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Preface

The ninth meeting in Warsaw on spectral properties of difference and differen-
tial operators was held in July 2007. This meeting was devoted to the presentation
of the recent results of the participants but also to the continuation of collaboration
between some of them. There were 15 lectures delivered during the meeting. In par-
ticular the following topics were discussed: direct and inverse spectral problems of
Sturm-Liouville operators and Jacobi matrices, coherent states method for counting
function, selfadjoint subspace of Boltzman operator, inverses of generators of C0 semi-
groups, spectral concentrations of one-dimensional Schrödinger operators, Schrödinger
and Laplace operators on metric graphs.

The extended abstracts contained in this book were sent by some participants of
the meeting. The complete list of the lectures presented during the meeting is included.

v
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Spectral concentration and resonances for
one-dimensional Schrödinger operators with integrable

potentials

Daphne J. Gilbert

School of Mathematical Sciences
Dublin Institute of Technology, Ireland

daphne.gilbert@dit.ie

1 Introduction

We consider the time independent Schrödinger operator H associated with the singular
Sturm-Liouville boundary value problem

Lu := −u′′ + q(x)u = λu, x ≥ 0, (1)

u(0) = 0, (2)

where q ∈ L1([0,∞)) is a real valued potential function, λ ∈ C denotes the spectral
parameter, and the domain of H, D(H), is defined by

D(H) := {f ∈ H : Lf ∈ H; f, f ′ locally a.c.; f(0) = 0},

with H := L2([0,∞)). In this case it is well known that H is self-adjoint, so that
its spectrum, σ(H), is real; moreover, the spectrum is purely absolutely continuous
on (0,∞), and the negative part, if any, consists of isolated eigenvalues, possibly
accumulating at λ = 0. The point 0 may also be an eigenvalue, but only if xq(x) ∈
L1([0,∞)).

1.1 The spectral function

It is convenient in the context to use the spectral function, ρ(λ) : < → <, rather
than the resolvent operator, (H − λI)−1. The spectral function satisfies ρ(0) = 0, is
non-decreasing on <, and is related to the spectrum by

σ(H) = < \ {λ ∈ < : there exists a neighbourhood N(λ) of λ
such that ρ(λ) is constant on N(λ)}

More informally, σ(H) may be regarded as the closure of the set of points of increase
of ρ(λ). Other notable features of the spectral function which hold for integrable
potentials include:

• ρ(λ) has jump discontinuities at the eigenvalues of H, but is otherwise constant
for λ ∈ (−∞, 0],

• for λ > 0, ρ(λ) is purely absolutely continuous, with spectral density, ρ′(λ),
satisfying ρ′(λ) > 0,

• if xnq(x) ∈ L1([0,∞)), then ρ(n+1)(λ) exists and is continuous for λ > 0, n =
0, 1, 2, · · · , where ρ(n+1)(λ) denotes the nth derivative of the spectral density.
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1.2 Spectral concentration

In the context of integrable potentials, the concept of spectral concentration refers to
a local intensification of the continuous spectrum. More precisely, we have

Definition A point λc > 0 is said to be a point of spectral concentration of H if ρ′(λ)
has a local maximum at λ = λc.

The following immediate consequence of this definition was noted in [1] by Eastham:
if Λ0 ≥ 0 is such that ρ′′(λ) exists and has one sign for λ > Λ0, then Λ0 is an upper
bound for points of spectral concentration on <. This fact has been used in various
schemes for determining upper bounds for points of spectral concentration (see e.g.
[1], [4]).

1.3 Resonances

There is a long standing conjecture that the phenomenon of spectral concentration
as defined above is closely linked to resonances on the so-called unphysical sheet. To
demonstrate the nature of this conjecture, we first introduce the Jost function for
integrable potentials. Suppose that λ ∈ C \ {[0,∞)}, and let z =

√
λ be chosen so

that =z ≥ 0, =z 6= 0. Then the Jost solution, χ(x, z), of (1) is the unique solution
satisfying

χ(x, z) ∼ eizx, χ′(x, z) ∼ izeizx

as x → ∞, where ′ denotes differentiation with respect to x. Evidently, χ(x, z) and
χ′(x, z) are in L2([0,∞); dx) for =z > 0; moreover, χ and χ′ are analytic in x and z for
=z > 0, and continuous in x and z for =z ≥ 0 [3]. The Jost function, χ(z), is defined
in terms of the Jost solution by χ(z) := χ(0, z), and its analyticity properties in z are
inherited from the Jost solution in the obvious way. Zeros of χ(z) on C+ can only
occur at isolated points on the positive imaginary z-axis, which correspond to negative
eigenvalues of H on the λ-plane.

For some integrable potentials the Jost function can be analytically continued into
part or all of the negative half z-plane, otherwise known as the unphysical sheet. Zeros
of χ(z) in such regions of C− are known as resonances, and resonances on the negative
imaginary z-axis are referred to as anti-bound states.

2. Spectral Concentration and Resonances

Since the Jost solution is in L2([0,∞); dx) for =z > 0, it is a λ-multiple of the well
known Weyl solution of (1). It follows that the spectral density for λ > 0 may be
represented in terms of the Jost function by

ρ′(λ) =

√
λ

π | χ(
√
λ) |2

, λ = z2 > 0. (3)

This equation is known as the Kodaira formula for the spectral density, and is valid
whenever q ∈ L1([0,∞)).

If a resonance z0 with <z0 6= 0 lies close to the real z-axis, the Kodaira formula
(3) suggests that there may be a corresponding increase in ρ′(λ) in the vicinity of
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(<z)2. This observation has led to many conjectures about the relationship between
resonances and spectral concentration in the case of integrable potentials. The Ko-
daira formula also suggests that eigenvalues of H, which are zeros of the Jost function
on the positive imaginary z-axis and also known as bound states, may influence the
behaviour of ρ′(λ) in a similar way to the anti-bound states.

2.1 Examples

We illustrate these ideas by some explicit examples.

Example 1 Let

q(x) =
2a2

(1 + ax)2
, a > 0, x ≥ 0,

where a is a fixed constant. It is easy to check that the Jost solution is given by

χ(x, z) = eizx

(
1− a

iz(1 + ax)

)
,

so that the Jost function satisfies

χ(z) = 1 +
ia
z
, z 6= 0. (4)

We note that the Jost function is analytic in z on C\{0}, and that the only resonance
is an anti-bound state at z = −ia. By (3) and (4), we have for λ > 0

ρ′(λ) =
λ
√
λ

π(λ+ a2)
> 0,

from which

ρ′′(λ) =

√
λ(λ+ 3a2)

2π(λ+ a2)2
> 0, (5)

so that by our remarks above, there are no points of spectral concentration of H for
λ > 0.

This example shows that a resonance need not be associated with a point of spec-
tral concentration, even if the resonance is arbitrarily close to the real axis.

Example 2 Let
q(x) = ce−ax, a > 0, c < 0,

where a and c are constants. Then it may be shown that the Jost solution satisfies

χ(x, z) = eizx

{
1 +

∞∑
n=1

1
n!

(
ce−ax

a2

)n( 1
(1− 2iz

a )
· · · 1

(n− 2iz
a )

)}
,

so that χ(x, z) and hence the Jost function χ(z) is analytic in z on

C \
{
− ina

2
: n = 1, 2, 3, · · ·

}
.
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Setting z = it, t ∈ <, we see that if t > −a
2 , then χ(it) is real with

χ(it) = 1 +
∞∑
n=1

1
n!

( c
a2

)n( 1
(1 + 2t

a )
· · · 1

(n+ 2t
a )

)
. (6)

It follows that χ(it) is strictly increasing from −∞ to 1 as t increases on (−a
2 ,∞),

so that χ(it) has precisely one zero t0 in the t-interval (−a
2 ,∞). The point it0 is an

antibound state or −t20 is an eigenvalue of H according as t0 < 0 or t0 > 0 respectively,
the sign of t0 depending on the choice of a and c.

By truncating the series in (6) and obtaining bounds for the remainder, it is pos-
sible to estimate the zeros of χ(it) for t > −a

2 to an arbitrary degree of accuracy. In a
similar way, the Kodaira formula (3) may be used to investigate the behaviour of ρ′(λ)
for small values of λ on <+. Numerical results suggest that, depending on the choice
of the constants a and c, points of spectral concentration may be, but need not be
associated with zeros of χ(z) on <z = 0, −a

2 < =z <∞, regardless of whether t0 < 0
or t0 > 0; that is to say, there may or may not be a point of spectral concentration
associated with the eigenvalue or anti-bound state.

Further consideration of this example and other similar cases may be found in [2],
[5], and the references contained therein.

2.2 Discussion

There has been a substantial literature on both spectral concentration and resonances
since the early work of Titchmarsh, who provided a rigorous mathematical analysis of
several important cases in which both phenomena were exhibited [8]. Interest in the
two phenomena has often been motivated by such issues as impedance theory, reso-
nance scattering and spectral stability, and both are associated with scattering states
which remain localised for a long time [6], [7].

The situation when q ∈ L1([0,∞)) is of special interest because in this case the
Jost function enables the analysis to be carried out in a particularly convenient and
unified way. If q is real valued, then both resonances and and eigenvalues are isolated
zeros in regions of analyticity of the Jost function (with the possible exception of the
point z = 0, which is a spectral singularity if λ = 0 is an eigenvalue). This feature,
together with the Kodaira formula (3), can greatly facilitate the process of estimating
the location of resonances, eigenvalues and points of spectral concentration, and thus
contribute more fully to understanding of the relationships between them.

There are two longstanding conjectures about spectral concentration and reso-
nances which have generated a high level of interest: firstly, whether every resonance
in the lower half z-plane induces a point of spectral concentration of H, and secondly,
whether every local maximum of ρ′(λ) on (0,∞) is induced by some resonance. The
first conjecture is refuted by Example 1 above (see also [1]), although the influence
of the resonance is still detectable because differentiation of (5) shows that ρ′(λ) has
a point of inflection at λ = (2

√
3 − 3)a2. In the second case, there is some evidence
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to suggest that points of spectral concentration may also be induced by eigenvalues [9].
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Inverse operator of the generator of the bounded
C0-semigroup

Oleksandr Gomilko

Nicolaus Copernicus University, Torun, Poland
and Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland

alex@gomilko.com

1. Introduction. Let X be a Banach space, let E = E(X) be the set of densely
defined closed linear operators on X and let L = L(X) be the algebra of bounded linear
operators on X. Denote by G = G(X) the set of generators of uniformly bounded
C0-semigroups and by Gexp = Gexp(X) the set of generators of exponentially stable
C0-semigroup acting on X.
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If the operator A ∈ Gexp(X), then the inverse operator A−1 ∈ L, so that A−1

generates a C0-semigroup (etA
−1

)t≥0 given by

etA
−1

=
∞∑
m=0

tmA−m

m!
, t ≥ 0. (1)

It can also be shown that in this case (see [1], [2]) the semigroup (etA
−1

)t≥0 has the
following integral representation:

etA
−1
x = x−

√
t

∫ ∞
0

J1(2
√
ts)√
s

esAx ds, t > 0, x ∈ X, (2)

where J1(·) is the Bessel function of the first kind and the first order.
Let X = C0[0, 1] be the Banach space of functions f(s) continuous on the closed

interval [0, 1] and vanishing at s = 1. In [1], by means of the formula (2), it was proved
that there exists a nilpotent semigroup (etA)t≥0 such that the semigroup (etA

−1
)t≥0 is

not uniformly bounded (the norm of etA
−1

grows at infinity as t1/4). Using the nilpo-
tent semigoup (etA)t≥0 and a certain operator-theoretical construction, [1] presents an
example of a uniformly bounded C0-semigroup (etA)t≥0 on the space l2(N, C0[0, 1]),
such that the operator A−1 ∈ E is not a generator of a C0-semigroup.

In [2] it was shown that in any Banach space X = lp, p ∈ (1, 2)∪(2,∞), there exists
A ∈ G(X) such that A−1 ∈ E , but nevertheless A−1 does not generate a C0-semigroup
on X.

Improving the results in [1] and in a sense in [2], we show in this paper that if
X = Lp(0, 1), p ∈ (1, 2) ∪ (2,∞), then there exists a nilpotent C0-semigroup (etA)t≥0

on X such that the semigroup (etA
−1

)t≥0 is not uniformly bounded.
We point out that the need in the analysis of the inverse operators of the generators

of C0-semigroups arises in infinite-dimensional control theory and numerical analysis.
See, for instance, [1] and the bibliography therein.

2. Inverse operators. If A ∈ Gexp then by (2) and a well-known estimate for
Bessel function [3, Ch. 7], we obtain

‖etA−1‖ ≤ 1 +
√
t

∫ 1

0

|J1(2
√
ts)|√
s

ds = 1 +
∫ 2
√
t

0
|J1(s)|ds ≤ 1 + ct1/4, t > 0. (3)

In the space Lp = Lp(0, 1), p ∈ [1,∞), with the standard norm ‖ · ‖Lp we consider
the differential operator

A = −D, (Df)(y) = f
′
(y), with the domain D(D) = {f ∈W 1

p (0, 1) : f(0) = 0},

where W 1
p is the Sobolev space. The operator A generates a nilpotent C0-semigroup

(etA)t≥0:

(etAf)(y) = f(y − t), 0 < y − t ≤ 1, (etAf)(y) = 0, 0 ≤ y < t,

and −A−1 is the classical Volterra integral operator:

(A−1f)(y) = −
∫ y

0
f(s)ds.
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The identity (2) applied to the C0-semigroup etA
−1

yields

(etA
−1
f)(y) = f(y)− (S(t)f)(y), t > 0, (4)

where

(S(t)f)(y) =
√
t

∫ y

0

J1(2
√
ts)√
s

f(y − s)ds =

=
√
t

∫ y

0

J1(2
√
t(y − s))√
y − s

f(s)ds. (5)

Theorem. For each p ∈ [1,∞)

lim
t>0

(
t−|1/4−1/(2p)|‖etA−1‖Lp

)
> 0, p ∈ [1,∞) (6)

Proof. From (5) it follows that

‖S(t)f‖Lp(0,1) ≥ ‖S(t)f‖Lp(1/t,1) ≥ ‖S0(t)f‖Lp(1/t,1) − ‖S1(t)f‖Lp(1/t,1), t > 1,

where the operator functions Sj(t), j = 0, 1 are given by

(S0(t)f)(y) =
√
t

∫ y−1/t

0

J1(2
√
t(y − s)√
y − s

f(s)ds,

(S1(t)f)(y) =
√
t

∫ y

y−1/t

J1(2
√
t(y − s)√
y − s

f(s)ds.

By Minkowski’s inequality, we obtain

‖S1(t)f‖Lp(1/t,1) ≤
√
t

∫ 1/t

0

|J1(2
√
ts)|√
s

(∫ 1

1/t
|f(y − s)|pdy

)1/p

ds ≤

≤
√
t

∫ 1/t

0

|J1(2
√
ts)|√
s

ds‖f‖Lp(0,1) =
∫ 2

0
|J1(s)|ds‖f‖Lp = c‖f‖Lp ,

where the constant c > 0 does not depend on t > 1. So, to prove (6) it suffices to show
that

lim
t>0

{
t−|1/4−1/(2p)|

(
sup

f∈Lp(0,1)

‖S0(t)f‖Lp(1/t,1)

‖f‖Lp(0,1−1/t)

)}
> 0. (7)

Further, we will use the following asymptotic formula for the Bessel function [3,
§ 7.4]:

J1(2
√
t(y − s)) = −

cos(2
√
t(y − s) + π/4)

√
πt1/4(y − s)1/4

+ O(t−3/4(y − s)−3/4), t(y − s)→∞.

Observe that S0(t)f can be decomposed as

(S0(t)f)(y) = −(S0,1f)(y) + (S0,2(t)f)(y), y ∈ (1/t, 1), (8)
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where

(S0,1f)(y) =
t1/4√
π

∫ y−1/t

0

cos(2
√
t(y − s) + π/4)

(y − s)3/4
f(s)ds,

and

|(S0,2(t)f)(y)| ≤ ct−1/4

∫ y−1/t

0

|f(s)|
(y − s)5/4

ds = ct−1/4

∫ y

1/t

|f(y − s)|
s5/4

ds.

Then, using Minkowski’s inequality, we get the estimate

‖S0,2(t)f‖Lp(1−1/t,1) ≤ ct−1/4

∫ 1

1/t

1
s5/4

(∫ 1

1−1/t
χ(y − s)|f(y − s)|pdy

}1/p

ds ≤

≤ ct−1/4

∫ 1

1/t

1
s5/4

ds‖f‖Lp(0,1−1/t) ≤ 4c‖f‖Lp(0,1−1/t).

Furthermore

‖S0,1(t)f‖Lp(1/t,1) =
t1/4√
π
‖S̃(t)f‖Lp(0,1−1/t), (9)

where the operator function S̃(t) is defined as

(S̃(t)f)(y) =
∫ y

0

cos(2
√
t(y − s+ 1/t) + π/4)

(y − s+ 1/t)3/4
f(s)ds, y ∈ (0, 1− 1/t).

Thus, by (8) and (9) we conclude that for the proof of the inequality (7), and then for
the proof of the theorem, it is enough to prove that

lim
t>0

{
t−|1/4−1/(2p)|t1/4

(
sup

f∈Lp(0,1−1/t)

‖S̃(t)f‖Lp(0,1−1/t)

‖f‖Lp(0,1−1/t)

)}
> 0. (10)

Let tn = π2n2, where n = 2, 4, . . . . Then for k = 1, 2, . . . , n we have

cos(2
√
tnz + π/4) ≥

√
2

2
, z ∈ Ik :=

[
(k − 1/4)2

n2
,
k2

n2

]
⊂ [0, 1]. (11)

Note that
y − s+ 1/tn ∈ Ik, s ∈ N, y ∈Mk, (12)

where

N = [0, 1/(4n)], Mk =
[

(k − 1/4)2

n2
− 1
tn

+
1

4n
,
k2

n2
− 1
tn

]
, k =

n

2
+ 1, . . . , n.

The lengths |Mk| of the segments Mk satisfy

|Mk| =
k2

n2
− (k − 1/4)2

n2
− 1

4n
=
k − n/2− 1/8

2n2
,

so that

dn :=
n∑

k=n/2+1

|Mk| =
1

2n2

n∑
k=n/2+1

(k − n/2− 1/8) =
4n− 9

32n
≥ 1

9
, n > 20.
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Let now n > 20 be an even integer, let g be the characteristic function of M = ∪Mk,
k = n/2 + 1, . . . , n, and let f be the characteristic function of the segment N . Set
βn = 1− 1/tn. Then

‖f‖Lp(0,βn) =
(

1
4n

)1/p

≤ 1
n1/p

, ‖g‖Lq(0,1−1/tn) ≤ 1,

∣∣∣∣∫ βn

0
(S̃f)(y)g(y)dy

∣∣∣∣ ≤ ‖S̃f‖Lp(0,βn)‖g‖Lq(0,βn) ≤ ‖S̃f‖Lp(0,βn),
1
p

+
1
q

= 1.

On the other hand, using properties of the segments Mk (see (11), (12)), we obtain∣∣∣∣∫ βn

0
(S̃0f)(y)g(y)dy

∣∣∣∣ =
∣∣∣∣∫
y∈M

(S̃0f)(y)dy
∣∣∣∣ =

=
∫
y∈M

∫ 1/4n

0

cos(2
√
tn(y − s+ 1/tn + π/4)

(y − s+ 1/tn)3/4
dsdy ≥

≥ 1√
2

∫
y∈M

∫ 1/4n

0

ds dy

(y − s+ 1/tn)3/4
≥ 1√

2

∫
y∈M

∫ 1/4n

0
dsdy =

1√
2
dn
4n
≥ 1

72n
.

Thus

t1/4n

‖S̃f‖Lp(0,βn)

‖f‖Lp(0,βn)
≥
√
π
n1/p

72n1/2
= ct(1/p−1/2)/2

n , c > 0.

If p ∈ [1, 2], then the last inequality implies (10), and then (6) follows.
If p ∈ (2,∞) then by observing that

‖S(t)‖Lp = ‖S(t)‖Lq 1/p+ 1/q = 1, (13)

and using (6) for p ∈ [1, 2], we get the assertion of our theorem for p ∈ (2,∞) too. The
proof is complete. �

As pointed out in Introduction, the above theorem provides the example of a nilpo-
tent C0-semigroup (etA)t≥0 in the Banach space Lp(0, 1), p ∈ (1,∞), p 6= 2, such that
the C0-semigroup (etA

−1
)t≥0 is not uniformly bounded (the norm of etA

−1
grows at

infinity as tαp , αp = |1/4 − 1/(2p)|). Thus, in the case p = 1 the theorem shows
the sharpness of (3) for A ∈ Gexp(L1(0, 1)). Recall that by [5, Theorem 2.2] one has
‖(I +A−1)n‖Lp ≈ nαp , n→∞.

Remark. The estimate (6) is sharp for every p > 1. Indeed, (etA)t≥0 is a con-
tractive semigroup in the Hilbert space L2(0, 1) and then (etA

−1
)t≥0 is a contractive

semigroup in L2(0, 1) too. If 1/p + 1/q = 1, p ∈ (1, 2) and t ≥ 1, then by the Riesz-
Thorin interpolation theorem [4, p. 97], (3) and (13) we obtain the estimate

‖etA−1‖Lq ≤ ‖etA
−1‖Lp ≤ ‖etA

−1‖2−2/p
L2

‖etA−1‖2/p−1
L1

≤ ct1/(2p)−1/4.

Since 1/(2p)− 1/4 = |1/(2q)− 1/4|, p ∈ (1, 2), we then have ‖etA−1‖Lp ≤ ct|1/4−1/(2p)|,
t ≥ 1, for each p ∈ (1,∞).
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Annihilation phenomenon in self-adjoint operators: a
criterion of pure singularity of the spectrum

Alexander V. Kiselev and Serguei Naboko
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198504 Ulianovskaya 1 St. Petersburg, St. Peterhoff, Russia
alexander.v.kiselev@gmail.com

We show that a natural generalization of the Cayley identity from the case of matrices
to the case of general self-adjoint (possibly, unbounded) operators in Hilbert spaces is
readily available. Moreover, the named generalization constitutes a rather transparent
new criterion of the absence of absolutely continuous spectral subspace.

Theorem 1. Let A be a (possibly, unbounded) self-adjoint operator in the Hilbert space
H. Then the following two statements are equivalent.

(i) The spectrum of A is purely singular;

(ii) There exists an outer bounded in the upper half-plane scalar function γA(λ),
weakly annihilating the operator A, i.e.,

w − lim
ε↓0

γA(A+ iε) = 0.

Moreover, the function γA can be chosen as follows:

γA(λ) = det(I + i
√
V (A− iV − λ)−1

√
V )

for any trace class (or relatively trace class) non-negative operator V in H such
that

∨
Im λ6=0(A− λ)−1V H = H.
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Remark 1. It is easy to see that γA(λ) in fact coincides with the perturbation deter-
minant DA/A−iV (λ) of the pair A, A− iV
Remark 2. Suppose that the operator A is a self-adjoint operator with simple spectrum.
Then the trace class operator V of our Theorem can clearly be chosen as a rank one
operator in Hilbert space H. In this situation, the statement of Theorem 1 can be
modified in the part concerning the choice of the annihilator in the following way: the
annihilator can be chosen as

γA(λ) :=
1

1− i(D(λ)− 1)
,

where D(λ) := 1 + 〈(A − λ)−1φ, φ〉 is the perturbation determinant of the pair A,
A+ 〈·, φ〉φ and φ is the generating vector for the operator A.

Our results effectively show [1, 2, 3], that in terms of weak outer annihilation the
singular spectral subspace N0

i of a nonself-adjoint operator behaves in exactly the
same way as the singular spectral subspace of a self-adjoint operator. Moreover, due
to this result it would seem reasonable to include the singular component of the self-
adjoint part of the operator L (in general case, when L is not necessarily completely
nonself-adjoint) into the singular subspace N0

i . It is also worth mentioning that not
only the proof of this theorem exploits essentially nonself-adjoint (in particular, func-
tional model related) techniques, but even certain crucial objects of the nonself-adjoint
spectral theory appear already in its statement.
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Schrödinger operators on graphs and geometry

Pavel Kurasov

Lund University
St. Petersburg University

Stockholm University
kurasov@maths.lth.se

The main aim of this lecture is to study the relation between the spectrum of a
Schrödinger operator on a metric graph and geometric properties of the graph. This
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question has already been studied for Laplace operators with standard boundary con-
ditions at the vertices and it was proven that the spectrum of the Laplace operator
determines the total length, the number of connected components and the Euler char-
acteristics of the underlying graph (see [3, 4]). Originally to establish the relation
between the spectrum and the Euler characteristics one used so-called trace formula
connecting the spectrum of the Laplacian with the set of periodic orbits on the graph
[1, 2, 6]

u(k) ≡ 2ms(0)δ(k) +
∑
kn 6=0

(δ(k − kn) + δ(k + kn)) (1)

= χδ(k) +
L
π

+
1
π

∑
p∈P

l(prim (p))S(p) cos kl(p),

where

• k2
n are the eigenvalues of the Laplacian,

• ms(0) is the multiplicity of the eigenvalue zero∗;

• p is a closed path on Γ;

• l(p) is the length of the closed path p;

• prim (p) is one of the primitive paths for p;

• S(p) is the product of all vertex scattering coefficients along the path p.

Based on this relation we prove the following formula for the Euler characteristic

χ = 2ms(0) + 2 lim
t→∞

∑
kn 6=0

cos kn/t
(

sin kn/2t
kn/2t

)2

= 2ms(0)− 2 lim
t→∞

∑
kn 6=0

1− 2 cos kn/t+ cos 2kn/t
(kn/t)2

.

(2)

This formula allows one to calculate the Euler characteristic of the metric graph using
not only the spectrum of the Laplace operator, but the spectrum of any Schrödinger
operator with essentially bounded potential.

Theorem 1. Let Γ be a finite compact metric graph and L(Γ) - the corresponding
Laplace operator (with standard boundary conditions). Let q ∈ L∞(Γ) be a real valued
potential and S = L(Γ) +Q - the corresponding Schrödinger operator, where Q is the
operator of multiplication by q. Then the Euler characteristic χ(Γ) of the graph Γ is
uniquely determined by the spectrum λn(S) of the operator S and can be calculated
using the limit

χ(Γ) = 2 lim
t→∞

∞∑
n=0

cos
√
λn(S)/t

(
sin
√
λn(S)/2t√

λn(S)/2t

)2

, (3)

∗It is equal to the number C of connected components in accordance with Theorem 1 from [4].
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where we use the following natural convention

λm = 0⇒
sin
√
λm(S)/2t√

λm(S)/2t
= 1. (4)

The proof is based on the following asymptotic formula connecting the spectra of
Laplace and Schrödinger operators

kn(S) = kn(L) +O(1/n), as n→∞, (5)

and the following two estimates
Estimate 1 (suitable for small values of n)

|an(t)− a0
n(t)| ≤ c(n+B)2

t2
. (6)

Estimate 2 (suitable for large values of n)

∣∣an(t)− a0
n(t)

∣∣ ≤ d t

(n−B)3
, n > B, (7)

where c and d are certain positive constant d > 0.
Most of the results discussed here are published in [5].
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A singular Sturm-Liouville operator: Boundary
conditions in the limit point case

Annemarie Luger∗

Department of Mathematics
Lund Institute of Technology

Box 118 SE- 221 00 Lund, Sweden
luger@maths.lth.se

Our main object is the singular ordinary differential expression

`(y) := −y′′(x) +
(
q0 + q1x

x2

)
y(x), x ∈ (0,∞), (1)

with q0 ≤ −1
4 , q1 ∈ R, which is known as the ”Hydrogen atom differential expression”

(see [3], Section 39), since it appears after separation of variables in two- and three-
dimensional Schrödinger equations with Coulomb potential. Even if the corresponding
differential equation

−y′′(x) +
(
q0 + q1x

x2

)
y(x) = λy(x), λ ∈ C+, (2)

is extremely well studied (and its solutions can be expressed in terms of Whittaker
functions) it has recently again become subject of interest in several publications.

Different authors, see [4, 5], have studied singular differential equations from the
point of view of Weyl theory. In the above example both endpoints are in limit
point case, which according to the classical theory (by introducing a regular refer-
ence point) would give rise to a 2 × 2-matrix Titchmarsh-Weyl-coefficient. In their
articles the above named authors modified the well-known Titchmarsh-Weyl-approach
by considering certain singular and regular solutions of (2) and obtain so a generalized
Titchmarsh-Weyl-coefficient m(λ), which is a scalar function but no longer belongs to
the Nevanlinna class (mapping the upper half plane into itself).

We refine their construction by investigating these singular solutions further, which
leads us to the interpretation of a certain singular solution g(x, λ) as an element from
the space H−n+2(L0) in the scale of Hilbert spaces associated to the operator L0, the

(unique) self-adjoint realization of (1) in L2(R+) with index −n + 2 = −
[√

1
4 + q0

]
.

This rather technical observation gives us the possibility to define

ϕ := (L0 − λ0)g( · , λ0) ∈ H−n(L0)

as a distribution with support at the origin. Supersingular perturbations of the type

L0 + t〈ϕ, · 〉ϕ

are well studied in a series of papers [6, 1, 7]. We use these kind of models in order
to construct a Hilbert space of functions, H, which includes certain non-square inte-
grable functions. Therein a family of self-adjoint operators, Lθ, with θ ∈ R is defined,
∗The author gratefully acknowledges support from the “Fond zur Förderung der wissenschaftlichen

Forschung” (FWF, Austria), grant number J2540-N13.
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which act as the differential expression (1) and is characterized by certain boundary
conditions.

This family is also described by the Krein-type formula

ρ(Lθ − λ)−1|Hn−2(L0) = (L0 − λ)−1 − 1
b(λ)(Q(λ) + cot θ)

〈g( · , λ), · 〉g( · , λ),

where b is a certain polynomial that reflects the regularization process and Q is an
explicitly computable Q-function. The main result is the following connection between
the two generalized Nevanlinna functions Q(λ) and m(λ).

Theorem 1. Let the generalized Titchmarsh-Weyl-coefficient m(λ) and the Q-function
Q(λ) be given as before. Then there exists a polynomial p(λ) (of low degree) such that

Q(λ)−m(λ) = p(λ) with deg p ≤ n− 2 =
[√

1
4 + q0

]
.

This result gives an operator theoretical interpretation of the generalized Titch-
marsh Weyl coefficient m, which also reveals the analogy to the classical situation.

We would like to mention that already earlier, [2], in the so-called Bessel case, that
is, q1 = 0, a model of L0 + t〈ϕ, · 〉ϕ was given. However, there the space and the
operators are fairly abstract and, in particular, an abstract Pontryagin space rather
than a Hilbert space of functions is used. Moreover, that approach is confined to the
particular operator under consideration.

Our proofs make only use of the local behaviour of the solutions of (2) and can hence
be generalized to all equations with only the same asymptotic properties. Finally we
also use the explicitly known solutions of (2) in order to give new expansions in terms
of scattered waves which are not square integrable at the origin. the corresponding
scattering matrix is not trivial in the p-channel.

This is based on the joint work with P. Kurasov, [8].
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Mixed spectrum of periodically modulated Jacobi
matrices

Wojciech Motyka

Instytut Matematyczny Polskiej Akademii Nauk
ul. Św. Tomasza 30, 31-027 Kraków, Poland

namotyka@cyf-kr.edu.pl

We are interested in spectral properties of the Jacobi operator J acting in l2(N; C)
like

(J u)(n) = λn−1u(n− 1) + qnu(n) + λnu(n+ 1), n > 1, (1)

(J u)(1) = q1u(1) + λ1u(2), (2)

D(J ) =
{
u ∈ l2(N; C) : J u ∈ l2(N; C)

}
,

where
λn := nα + cn, qn := −2nα + bn, n ∈ N, (3)

α is a real number from (0, 1) and (cn), (bn) are some real periodic sequences with
period N = 2. This operator is in the double root case. To describe its spectrum we
use asymptotic formulas of solutions of the generalized eigenequation

λn−1u(n− 1) + qnu(n) + λnu(n+ 1) = λu(n), λ ∈ R, n > 1, (4)

and the subordination theory [5]. The asymptotic behavior of solutions of (4) is ob-
tained, in the non-oscillatory case, by W.Kelley’s approach presented in [4](see also [1],
[7], [6]) or, in the oscillatory case, using an ansatz like in [3] (see also [1] and [6]). We do
not apply the methods mentioned above directly to the equation (4). It is impossible
because the sequences (bn) and (cn) are periodic. First we split (4) into N equations
(compare [9] or [7]). Then we find a basis of solutions of each of the equations. In
the last step we combine all the base solutions from the previous step to obtain the
asymptotics of a basis of solutions of our primary system (4),

u>±(k) ∼ k−α/4 exp
(
±Ak1−α/2

)
, for λ >

1
2

(b1 + b2) + (c1 + c2),
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and

u<±(k) ∼ k−α/4 exp
(
±iFk1−α/2

)
, for λ <

1
2

(b1 + b2) + (c1 + c2).

Here A and F are some positive constants depending on the spectral parameter λ, the
power α and c1, c2, b1, b2 - the generators of the perturbations (cn) and (bn). Using
the above formulas we are able to prove the following.

Theorem 1. Let the operator J be defined by (1), (2) and (3).
Then we have

(
−∞, 1

2(b1 + b2) + c1 + c2

)
⊂ σac(J ) and in the interval(

1
2(b1 + b2) + c1 + c2,+∞

)
we may have some discrete eigenvalues.
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The Laplace operator on metric graphs with different
boundary conditions at the vertices

Marlena Nowaczyk
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The Laplace operator on metric graphs with different boundary conditions at the
vertices is investigated.

In the first part of a talk we sketch a proof of the trace formula, in order to show that
it is valid for all boudary conditions leading to vertex scattering matrix independent
of energy parameter k.

In the second part we review different parameterizations of matching conditions
given by V. Kostrykin and R. Schrader, M. Harmer, P. Kuchment and also by ourselves.
It is proven that vertex boundary conditions can be successfully parameterized by the
vertex scattering matrix at the energy equal to 1. This parametrization is a slight
modification of that given by M. Harmer but with clear physical meaning.

Moreover the set of matching conditions leading to energy independent vertex scat-
tering matrices is characterised and relations with known parameterizations are estab-
lished. We propose to call such matching conditions non-resonant. The connectivity
of a metric graph is reflected by properties of scattering matrix, therefore we analyse
families of scattering matrices leading to properly connecting matching conditions. We
also enquire the behaviour of scattering matrices when the energy parameter tends to
infinity and define asymptotical proper connectivity of boundary conditions.

On the selfadjoint subspace of one-speed Boltzmann
operator

Roman Romanov
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198504 Ulianovskaya 1 St. Petersburg, St. Peterhoff, Russia morovom@gmail.com

Mihail Tihomirov

Department of Mathematical Physics
St. Petersburg State University
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We have studied the problem of complete non-selfajointness for Boltzmann (trans-
port) operator corresponding to a slab of multiplicative material. By definition, a
closed operator in a Hilbert space is completely non-selfadjoint if it has not got re-
ducing subspaces on which it induces a selfadjoint operator. If it has, the maximal of
them is called a selfadjoint subspace.
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The transport operator L acts in the Hilbert space L2(R× [−1, 1]) of functions of
the variables x ∈ R, µ ∈ [−1, 1] by the formula:

L = iµ
∂

∂x
+ ic(x)K, (1)

where c ∈ L∞(R) is a real-valued function, and K is an integral operator in the µ-
variable of the form

K =
n∑
`=1

ϕ`(µ)
∫ 1

−1
·ϕ`(µ′) dµ′, n <∞.

The operator (1) generates the evolution of particle densities in a medium with
a local multiplication coefficient c(x). The collision integral K describes the angle
distribution of the secondary particles.

Our main result is the following

Theorem. Assume there exist a, ε > 0 such that c(x) = 0 |x− x0 − aj| < ε, j ∈ Z, for
some x0 ∈ R, and that all the functions ϕ`(µ), 1 ≤ ` ≤ n, are polynomials. Then the
selfadjoint subspace of the operator L is non-trivial, and moreover, the restriction of
L to it has Lebesgue spectrum of countable multiplicity on the interval [−π/a, π/a].

If c is compactly supported, a stronger assertion holds.

Proposition. If additionally the function c vanishes outside of an interval, then the
restriction of the operator L to its selfadjoint subspace has Lebesgue spectrum of
countable multiplicity on the whole real axis.

If the functions ϕ` cease to be polynomials, the operator L may be completely
non-selfadjoint for arbitrary finite c.

Example. Let n = 2, and the functions ϕ1,2 ∈ L∞(−1, 1) are supported on [0, 1] and
[−1, 0] respectively. Then the Boltzmann operator (1) is compltely non-selfadjoint if
the function c does not vanish identically.

Estimating the counting function with the use of
coherent states

Yuri Safarov

Department of Mathematics
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Strand, London, UK

yuri.safarov@kcl.ac.uk

Noor-Ul-Hacq Sookia

Department of Mathematics
University of Mauritius
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0. Introduction

The aim of this note is to discuss possible extensions and applications of the coher-
ent sates technique originated in F. Berezin’s paper [B]. This technique allows one to
obtain estimates for eigenvalues of a self-adjoint operator under minimal assumptions
about its properties. Nevertheless, it seems to be relatively little known (or well for-
gotten). A possible explanation is that F. Berezin did not bother to state his results in
a sufficiently general and clear form, as he did not seem to be interested in obtaining
estimates for eigenvalues.

In Section 1 we introduce basic notation and definitions. Section 2 contains new
abstract results on coherent states which can be applied to various differential opera-
tors. It should be considered as an attempt to fill in the gaps left in Berezin’s paper.
Finally, in the last two sections we show how these results can be applied to obtain
estimates and discuss some known inequalities and possible developments.

1. Coherent states

Let H be a Hilbert space, and let Ξ be a metric space provided with a Borel measure
dω.

Definition 1. If U : H 7→ L2(Ξ, dω) is an isometric operator such that

1. for almost all ω ∈ Ξ, there exists Fω ∈ H such that Uu(ω) = (u, Fω)H , ∀u ∈ H,

2. Fω depends continuously on ω, that is, ‖Fω − Fω′‖H → 0 as ω′ → ω in Ξ,

then the elements Fω of the Hilbert space H are called coherent states.

Further on we shall always be assuming that U is an isometry satisfying the condi-
tions of Definition 1 and that Fω are coherent states. Since U is an isometry, we have∫

Ξ |Uu(ω)|2dω = ‖Uu‖2L2(Ξ,dω) = ‖u‖2H .

Example 1. Let Ω be a domain in the Euclidean space, H = L2(Ω) and Ξ = Rn.
Define Fω(x) = (2π)−n/2eix·ω where x ∈ Ω and ω ∈ Rn. Then Fω are coherent states in
H. The corresponding isometry U coincides with the Fourier transform in Rn restricted
to L2(Ω).

Lemma 1. If Q is a closed semibounded quadratic form on H then the function Q[Fω]
is measurable.

Proof. A closed semibounded quadratic form on a Hilbert space is lower semicontinu-
ous. Since Fω continuously depends on ω, it follows that QB[Fω] is lower semicontin-
uous and, consequently, is measurable.

Lemma 2. If B is a nonnegative operator of trace class then TrB =
∫

Ξ(BFω, Fω)H dω .
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Proof. Let {uj} be an orthonormal basis generated by the eigenvectors uj of the op-
erator B. Then

(BFω, Fω)H =
(∑

j

Buj(Fω, uj)H ,
∑
k

uk(Fω, uk)H
)
H

=
∑
j

|(Fω, uj)H |2 (Buj , uj)H =
∑
j

|Uuj(ω)|2 (Buj , uj)H , ∀ω ∈ Ξ ,

so that
∫

Ξ(BFω, Fω)H dω =
∫

Ξ

∑
j |Uuj(ω)|2 dω (Buj , uj)H =

∑
j(Buj , uj)H = TrB.

2. U-symbols of operators and forms

Given a semibounded self-adjoint operator B in H, we shall denote by QB the
corresponding quadratic form with domain D(|B|1/2).

Lower bounds for the counting function of B can be obtained only under the
assumption that Fω ∈ D(QB). However, in order to obtain upper bounds one has to
represent the operator via the coherent states (or the isometry U). It is not always
easy, as the domain of operator may be rather complex. In this section we shall discuss
possible ways of finding such a representation, using the closures of quadratic forms
and operators.

Definition 2. Let Q be a quadratic form on H. We shall say that a measurable
real-valued function b on Ξ is a U -symbol of the form Q if b|Uu|2 ∈ L1(Ξ, dω) and
Q[u] =

∫
b|Uu|2 dω for all u ∈ D(Q).

Definition 3. Given a measurable function b on Ξ, we shall denote by Qb the
quadratic form Qb[u] =

∫
Ξ b|Uu|2 dω with domain D(Qb) := {u ∈ H : b|Uu|2 ∈

L1(Ξ,dω)} .

Clearly, b is a U -symbol of Qb. We shall normally be assuming that b satisfies

Condition 1. The function b is real valued and semibounded from below.

If Condition 1 is fulfilled then any quadratic form Q with a U -symbol b is also
semibounded from below. Moreover, if b is bounded then Q is also bounded and

ess inf b(ω)‖u‖2H ≤ Q[u] ≤ ess sup b(ω)‖u‖2H .

Lemma 3. If Condition 1 is fulfilled then the form Qb is closed.

Proof. Since b is bounded from below, there exists a real k such that

b(ω) ≥ k ∀ω ∈ Ξ.

Without loss of generality, we assume that k = 1 (otherwise we replace b with b−k+1)
and denote

‖u‖2R :=
∫
b<R

b|Uu|2 dω.
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If un ∈ D(Qb), ‖un − u‖H → 0 and Qb[un − um]→ 0 as n,m→∞, then

‖u− un‖2R ≤ ‖u− um‖2R + ‖um − un‖2R
≤ R‖u− um‖2 +Qb[um − un] ∀R,n,m.

Since m can be chosen arbitrarily large, this implies that ‖u− un‖2R converges to zero
as n → ∞ uniformly with respect to R. Passing to the limit as R → ∞, we see that
b|Uu|2 ∈ L1(Ξ,dω) and Qb[u− un]→ 0 as n→∞.

Lemma 4. Let Q0 be a quadratic form with U -symbol b satisfying Condition 1, and
let Q be its closure. Then D(Q) ⊂ D(Qb).

Proof. For every u ∈ D(Q), there exists a sequence {un} ⊂ D(Q0) such that ‖u −
un‖H → 0 and Q0[un]→ Q[u] as n→∞. We have

Q0[un] ≥ ‖un‖2R ≥ ‖u‖2R − ‖u− un‖2R ≥ ‖u‖2R −R‖u− un‖2H ,

where ‖.‖R is the same as in the proof of Lemma 3. Letting n → ∞, we see that
‖u‖2R ≤ Q[u] for all R > 0. This implies that b|Uu|2 ∈ L1(Ξ, dω).

Lemmas 3 and 4 immediately imply the following corollaries.

Corollary 1. Let Q0 be a quadratic form with a U -symbol b satisfying Condition 1,
and Q be its closure. Then Q also has the U -symbol b. If, in addition, the form Q0 is
bounded then b|Uu|2 ∈ L1(Ξ, dω) for all u ∈ H.

Corollary 2. If there is a constant C > 0 such that
∫

Ξ b|Uu|2 dω ≤ C ‖u‖2H on
some dense subset of H then the same inequality holds for all u ∈ H.

Definition 4. Let B be a linear densely defined operator in H. We shall say that a
function b on Ξ is a U -symbol of the operator B if b is a U -symbol of the quadratic
form (Bu, u) with domain D(B).

Remark 1. Clearly, b is a U -symbol of B if and only if Bu = U∗bUu for all u ∈ D(B).

In the next two theorems we shall assume that

Condition 2. f is a nonnegative real-valued convex function such that the quadratic
form Qf(b) is defined on a dense subset of H and generates a trace class operator Bf .

Theorem 1. Assume that a symmetric linear operator has a U -symbol b satisfying
Condition 1. Let B be the self-adjoint operator generated by the closure of the form
(B0u, u)H , and λj be its eigenvalues. If Condition 2 is fulfilled then

∞∑
j=1

f(λj) ≤ TrBf . (1)

Proof. Let {uj} be a basis in H such that QB[uj ] = λj . In view of Corollary 1 the
function b is a U -symbol of the form QB. By Jensen’s inequality,

f(λj) = f(QB[uj ]) = f

(∫
b|Uuj |2dω

)
≤
∫
f(b)|Uuj |2dω = (Bfuj , uj)H , ∀j = 1, 2, . . .

Summing up over j, we obtain
∑∞

j=1 f(λj) ≤
∑∞

j=1(Bfuj , uj)H ≤ TrBf .
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Theorem 2. Let B be the closure of B0. If the operator B0 has a U -symbol b and
Condition 2 is fulfilled then (1) holds.

Proof. Let uj be the same basis as in Theorem 1. Since B is the closure of B0, we can
find uj,ε ∈ D(B0) such that

|uj − uj,ε|H → 0 and |Buj −Buj,ε|H → 0,

as ε→ 0. Under Condition 2, the form Qf(B) is bounded. Therefore

f(λj) = f((Buj , uj)) = f((Buj,ε, uj,ε)) = lim
ε→0

f(
∫

b|Uuj,ε|2 dω)

≤ lim
ε→0

∫
f(b)|Uuj,ε|2 dω) = lim

ε→0
Qf(b)[uj,ε] = Qf(b)[uj ] = (Bfuj , uj) , ∀j = 1, 2, . . .

Therefore, summing up over j, we obtain (1).

Thus we see that, in order to obtain the upper bound (1), it is sufficient to construct
a coherent state representation not for the operator itself but

either for a quadratic form Q whose closure coincides with QB,

or for an operator B0 whose closure coincides with B.

Example 2. The Dirichlet Laplacian on a domain Ω is the closure of the operator
−∆|C∞0 (Ω) with U -symbol |ω|2, provided that Fω are chosen as in Example 1.

3. Estimates of the Counting function

Throughout this section we assume that B is a semibounded operator and denote
by λj its eigenvalues counted with their multiplicities. Let N(B, λ) be the number of
its eigenvalues lying below λ. If (−∞, λ) contains the essential spectrum of B, we set
N(B, λ) := +∞.

3.1 Lower bounds

The following theorem was proved in [Sa2] and (in a slightly less general form) in
[B].

Theorem 3. Let f be a non-negative convex function such that f(B) is an operator
of trace class. If Fω ∈ D(QB) then

Tr f(B) ≥
∫

Ξ
f
(
‖Fω‖−2

H QB[Fω]
)
‖Fω‖2H dω. (2)

Proof. By the spectral theorem,

QB[Fω] =
∫

R
µ d(P (µ)Fω, Fω)H ,

(f(B)Fω, Fω)H =
∫

R
f(µ) d(P (µ)Fω, Fω)H .
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Therefore Jensen’s inequality implies that

(f(B)Fω, Fω)H ≥ f(‖Fω‖−2
H QB[Fω])‖Fω‖2H , ∀ω ∈ Ξ.

Now, by Lemma 2, Tr f(B) =
∫

Ξ(f(B)Fω, Fω)H dω ≥
∫

Ξ f(‖Fω‖−2
H QB[Fω])‖Fω‖2H dω .

In particular, we see f(B) does not belong to the trace class whenever the integral
on the right hand side of (2) is infinite. Theorem 3 also implies the following corollary.

Corollary 3. If the interval (−∞, λ) does not contain the essential spectrum of B and
Fω ∈ D(QB) then

(λ− µ)N(B, λ) +
∫ µ

−∞
N(B, τ) dτ ≥

∫
Ξ

(λ‖Fω‖2H −QB[Fω])+ dω, ∀µ ≤ λ. (3)

Proof. Since N(B, τ) is non-decreasing, applying the theorem to the convex function
fλ(τ) = (λ− τ)+, we obtain

(λ− µ)N(B, λ) +
∫ µ

−∞
N(B, τ) dτ ≥

∫ λ

−∞
N(B, τ) dτ

= Tr fλ(B) ≥
∫

Ξ
(λ‖Fω‖2H −QB[Fω])+ dω .

Enumerating the eigenvalues lying below λ in the increasing order and taking λ =
µ = λk in (3), we see that

∫
Ξ

(λk‖Fω‖2H −QB[Fω])+ dω ≤
∫ λk

−∞
N(B, τ) dτ = kλk −

k∑
j=1

λj . (4)

Substituting in (3) µ = λ1, where λ1 is the minimal eigenvalue, we obtain

Corollary 4. Under the conditions of Corollary 3,

N(B, λ) ≥ (λ− λ1)−1

∫
Ξ

(λ‖Fω‖2H −QB[Fω])+ dω, λ > λ1 . (5)

Example 3. In [La], the inequality (5) with Fω as in Example 1 was implicitly used
to obtain the estimate

N(−∆N, λ) ≥
(

2
n+ 2

)
Cn |Ω|λn/2 , ∀λ > 0 ,

for the Neumann Laplacian on a domain Ω. Here Cn is the constant appearing in the
Weyl asymptotic formula and |Ω| is the volume of Ω.
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Our abstract theorems allow one to extend the above estimate to a general ellip-
tic operator with the Neumann boundary condition. Choosing coherent states which
vanish near the boundary, one can also obtain lower bounds for operators satisfying
other boundary conditions (see, for example, [Sa2]).

3.2 Upper bounds

The following theorem clarifies the role of U -symbols.

Theorem 4. Let the conditions of Theorem 1 or Theorem 2 be fulfilled. Then for any
convex nonnegative function f we have

∞∑
j=1

f(λj) ≤
∫

Ξ
f (b(ω)) ‖Fω‖2H dω . (6)

Proof. Let uj be orthonormal eigenvectors corresponding to the eigenvalues λj , and let
{u′k} be an orthonormal basis in the orthogonal complement to the subspace spanned
by uj . The estimate (1) implies that

∞∑
j=1

f(λj) ≤ TrBf =
∞∑
j=1

(Bfuj , uj) +
∞∑
k=1

(Bfu′k, u
′
k)

=
∞∑
j=1

∫
Ξ
f(b(ω))|Uuj(ω)|2 dω +

∞∑
k=1

∫
Ξ
f(b(ω))|Uu′k(ω)|2 dω

=
∫

Ξ
f(b(ω))

 ∞∑
j=1

|(uj , Fω)H |2 +
∞∑
j=1

|(u′k, Fω)H |2
 dω

where, by Bessel’s equality, the right hand side is equal to
∫

Ξ f(b(ω))‖Fω‖2H dω.

Applying Theorem 4 to f(τ) = (λ− τ)+ and taking into account the monotonicity
of N(B, λ), we obtain

Corollary 5. If the interval (−∞, λ) does not contain the essential spectrum of B
then

(λ− µ)N(B,µ) +
∫ µ

−∞
N(B, τ) dτ ≤

∫
Ξ

(λ− b(ω))+‖Fω‖2 dω, ∀µ ≤ λ. (7)

The easiest way to deduce an upper bound for N(B,µ) from (7) is to estimate

N(B, λ) ≤ ε−1

∫ λ+ε

−∞
N(B, τ) dτ ≤ ε−1

∫
Ξ

(λ+ ε− b(ω))+‖Fω‖2 dω (8)

and to optimize the choice of ε > 0.

Example 4. For the Dirichlet Laplacian on an n-dimensional domain Ω, the inequality
(7) with µ = λ and Fω defined in Example 1 takes the form∫ λ

0
N(−∆D, µ) dµ ≤

(
2

n+ 2

)
Cn |Ω|λn/2+1 (9)
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where Cn is the Weyl constant and |Ω| is the volume of Ω. This inequality was proved
by F. Berezin (see [B]). In [La], A. Laptev used (9) and (8) to give a new proof of the
Li–Yao estimate

N−∆(λ) ≤ (1 + 2/n)n/2Cn |Ω|λn/2

previously obtained in [LY] by a different method.

4. Concluding remarks

A more sophisticated way of getting two-side estimates for N(B, λ), which does
not seem to have been exploited in research papers but should give better results, is
to use the estimate

ε−1

(∫ λ

−∞
N(B, τ) dτ −

∫ λ−ε

−∞
N(B, τ) dτ

)
≤ N(B, λ) ≤

ε−1

(∫ λ+ε

−∞
N(B, τ) dτ −

∫ λ

−∞
N(B, τ) dτ

)
(10)

instead of (8), and then to apply both inequalities (3) and (7) in the right and left
hand sides. Remarkably, when using this approach, every improvement in the lower
bound for the integral

∫ λ
−∞N(B, τ) dτ leads to an improvement of the upper bound

for N(B, λ), and the other way round.
One can argue that, for a differential operator B with boundary conditions, it is

not easy to find coherent states which lie in D(QB) (that is, satisfy the boundary
condition) and, at the same time, diagonalize the quadratic form QB in the sense of
Definition 2. However, one can use different coherent states in (3) and (7).

For a differential operator on a closed manifold, this problem does not arise. In
particular, on a Riemannian manifold without boundary, coherent states can be con-
structed with the use of global phase functions introduced in [Sa1], which play the
role of eix·ω in Example 1. This has been done in [So], where the author used (10) to
obtain explicit two-side estimates for the counting function of the Laplace–Beltrami
operator. These estimates imply, in particular, the Weyl asymptotic formula with an
order sharp reminder estimate under limited assumptions on the smoothness of the
manifold.

A similar but slightly different approach was used in [ELSS] for the study of semi-
classical asymptotics for the Dirac and Schrödinger operators on Rn.
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On the maps associated with the inverse Sturm-Liouville
problems in the scale of Sobolev spaces. Uniform stability

Andrei A. Shkalikov∗

Faculty of Mathematics and Mechanics
Moscow Lomonosov State University, Leninskie Gory

119992 Moscow, Russia
ashkalikov@yahoo.com

We shall deal with the Sturm-Liouville operator

Ly = −y′′ + q(x) y, x ∈ [0, π], (1)

viewing in mind the classical inverse problems.† Our main goal is to prove the esti-
mates which guarantee the uniform stability for solutions of the inverse problems. We
shall solve the direct and inverse problems for potentials q belonging to Sobolev space
W θ

2 [0, π] for fixed θ > −1. However, the obtained results are new for the classical case
when the potential q belongs to the space L2[0, π].

We shall use the language of nonlinear maps in Hilbert spaces to formulate the
direct and inverse Sturm-Liouville problems and benefit much of using this language.
Working with potentials q ∈W θ

2 [0, 1] (with fixed θ > −1) we have to define the spaces
where the spectral data have to be placed in. The construction of these spaces is
an important step to treat the problems in a new setting. We remark that in the
classical case of L2-potentials with zero mean value the language of nonlinear maps for
investigating of some inverse problems was introduced by Pöschel and Trubowitz [11].
However, if we like to investigate the inverse problems for potentials in the whole scale
of Sobolev spaces (including negative smooth indices) we must construct new spaces
where the spectral data live in.

∗This work is supported by Russian Foundation of Basic Research (project No 07-01-00283) and
by INTAS (project No 05-1000008-7883)
†All the results which are formulated in this note are obtained jointly with A.M.Cavchuk.
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Of course, the spectral data for different inverse problems have to be placed in dif-
ferent Hilbert spaces. It turns out, however, that all these spaces are finite dimensional
extensions of usual weighted l2 spaces.

Now let us organize these ideas in a rigorous setting and formulate the main results.
First we remind that the definition of the Sturm-Liouville operators with the classical
potentials q ∈ L1[0, 1] can be extended for distribution potentials q belonging to the
Sobolev space W−1

2 [0, π]. Suppose that a complex valued function q belongs to Sobolev
space Wα

2 [0, π] with some α > −1. Set σ(x) =
∫
q(x) dx, where the primitive in

understood in the sense of distributions. Following the paper [12] (see also [13] for
more details), we define the Dirichlet operator by the equality

LDy = Ly = −(y[1])′ − σ(x)y[1] − σ2(x)y, y[1](x) := y′(x)− σ(x)y(x), (2)

on the domain

D(LD) = {y, y[1] ∈W 1
1 [0, π] | y(0) = y(π) = 0}.

The Dirichlet-Neumann operator is defined similarly: LDNy = Ly on the domain

D(LDN ) = {y, y[1] ∈W 1
1 [0, π] | y(0) = y[1](π) = 0}.

For smooth functions σ the right hand-sides of (1) and (2) coincide and we get the
classical Sturm-Liouville operators with Dirichlet and Dirichlet-Neumann boundary
conditions (in the latter case we have to assume in addition

∫ π
0 q(x) dx+σ(0) = σ(π) =

0).

Denote by s(x, λ) a unique solution of the equation Ly − λy = 0 that satisfies the
conditions s(0, λ) = 0 and s[1](0, λ) =

√
λ (it is known [12] that such a solution does

exists). Obviously, the zeros {λk}∞1 and {µk}∞1 of the entire functions s(1, λ) and
s[1](1, λ) coincide with the eigenvalues of the operator LD and LDN , respectively. We
enumerate these sequences in such a way that the sequences {|λk|}∞1 and {|µk|}∞1 are
asymptotically increasing ( in the case of a real potential q all the zeros of the functions
s(1, λ) and s[1](1, λ) are simple and real; so, they can be enumerated in the increasing
order for all indices k > 1). Introduce also the numbers

αk =
∫ π

0
s2(x, λk) dx, βk =

∫ π

0
s2(x, µk) dx,

which in the case of real potentials are called the norming constants (we save this
definition for complex potentials). The sequences

{λk}∞1 ∪ {αk}∞1 and {µk}∞1 ∪ {βk}∞1

form the so-called spectral data of the operators LD and LDN , respectively. Further,
investigating the operator LD, it will be more convenient to work with the numbers

s2k =
√
λk − k, s2k−1 = αk − π/2, k = 1, 2, . . . .
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We say that the sequence {sk}∞1 = {sk(D)}∞1 defines the regularized spectral data of
the operator LD. Analogously, we can consider the numbers

s2k−1 =
√
µk − (k − 1/2), s2k = βk − π/2, k = 1, 2, . . . .

Then the sequence {sk}∞1 = {sk(DN)}∞1 defines the regularized spectral data of the
operator LDN . We imply that in all the above formulae the branches of the squire
roots are fixed. We assume, for example, that the arguments of the numbers

√
λk and√

µk lie in the segment (−π/2, π/2].

It was first discovered by Borg [1] that two sequences {λk} and {µk} define a
potential q in a unique way (at least if q is real). Equivalently, we can work with the
numbers

s2k−1 =
√
µk − (k − 1/2), s2k =

√
λk − k, k = 1, 2, . . . .

Then the sequence {sk}∞1 = {sk(B)}∞1 defines the regularized spectral data of the Borg
problem.

Now we come to the following problems: to prove that the spectral data define
a potential in a unique way. Next step is to give a complete characterization of the
spectral data provided that the potential runs through a given space (in the classical
case it is the space L2[0, π]). These problems have been investigated starting from
pioneering papers of Borg [1], Marchenko [9], Gelfand and Levitan [2]. For historical
overview we refer the readers to the books of Marchenko [10], Levitan [8], Freiling and
Yurko [3] and to a recent paper of Hryniv and Mykytyuk [6].

To cast a new light on these problems we shall introduce the special Hilbert spaces
associated with the spectral data. Certainly these spaces will be different for different
inverse spectral problems.

Denote by lθ2 the usual weighted l2 space consisting of the sequences of complex
numbers x = {x1, x2, . . . } such that

‖x‖θ :=
∞∑
1

|xk|2 k2θ <∞.

Consider the sequences

e2s−1 = {(2k)−(2s−1)}∞k=1, e2s = {(2k)−(2s)}∞k=1, s = 1, 2, . . . .

Remark that the sequence ep belongs to the spaces lθ2 for 0 6 θ < p − 1/2 and
ep /∈ lθ2 for θ > p − 1/2. For a fixed θ > 0 there is a unique integer m such that
m− 1/2 6 θ < m+ 1/2. For this number θ define l θD as a finite-dimensional extension
of the space l θ2 , namely

l θD = l θ2 ⊕ span{ek}mk=1.

Thus, l θD consists of elements x̂ = x+
∑m

k=1 cke
k, where x ∈ l θ2 and {ck}m1 are complex

numbers. The inner product of elements x̂, ŷ ∈ lθD is defined by the formula

(x̂, ŷ)θ = (x, y)θ +
m∑
k=1

ckdk,



Spectral analysis of differential and difference operators 31

where (x, y)θ is the inner product in l θ2 , and dk are the coefficients of ek in the decom-
position of ŷ.

Similarly, we construct the spaces corresponding to the spectral data of the operator
LDN and to the spectral data of the Borg problem. Namely, introduce the sequences

ẽ 2s−1 = {(2k + 1)−(2s−1)}∞k=1, ẽ 2s = {(2k − 1)−(2s)}∞k=1, s = 1, 2, . . . ,

ê 2s−1 = {k−(2s−1)}∞k=1, ẽ 2s = {(−1)k k−(2s−1)}∞k=1, s = 1, 2, . . . ,

and define the spaces

l θDN = l θ2 ⊕ span{ẽ k}mk=1, lDN
θ = l θ2 ⊕ span{ê k}mk=1.

We imply that the inner product in these spaces is defined in the same way as in l θD.

First we note that lθD = lθDN = lθB = lθ2 for 0 6 θ < 1/2. This follows from
the definition. Then we note also that all these spaces with θ > 0 are continuously
embeded in l2 since all the sequences e s, ẽ s, ê s belong to l2.

Now let us define the operators

FD σ = {sk(D)}∞1 , FDN σ = {sk(DN)}∞1 , FB σ = {sk(B)}∞1 . (3)

It follows from results of [13] and [4] that regularized spectral data in the right hand-
sizes of (3) are the sequences from l2 (for any primitive σ =

∫
q(x) dx). Hence, all the

operators in (3) are well defined as operators from L2 to l2. We will see more below:
the operators FD, FDN and FB map the Sobolev space W θ

2 (for any fixed θ > 0) into
lθD, l

θ
DN and lθB, respectively.

It is proved in [15, 16] that the maps FD, FDN and FB are Frechet differentiable
at every point (function) σ, provided that it is real valued, in particular, at the point
σ = 0. The Frechet derivatives at this point are linear operators TD, TDN , TB which
are defined by the formulae

(TD σ)2k−1 = − 1
π

π∫
0

σ(t) sin(2kt) dt, k = 1, 2, . . . ,

(TD σ)2k = −
π∫
0

(π − t)σ(t) cos(2kt) dt, k = 1, 2, . . . ;


(TDN σ)2k−1 = − 1

π

π∫
0

σ(t) sin((2k − 1)t) dt, k = 1, 2, . . . ,

(TDN σ)2k = −
π∫
0

(π − t)σ(t) cos((2k − 1)t) dt, k = 1, 2, . . . ;

(TD σ)k = − 1
π

π∫
0

σ(t) sin(kt) dt, k = 1, 2, . . . .

The next proposition helps to understand the importance of the spaces lθD, l
θ
DN and

lθB.
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Proposition 1.Any given θ > 0 the operators TD and TDN map the spaces W θ
2 	

{1} onto lθD and lθDN isomorphically. The operator TB maps the space W θ
2 onto lθB

isomorphically.

The proof of this proposition is given in [14, 16].
The next statement is the most difficult and the most essential result in the theory.

Theorem 2. Fix any θ > 0. The operator FD maps the space W θ
2 into lθD and

admit a representation in the form

FD(σ) = TD σ + ΦD(σ),

where TD is the linear operator defined in Proposition 1 and ΦD maps the space W θ
2

into lτD where

τ =
{

2θ, if 0 6 θ 6 1,
θ + 1, if 1 6 θ <∞.

Moreover, ΦD : W θ
2 → lτD is bounded at any ball, i.e.

‖Φ(σ)‖τ ≤ C‖σ‖θ,

with a constant C depending only on R. The same results are valid for the operators
FDN and FB. Namely,

FDN (σ) = TDN σ + ΦDN (σ), FB(σ) = TB σ + ΦB(σ),

and the maps ΦDN and ΦB have the same properties as ΦD.

We remark that the embedding lη ↪→ lθ is compact, provided that η > θ (we omit
here the indices D, DN or B). Hence, from the above theorem we obtain: The maps
FD, FDN and FB are weakly nonlinear, i.e. they are compact perturbations of linear
maps.

There is no way to describe the image of the maps FD, FDN or FB acting from
W θ

2 . However, the image of all real functions on W θ
2 we can describe explicitly. Let us

first work with the map FD. Fix a number h > 0 and define λk := (s2k + k)2. Denote
by Σθ

r,h the set of all sequences in the ball of radius r in the space lθD such that all the
numbers λk are real and

s2k−1 > h, λk+1 − λk > h for all k > 1. (4)

In the case h = 0 and r = ∞ we denote this set by Σθ. The next theorem gives the
solution of the inverse problem.

Theorem 2. Denote by W θ
R,0 the set of all real functions σ ∈ W θ

2 such that∫ π
0 σ(x) dx = 0, and by Bθ

R the ball of radius R in the set W θ
R,0. Any given θ > 0 the

map FD : W θ
R,0 → Σθ is bijective. This map is real analytic at any point σ ∈ W θ

R,0.
In the case θ > 0 the Frechet derivative dσFD of this map is uniformly bounded in
any ball Bθ

R. The image FD(Bθ
R) is contained in the set Σθ

r,h with some r, h > 0
depending only on R. Conversely, pre-image F−1(Σθ

r,h) is contained in a ball Bθ
R with
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R depending on r and h. For all sequences {sk}, {s̃k} ∈ Σθ
r,h the following estimates

are valid

C1‖σ − σ̃‖θ 6 ‖{sk} − {s̃k}‖θ 6 C2‖σ − σ̃‖θ, (5)

where σ = F−1({sk}), σ̃ = F−1({s̃k}), and the constants C1 and C2 depend only on r
and h.

We remark that the estimate (5) is new even in the classical case θ = 1. It
expresses the uniform stability for solutions of the inverse problem. The dependence
of the constants C1 and C2 on r and h is essential.

The same results become valid after some obvious changes for the maps FDN and
FB corresponding to the other inverse problems. In formulation of a similar result for
the map FDN we have to replace the space lθD by lθDN and in the definition of the set
Σθ
r,h to replace the condition (4) by

s2k > h, µk+1 − µk > h for all k > 1,

where µk := (s2k−1 + k − 1/2)2.

To formulate an analog of Theorem 2 for the map FB one has to make the following
changes. First, the space lθD has to be replaced by lθB and the set W θ

R,0 by the set of all
real functions in W θ

2 . The set Σθ
r,h has to be define in this case in the following way.

It consists of all sequences {sk}∞k=1 ∈ lθB such they lie in the ball of radius r in lθB, the
numbers λk := (s2k + k)2 and µk := (s2k−1 + k − 1/22 are real and

λk − µk > h, µk − λk−1 > h for all k > 1.

The proof of Theorem 2 is based essentially on Theorem 1.
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Basel. 1990.
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Let q be a summable real-valued function on R+, q ∈  L1(R+). Consider the
Schrödinger operator on R+

L = − d2

dx2
+ q(x)

with the Dirichlet boundary condition. The purely absolutely continuous spectrum of
this operator coincides with R+ [4]. Let ϕ(x, λ) be a solution of the spectral equation
for L,

−u′′(x, λ) + q(x)u(x, λ) = λu(x, λ),

such that ϕ(0, λ) ≡ 0, ϕ′(0, λ) ≡ 1 (satisfying the initial conditions). The following
classical result holds [4].

Proposition 1. If q ∈ L1(R+), then for every k > 0 there exist a(k) and b(k) such
that

ϕ(x, k2) = a(k) cos(kx) + b(k) sin(kx) + o(1) as x→ +∞,

and for a.a. λ > 0

ρ′(λ) =
1

π
√
λ(a2(

√
λ) + b2(

√
λ))

(the Weyl-Titchmarsh formula).

In the present note the analogous result for the Hermite operator is stated, see [12]
for the details. ”Free” Hermite operator is a Jacobi matrix with weights {

√
n}∞n=1 and

zero diagonal,

J0 =


0 1 0 · · ·
1 0

√
2 · · ·

0
√

2 0 · · ·
...

...
...

. . .

 .

Let us call Jacobi matrix

J =


b1 a1 0 · · ·
a1 b2 a2 · · ·
0 a2 b3 · · ·
...

...
...

. . .

 .

the Hermite operator with small perturbation, if it is defined by the sequences of
weights {an}∞n=1 and diagonal {bn}∞n=1 such that (let cn := an −

√
n)

cn = o(
√
n) as n→∞ and

∞∑
n=1

(
|cn|
n

+
|cn+1 − cn|+ |bn|√

n

)
<∞. (1)

The spectrum of J0 is purely absolutely continuous on the whole real line with the
spectral density

ρ′0(λ) =
e−

λ2

2

√
2π

.
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Spectral density of J can be studied using the asymptotic analysis of generalized
eigenvectors related to J , i.e., solutions of the spectral equation

an−1un−1 + bnun + anun+1 = λun, n ≥ 2. (2)

The method is based upon the comparison of solutions of (2) to solutions of the spectral
equation for the free Hermite operator,

√
n− 1un−1 +

√
nun+1 = λun, n ≥ 2. (3)

This situation is analogous to the one described by the Weyl-Titchmarsh theory for
the Schrödinger operator on the half-line with the summable potential. The following
results hold [12].

Theorem 1. For every complex λ equation (3) has two linearly independent solutions
I+
n (λ) and I−n (λ), which are entire functions of λ for every n and have the following

asymptotics as n→∞:

I±n (λ) =
±ie

λ2

4

(8π)1/4

(∓i)ne±iλ
√
n

n1/4

(
1 +O

(
1√
n

))
.

These asymptotics are uniform with respect to λ in every compact set in C.

Solutions I+
n (λ) and I−n (λ) are the direct analogues to the solutions eikx

2ik and e−ikx

−2ik
of the spectral equation for ”free” Schrödinger operator,

−u′′(x, k2) = k2u(x, k2).

The main technical difficulty of our problem is non-triviality of solutions I±n (λ) com-
pared to e±ikx

±2ik . The model of the Hermite operator was studied in the paper of Brown-
Naboko-Weikard [6], but solutions I±n (λ) were not introduced there.

Theorem 2. [12] Let (1) hold. Then

• For every λ ∈ R there exists F (λ) (the Jost function) such that

Pn(λ) = F (λ)I−n (λ) + F (λ)I+
n (λ) + o(n−1/4) as n→∞.

Function F is continuous and non-vanishing on R.

• The spectrum of J is purely absolutely continuous, and for a.a. λ ∈ R

ρ′(λ) =
e−

λ2

2

√
2π|F (λ)|2

(the Weyl-Titchmarsh type formula).

The previous theorem can be proven by another method, based on the Levinson-
type analytical and smooth theorem, cf. [3] and papers of Bernzaid-Lutz [5], Janas-
Moszyński [8] and Silva [10], [11].

Acknowledgement

The author expresses his deep gratitude to Dr. A.V. Kiselev and to Prof. S.N. Naboko.



Spectral analysis of differential and difference operators 37

References

[1] M. Abramowitz, I. Stegun, Handbook of mathematical functions, Dover, New York,
1964.

[2] N. Akhiezer, The classical moment problem and some related questions in analysis,
Oliver & Boyd, 1965.

[3] E. Coddington, N. Levinson, Theory of ordinary differential equations, McGraw-
Hill, New York, 1955.

[4] E. Titchmarsh, Eigenfunction expantions associated with second-order differential
equations, 2, Clerandon Press, Oxford, 1958.

[5] Z. Benzaid, D. Lutz, Asymptotic representation of solutions of perturbed systems
of linear difference equations, Studies Appl. Math. 77, 1987.

[6] M. Brown, S. Naboko, R. Weikard, The inverse resonance problem for Hermite
operators(preprint).

[7] D. Gilbert, D. Pearson, On subordinacy and analysis of the spectrum of one di-
mensional Schrödinger operators, J. Math. Anal. Appl. 128, 1987.

[8] J. Janas, M. Moszynski, Spectral properties of Jacobi matrices by asymptotic anal-
ysis, J. Approx. Theory 120, 2003.

[9] S. Khan, D. Pearson, Subordinacy and spectral theory for infinite matrices, Helv.
Phys. Acta 65, 1992.

[10] L. Silva, Uniform Levinson type theorems for discrete linear systems, Oper. Theory
Adv. Appl., Birkhauser-Verlag 154, 2004.

[11] L. Silva, Uniform and smooth Benzaid-Lutz type theorems and applications to
Jacobi matrices, Oper. Theory Adv. Appl., Birkhauser-Verlag 174, 2007.

[12] S. Simonov, Weyl-Titchmarsh type formula for Hermite operator with small per-
turbation (to appear).

Tridiagonal block matrices and canonical moments

Marcin J. Zygmunt

Department of Applied Mathematics
AGH University of Science and Technology
al. Mickiewicza 30, 30-059 Krakow, Poland.

marcin.zygmunt@vp.pl



38 Spectral analysis of differential and difference operators

In this talk we present the connection between matrix measures and random walks
with a block tridiagonal transition matrix. We derive sufficient conditions such that
the blocks of the n-step block tridiagonal transition matrix of the Markov chain can
be represented as integrals with respect to a matrix valued spectral measure. Several
stochastic properties of the processes are characterized by means of this matrix mea-
sure. In many cases this measure is supported in the interval [-1, 1]. The results are
illustrated by several examples including random walks on a grid.

Consider a homogeneous Markov chain with state space Cd = {(i, j) ∈ N0×N | 1 ≤
j ≤ d} and block tridiagonal transition matrix

P =


B0 A0 0
C1

T B1 A1

C1
T B2 A2

0
. . . . . . . . .


where d ∈ N is finite, and A0, A1, . . . , B0, B1, . . . , C1, C2, . . . are d×dmatrices containing
the probabilities of one-step transitions. This means that the probability of going in
one step from state (i, j) to (i′, j′) is given by the element in the position (j, j′) of the
matrix Pi,i′ , where the one-step block tridiagonal transition matrix is represented by
P =

(
Pi,i′

)
i,i′=0,1,...

.
Matrices P of the above form are closely related to a sequence of matrix polynomials

recursively defined by

xQn(x) = AnQn+1(x) +BnQn(x) + Cn
TQn−1(x), n ∈ N,

where Q−1(x) = 0 and Q0(x) = I.


