < 1(«) and by the regularization definition (b)

Ira(s)l(s) < my(a) for s <o (7)
e have ¥(s) ¥(s)
ra(s)[¥(s) = ’T“(S)Ms)gp(s) < ’YW(O‘)@(S) (8)
If o« < s < s then
¥(s) _ vla)
e(s) = p(a)
This and (8) show that
ra(s)[(s) < 1o(@) 2D — 5 (a) ifa<s < )
e(a)
We write (8) in the form
() P(s)
|T‘a(S)’w(S) g 7<P¢(a)w(a) (p(S)

If o < s then




Therefore

p(s0) ¥(s) .
ra(s)|Y(s) < v.¥(a ifa<s
| ( )| ( ) Yoo ( )w(SO) QO(S) 0
If s > sg then ¥(s) < Cy(s) and
[ra(s)|(s) < C'ysocp(so)w(a) if @« <sp and s > sp. (10)
¥(s0)
The inequalities (7), (8) and (10) show that v is a qualification for g, with constants
ay = min{a, so} and vy = min{C’mp%,mp,vl}. O

It is easy to show, that if condition (GC) holds for some sq then it holds for any
so > 0, the constant C' may change only. However sy appears also in the assumption

on the monotonicity of Zﬁgi; . Thus we cannot ignore the constant a, (c.f. [1, Remark
7).

Proposition 2. (c.f. [1, Proposition 3]) Let g, be a reqularization with some known
qualification . If Y is an index function such that

there exists sg > 0 such that the function s — (s)/¢(s), 0 < s < s¢ is non-
decreasing, and (GC) holds. then

ITa(s)|Y(s) < Cp(a)  for a € (0,a),s > 0.
Proof. We have

¥(s) - vls0) o<
w(s) ~ »(s0)
hence from (8) it follows that
¥(s) ¥(s0)
ra(8)|(s) < Yol < Yl for s < sg. 11
(o)) < 1pp(0) S < o) S : ()
On the other hand
P(s) < Cp(s) for s> s,
then again form (8) we have
U(s)
[ra(s)l(s) < 7@090(04)()0(8) < Cypp(a) - for s > so. (12)
The thesis follows form (11) and (12) with C replaced by 7, max{C, zgzg; }. O

Lemma 2 and Propositions 1 and 2 lead to the bias estimation.

Proposition 3. Let g, be a regularization with qualification ¢ and x¥ = ¢ (A* A)w
a source condition with index function 1, which satisfies (GC).

a) If the function % is non-increasing in (0, sg| then for some C,a > 0

2" = 2|l < CY ()|l « € (0,a]



b) If the function % is non-decreasing in (0, so] then for some C,a >0

2" — 2] < Co(@)|wll, o€ (0,q]
Remark 1. Note that if we set

wo(s) = w(s), to(s) =(s) for s € (0, so]
@o(s) = ¢(s0), to(s) =1(s0)  fors € (so,00)

then o is also the qualification for g (by Proposition 2) and the functions ¢g, ¢y
satisfy the same assumptions as the functions v, in Propositions 2-4, therefore
also the same claims for these functions hold.

The expected solutions of ill posed problems may be very smooth, this smooth-
ness is measured with help of an index function of the source conditions. We end
this section showing that set of source conditions for any index function is nonvoid.

Theorem 1. (c.f. [1, Theorem 1]) Let A be a nonnegative selfadjoint operator
acting in H with ker A = {0}. Then

(a) For every x € H and € > 0 there exists a bounded index function v such that
the general source condition

x=YP(A)w with w € H and [|Jw|| < (1 + ¢)]|z||

18 satisfied.
(b) If x € rany(A) for some unbounded index function v, then x € rany(A) for
every bounded index function 1y which coincides with ¥ on (0,to] for some ty > 0.

Proof. of Th. 1 part (a) — model case version. We assume H = L?(u1), Az(t) = tx(t)
and ||lz|| = 1. We have ||z|* = [;° |#(¢)]*dp = 1, therefore for any « € (0,1) there
exists decreasing and converging to 0 sequence of numbers {7,,}7 ; such that

/ |z(t)|?dp < ea™, for n =0,1,. ...
(0,7)

Define with 3 > 1 and such that af% < 1

Yo(t) =

1 fort > 79
{ B (13)

Bg~"fort € [T, Tn-1), n=1,2...,.

Then
/ s (1) (1) Pyt < 5?0
[Tn,Tn—1)

10



and

v el = [ o 0o
(0,00)

- /[ . 2du+z ™ (1) (0) 2y

TnaTn 1

m

o0 2
2 ﬂ

— (B )" =1+ 5
e o
Thus with o = 1, 3% = £ (then m = 2) we have |[¢; ! (A)z|| < VI +2e < 1+

and therefore w = v, ' (A)x satisfies the thesis (part (a)).

If we require ¢ to be a continuous function we may define it as a continuous
piece-wise linear function, linear in the intervals [Tn,Tn 1] and such that ¢(Tn) =

wo(r). Then go(t) > (1) and [[p~ (A)z|® = [ v~ (H2@)? < [ |5 )z =
||1/151(A)33H2 and the thesis is satlsﬁed for ). =

Q

Proof. of Th. 1 part (a) — general version Let E be spectral measure for operator A,
e>0and a= Z We can find decreasing and converging to 0 sequence of numbers
{72322 such that ||[E((0,7,))z||* < ea™. With ¢ defined by (13) and 5% = § we
have

HwO(Tn)ilE([Tnv Tn—l)xH2 < Ean71ﬂ2n

Because

> o H(7) T E (7 Tam1) + E((r0,00)) = 45 (4)

n=1

we have

Iyt (A)el® = ZH% () " E([7n, Ta—1)2|* + | E((70, 00)) |
n=1
<142 < (14¢)?

Thus w = 1, ' (A)z satisfies part (a) of the thesis. O

Proof. of part (b). Assume H = L?(u) and action of A on a function is its multi-
plication by the argument. Then

o2 = (/ o / )rwo / (1)

(0,t0)

rsupud) [ 170F < [sIP +sup )17
[to,00)

In the general case, with each nonzero x € H we may associate Borel measure
on the line by u(Q) = ||E()x||?>. For any Borel measureable function ¢ we then

11



have
Joa)e)? = || [oadslP = [JodelP = [ oPledE)?
— [ 1w
The proof is analogous to the proof for H = L2(u) with f = f(t) = 1. 0

4 Convergence rates

With assumptions of Proposition 3 and (1) we get error estimates in the form

Jof — 2]l < Cv@uwl + 7= ae(©.a
T 0 .
ot — 2l < Cpl@)lwll + e, e (0,4

Va'
If ¢(s) = sP then for each fixed 0 we may find o = «(d) which minimizes the
right hand side in these equalities. With such 1 or ¢ we get estimation of the form

o
T _ .0 < D ¢
||« x| < C (a + \F) .

5
2p
stant ¢. With this choice of a we get

2 2
.. . . 2p+1 — .
The minimum is attained for a = ( ) """ and equals c¢d2»+1 with some new con-

ot — 2| < o8

5 Splitting an operator

While working with an unbounded operator A we investigate what happens in a
neighborhood of zero of its spectrum and then we add some auxilary conditions so
that our analysis may be applied to the operator considered. Why not to split the
operator A into a bounded and an unbounded part? This idea has been used in [3],
however in a particular case. The general approach may be realised with help of the
polar decomosition and the spectral measure.

Let A = BU be the polar decomposition of A, A : D(A) — Hy, D(A) C Hj,
where Hp,Hs are Hilbert spaces. B : D(B) — Ha, D(B) C Hj is a positive
selfadjoint operator, and U : H; — Hsy is an isometry.

With E - the spectral measure of B we set

Hyy = E([0,50])Ha, Hoy = E((0,00))Ho,
Hipy=U 'Hyy, Hi,=U 'Hy,.

12



Now
Ap = Alp,, :Hip — Hap,

A, = A’Hl,u D(Au) — H27u, D(Au) = D(A) N Hl,u'
In the model case Hyp = Hap = Li([O, s0]), Hiu = Hoy = Li((so, 00))

Ap is a bounded operator || 4| < sg, A, may be unbounded, however it has a
bounded inverse, because for x € D(A,) C H;, we have

[Auz|| = [BUz|| = sol|lUz| = sol|z[].
With this splitting regularization splits also
zo = A" ga(AA" )Y’ = A5ga(B?)yp © Alga(B?)ys,

where y) = U~LE([0, 50))Uy°, v}, = ULE((s0,00))Uy°, and therefore
lyall® + llyg 117 = 1ly° 1.

Regularization theory for bounded operators is known it suffices to check, how
it may be applied for unbounded operators with bounded inverse.

If ¢ is a qualification for {g,} then for any sy > 0

ra(€)l¢(s0) < [ra(&)lp(§) < supfra(s)lp(s) < yela), 0 <a<a&> s

Then we can estimate some part of bias.
In the model case we have

E([s0,00)) (" = 2a) = (I = Ajga(A7)) E([s0, 00))a!

and

2,2 «
1B (o000l ~ o) = [ ()0 < Lf@%))HE([sO,oo»xW

[80700)
In the general case we have
U* E([s0,00))U (2! — 2a) = U(I — B2ga(B))E([s0,50))Ua

and therefore

|0 B (50, 00))U (af — a20) |2 = /[ 2 (2) | dEU
50,00

Y2 o% ()

(s

1E([s0, 00)) Uz |12,

Hence

" B0,V o' = 2] < 205 ),

13



Part (c) of regularization definition is mainly applicable to operators for which
their positive part in polar decompsition is not strictly bounded by 0 from below.
It is not the case for A,.

IU* E([50,00))U (e — 22)[| < sup tlga(t*)[ly — 4’| < & sup tlga (£*).
t>so t>s0

For Tikhonov regularization g, (t) = w%a and

sup t|ga (t%) = 280 < syt fora<sf

t>s0 spta

because the derivative or
depend on a.

ﬁ is negative for a < sg. Thus the bound does not

The results of this paper have been presented at the Numerical Analysis Seminar
in IM PAN. Let me thank prof. Reginiska for encouraging me to write down these
results and helpful comments.
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