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MAXIMAL COMMUTATIVE SUBALGEBRAS, POISSON
GEOMETRY AND HOCHSCHILD HOMOLOGY.

TOMASZ MASZCZYK†

Abstract. A Poisson geometry arising from maximal commutative subalge-
bras is studied. A spectral sequence convergent to Hochschild homology with
coefficients in a bimodule is presented. It depends on the choice of a maximal
commutative subalgebra inducing appropriate filtrations. Its E2

p,q-groups are
computed in terms of canonical homology with values in a Poisson module
defined by a given bimodule and a maximal commutative subalgebra.

1. Introduction. In this paper we study the canonical Poisson geometry aris-
ing as an effect of choosing a maximal commutative subalgebra in an arbitrary
associative algebra. We show that this geometry describes a nonlinear involutive
distribution on the spectrum of the maximal commutative subalgebra. Every bi-
module over the associative algebra defines a graded sheaf with a flat connection
along this nonlinear involutive distribution.

All this can be summarized in the following mental picture based on the idea
of noncommutative geometry. Thinking of algebras in the dual manner as of
spaces, we consider maximal dominant maps of a given noncommutative space
into commutative spaces, ”commutative shadows of a noncommutative space”.
What we see on these commutative shadows is the canonical dynamics. We show
that this dynamics on a commutative shadow can be deformed in the sense of
Gerstenhaber (quantized) to an almost commutative filtration induced by a given
maximal commutative subalgebra of a given noncommutative algebra.

In the paper [1] Jean-Luc Brylinski introduces a spectral sequence convergent
to Hochschild homology of an almost commutative algebra (filtered algebra whose
associated graded algebra is commutative) and computes (in the case when the
associated graded algebra is smooth) its E2

p,q-groups in terms of canonical ho-
mology of the associated graded algebra. As the main applications serve there
envelopping algebras of Lie algebras and algebras of differential operators of com-
mutative algebras. a canonical construction of almost commutative algebras.

After a slight generalization of the result of Brylinski we construct a spectral
sequence convergent to Hochschild homology of this almost commutative algebra
with coefficients in an almost symmetric bimodule. We compute its E2

p,q-groups
in terms of canonical Poisson homology of the associated graded Poisson algebra
with values in an associated graded Poisson module. We apply this construction
to relating Hochschild homology with coefficients on a noncommutative space
with canonical Poisson homology on its commutative shadow.

†The author was partially supported by KBN grants:
1P03A 036 26 and 115/E-343/SPB/6.PR UE/DIE 50/2005-2008.

Mathematics Subject Classification (2000): 16E40 , 17B63.
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The canonical complex was investigated by Gelfand-Dorfman [3], Koszul [8],
Brylinski [3], Huebschmann [6] and Fresse [2] with the relation to Poisson homol-
ogy. The relations between canonical homology and Poisson geometry were dis-
cussed by Vaisman in [12]. The relation between Poisson algebras and Hochschild
homology of enveloping algebras was investigated by Kassel [7].

2. The spectral sequence. All rings below are unital and all (bi)modules are
unitary. Let R be a noetherian commutative ring of characteristic 0. Unadorned
tensor products mean tensor products over R. For an increasing filtration F,
Fp−1 ⊂ Fp, we denote its associated gradation Gr, Gr =

⊕
Grp, Grp = Fp/Fp−1.

For any graded abelian group G we denote by Gp its p-th homogeneous part.

Definition 1. A Z-filtered associative R-algebra A (resp. a Z-filtered bimodule
over A, symmetric over R), Fp−1A ⊂ FpA,

⋂
p∈Z FpA = 0,

⋃
p∈Z FpA = A (resp.

Fp−1M ⊂ FpM ,
⋂

p∈Z FpM = 0,
⋃

p∈Z FpM = M), is called almost commu-

tative (resp. almost symmetric) if its associated graded algebra GrA (resp.
associated graded bimodule GrM) is commutative (resp. symmetric). This means
that

Fp0A · Fp1A ⊂ Fp0+p1A, [Fp0A, Fp1A] ⊂ Fp0+p1−1A(1)

(resp. Fp0A · Fp1M, Fp0M · Fp1A ⊂ Fp0+p1A, [Fp0A, Fp1M ] ⊂ Fp0+p1−1M).(2)

On the Hochschild complex C•(A, M) =
⊕

k Ck(A, M), Ck(A, M) = M ⊗A⊗k

we have an increasing filtration Fp

FpCk(A, M) =
∑

p0+···+pk≤p

Fp0M ⊗ Fp1A⊗ · · · ⊗ Fpk
A.(3)

This gives rise to a spectral sequence with E1
p,q = Hp+q(GrA, GrM)p, the homoge-

neous part of degree p of the Hochschild homology Hp+q(GrA, GrM), converging
to the Hochschild homology Hp+q(A, M). For M = A we obtain the spectral
sequence of Brylinski as in [1].

3. Canonical homology.
Definition 2. A commutative graded algebra B =

⊕
p∈Z Bp, Bp = 0 for p � 0

(resp. a symmetric graded bimodule N over a commutative graded algebra B,
N =

⊕
p∈Z Np, Np = 0 for p � 0), is called a Poisson (graded) algebra (resp.

Poisson (graded) module over a (graded) Poisson algebra B) if there is given
a Lie algebra structure on B

{−,−} : B ⊗B → B

(resp. a structure of a right module structure over the Lie algebra (B, {−,−})
{−,−} : N ⊗B → N),

(with

{Bp0 , Bp1} ⊂ Bp0+p1−1 (resp. {Np0 , Bp1} ⊂ Np0+p1−1),

if they are Poisson graded) such that for all b0, b1, b2 ∈ B

{b0, b1b2} = {b0, b1}b2 + b1{b0, b2}
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(resp. for all n ∈ N, b1, b2 ∈ B

{nb1, b2} = {n, b2}b1 + n{b1, b2}, {n, b1b2} = {n, b1}b2 + b1{n, b2}.)

Definition 3. Let N be a Poisson module over a Poisson algebra B. On the
graded R-module Ccan

• (B, N) =
⊕

k Ccan
k (B, N), Ccan

k (B, N) = N ⊗B Ωk
B/R one

defines [2] the chain complex structure as follows:

∂ : Ccan
k (B, N) → Ccan

k−1(B, N),

∂(n⊗B db1 · · · dbk) =

=
k∑

i=1

(−1)i−1{n, bi} ⊗B db1 · · · d̂bi · · · dbk)

+
∑

1≤i,j≤k

(−1)i+jn⊗B d{bi, bj}db1 · · · d̂bi · · · d̂bj · · · dbk).

One verifies that the boundary operator ∂ is well defined and ∂2 = 0. The homol-
ogy Hcan

• (B, N) of this complex is called canonical homology of the Poisson
module N over a Poisson algebra B. Note that if B and N are graded Poisson
then ∂ is homogeneous of degree (-1). Therefore in the Poisson graded case k-th
canonical chain and homology groups are graded in a canonical way.

4. The Hochschild-Kostant-Rosenberg isomorphism. We will use the sim-
ple observation [2] that the Hochschild-Kostant-Rosenberg isomorphism (see [1],
[5], [9]) holds also in the case of coefficients in a symmetric bimodule N over a
smooth commutative algebra B. This means that the map

β : Hk(B, N) → N ⊗B Ωk
B/R,

β(n⊗ b1 ⊗ · · · ⊗ bk) =
1

k!
n⊗B db1 · · · dbk(4)

is an isomorphism, with the inverse γ:

γ(n⊗B db1 · · · dbk) =

[ ∑
σ∈Sk

sgn(σ) n⊗ bσ(1) ⊗ · · · ⊗ bσ(k)

]
,(5)

where the square bracket denotes the Hochschild homology class of a cycle.

5. Hochschild and canonical homology. Given an almost commutative al-
gebra A (resp. an almost symmetric bimodule M over A), B = GrA (resp.
N = GrM) has a canonical structure of a graded Poisson algebra (resp. a
graded Poisson module over B) with the Poisson structure defined as follows:
for b0 = a0 + Fp0−1A, a0 ∈ Fp0A, b1 = a1 + Fp1−1A, a1 ∈ Fp1A, n = m + Fp0−1M ,
m ∈ Fp0M

{b0, b1} = [a0, a1] + Fp0+p1−2A,

{n, b1} = [m, a1] + Fp0+p1−2M.

Moreover we have the following theorem generalizing Theorem 3.1.1 of [1].
In the proof we follow the lines of the beautiful proof of [1], improving a little
misprint in the original proof (ai instead of a0 in the formula (II) in [1]). At
first sight this (spoiled) structure of the formula (II) makes our generalization
impossible, but after this minor correction everything can be adapted verbatim.
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Theorem 1. Assume that the above filtrations are bounded and exhaustive, and
B = GrA is smooth over R. Then for any q ≥ 0 the Hochschild-Kostant-
Rosenberg isomorphism induces an isomorphism of complexes

β : (E1
p,q(A, M), d1

p,q) → (Ccan
p+q(B, N)p, ∂),(6)

where d1
p,q : E1

p,q(A, M) → E1
p−1,q(A, M) is the differential in the spectral sequence.

In particular

E2
p,q(A, M) ∼= Hcan

p+q(B, N)p.(7)

Proof. It is enough to prove that β ◦ d1 ◦ γ = ∂. Now, the R-module
Ccan

k (B, N)p = (N⊗BΩk
B/R)p is generated by elements of the form n⊗Bdb1 · · · dbk,

where n = m+Fp0−1M , m ∈ Fp0M , bi = ai +Fpi−1A, ai ∈ Fpi
A, p0 + · · ·+pk = p.

First, we have

γ(n⊗B db1 · · · dbk) =

[ ∑
σ∈Sk

sgn(σ) n⊗ bσ(1) ⊗ · · · ⊗ bσ(k)

]
.

The cycle on the right hand side lives in Ck(B, N)p and lifts to the chain∑
σ∈Sk

sgn(σ) m⊗ aσ(1) ⊗ · · · ⊗ aσ(k) ∈ FpCk(A, M).(8)

Its Hochschild boundary is the sum of three terms (I), (II), (III), with

(I) =
∑
σ∈Sk

sgn(σ) maσ(1) ⊗ aσ(2) ⊗ · · · ⊗ aσ(k),

(II) =
∑
σ∈Sk

∑
1≤i<k

sgn(σ)(−1)im⊗ aσ(1) ⊗ · · · ⊗ aσ(i)aσ(i+1) ⊗ · · · ⊗ aσ(k),

(III) =
∑
σ∈Sk

sgn(σ)(−1)kaσ(1)m⊗ aσ(1) ⊗ · · · ⊗ aσ(k−1).

Since the chain (8) is a lift of a Hochschild cycle in Ck(B, N)p its Hochschild
boundary lives in Fp−1Ck−1(A, M). Now we are to compute the image of this
Hochschild boundary in Grp−1Ck−1(A, M) = Ck−1(B, N)p−1.

First, transforming σ ∈ Sk to στ , where τ is a cyclic permutation, we can
rewrite (I) as follows

(I) =
∑
σ∈Sk

(−1)k+1sgn(σ) maσ(k) ⊗ aσ(1) ⊗ · · · ⊗ aσ(k−1).

Since

(I) + (III) =
∑
σ∈Sk

(−1)k+1sgn(σ) [m, aσ(k)]⊗ aσ(1) ⊗ · · · ⊗ aσ(k−1)

we have (I)+(III) ∈ Fp−1Ck−1(A, M); its image in Grp−1Ck−1(A, M) = Ck−1(B, N)p−1

is equal to ∑
σ∈Sk

(−1)k+1sgn(σ) {n, bσ(k)} ⊗ bσ(1) ⊗ · · · ⊗ bσ(k−1).(9)
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Second, transforming σ ∈ Sk to σsh, where sh is a transposition which exchanges
h and (h + 1), we can rewrite (II) as follows

(II) =
1

2

∑
σ∈Sk

∑
1≤h<k

sgn(σ)(−1)hm⊗ aσ(1) ⊗ · · · ⊗ [aσ(h), aσ(h+1)]⊗ · · · ⊗ aσ(k)

which also lives in Fp−1Ck−1(A, M); its image in Grp−1Ck−1(A, M) = Ck−1(B, N)p−1

is equal to

1

2

∑
σ∈Sk

∑
1≤h<k

sgn(σ)(−1)hn⊗ bσ(1) ⊗ · · · ⊗ {bσ(h), bσ(h+1)} ⊗ · · · ⊗ bσ(k).(10)

Adding (9) and (10) we obtain (d1 ◦ γ)(n ⊗B db1 · · · dbk). It remains to apply β
to this.

Now, for the image of the sum (9) under β notice that all σ’s with σ(k) = i
fixed, give the same value for β({n, bσ(k)} ⊗ bσ(1) ⊗ · · · ⊗ bσ(k−1)) equal to

1

(k − 1)!
(−1)k−i{n, bi} ⊗B db1 · · · d̂bi · · · dbσ(k).

Since there are (k − 1)! such permutations, substituting this value, common for
each σ with σ(k) = i, to the image of (9) we obtain∑

1≤i≤k

(−1)i−1{n, bi} ⊗B db1 · · · d̂bi · · · dbσ(k).(11)

Next, for the image of (10) under β notice that all pairs (σ, h) with the set
{σ(h), σ(h + 1)} equal to a fixed set {i, j} (say i < j), give the same value for
β(sgn(σ)(−1)hn⊗ bσ(1) · · · ⊗ {bσ(h), bσ(h+1)} ⊗ · · · ⊗ bσ(k)) equal to

1

(k − 1)!
(−1)i+jn⊗B d{bi, bj}db1 · · · d̂bi · · · d̂bj · · · dbk.

Since there are 2(k − 1)! such pairs, substituting this value, common for each
(σ, h) with the set σ(h) = i equal to a fixed set, to the image of (10) we obtain∑

1≤i,j≤k

(−1)i+jn⊗B d{bi, bj}db1 · · · d̂bi · · · d̂bj · · · dbk.(12)

Taking the sum of (11) and (12) we obtain

(β ◦ d1 ◦ γ)(n⊗B db1 · · · dbk) = ∂(n⊗B db1 · · · dbk). �

6. Maximal commutative subalgebras and almost commutative alge-
bras.
Definition 4. Let C be a maximal commutative subalgebra of A and M be a
bimodule over A. For c ∈ C, m ∈ M we define an operation adc(m) := [c, m]
and an increasing N-filtration on M

FC
p M := {m ∈ M | ∀c∈C adp+1

c (m) = 0}.(13)

Since for all c, c′ ∈ C [adc, adc′ ] = ad[c,c′] = 0, the multilinear map

(c0, . . . , cp) 7→ adc0 . . . adcp(m)(14)
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is symmetric in (c0, . . . , cp). Therefore (14) is a symmetric (p + 1)-linear form
in (c0, . . . , cp) corresponding, via the polarization formula, to the homogeneous
polynomial of degree (p + 1) in c

c 7→ adp+1
c (m).(15)

Therefore the filtration FC can be rewritten equivalently as follows

FC
p M := {m ∈ M | ∀c0,...,cp∈C adc0 . . . adcp(m) = 0}.(16)

We call DCA :=
⋃

p FC
p A (resp. DCM :=

⋃
p FC

p M) the differential hull of C

in A (resp. of the centralizer of C in M). Note that DCM inherits the filtration
from M and has the same associated gradation.

The following example justifies the name of the differential hull.

Example 1. Let us take two left A-modules P and Q, and form the A-bimodule
M := HomR(P, Q). Then by (16) we have

FC
p M = DiffC/R

p (P, Q), GrC
p M = SmblC/R

p (P, Q),

where DiffC/R
p (P, Q) (resp. SmblC/R

p (P, Q)) denotes the C-bimodule of differential
operators of order p from P to Q (resp. the symmetric C-bimodule of their
principal symbols).

Theorem 2. Given a maximal commutative subalgebra C of A, the above fil-
tration makes DCA almost commutative and a bimodule DCM over DCA almost
symmetric.

Proof. Let m ∈ FC
p0

M , a ∈ FC
p1

A.
On the right hand side of the identities

1

(p0 + p1 + 1)!
adp0+p1+1

c (ma) =
∑

i+j=p0+p1+1

1

i!
adi

c(m)
1

j!
adj

c(a)

1

(p0 + p1 + 1)!
adp0+p1+1

c (am) =
∑

i+j=p0+p1+1

1

j!
adj

c(a)
1

i!
adi

c(m)

at least one of the two factors in every summand is zero, since either i ≥ p0 + 1
or j ≥ p1 + 1. This proves that

FC
p0

M · FC
p1

A, FC
p1

A · FC
p0

M ⊂ FC
p0+p1

M.(17)

Observe now that FC
0 A = C, since C is a maximal commutative subalgebra in

A, and [FC
0 M, C] = 0. Next, if c ∈ C, m ∈ FC

p M then

adp+1−i
c (adi

c(m)) = adp+1
c (m) = 0

which means that

adi
c(F

C
p M) ⊂ FC

p−iM.(18)

On the right hand side of the identity

1

(p0 + p1)!
adp0+p1+1

c ([m, a]) =
∑

i+j=p0+p1

[
1

i!
adi

c(m),
1

j!
adj

c(a)

]
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all summands are zero, since the following implications hold:

i < p0 ⇒ j > p1 ⇒ adj
c(a) = 0,

i = p0 ⇒ j = p1
(18)⇒ adi

c(m) ∈ FC
0 M, adj

c(a) ∈ FC
0 A = C,

i > p0 ⇒ adi
c(m) = 0.

This proves that [
FC

p0
M, FC

p1
A,

]
⊂ FC

p0+p1−1M.(19)

Taking M = A in (17) and (19) we see that the filtration FC makes DCA almost
commutative and, also by (17) and (19), DCM almost symmetric over DCA. �

7. Poisson geometry of the differential hull. To discuss the Poisson ge-
ometry arising from the differential hull we need to generalize the notion of an
involutive distribution and a sheaf with a flat connection along an involutive
distribution.

Let C be a smooth commutative R-algebra and let ΘC/R = HomC(Ω1
C/R, C)

denote the relative tangent module of C over R.
Every f ∈ HomC(Symp

CΩ1
C/R, C) = Symp

CΘC/R can be regarded as a symmetric
R-linear C-valued p-form on C, which is a derivation with respect to every linear
argument. Using this fact we can define the canonical graded Poisson algebra
structure of the R-algebra SymCΘC/R =

⊕
p≥0 Symp

CΘC/R of polynomial func-
tions on the relative cotangent bundle of the scheme SpecC over R as follows:
for fi ∈ HomC(Sympi

C Ω1
C/R, C), i = 0, 1,

(f0f1)(c1, . . . , cp0+p1) :=(20)

1

(p0 + p1)!

∑
σ∈Sp0+p1

f0(cσ(1), . . . , cσ(p0))f1(cσ(p0+1), . . . , cσ(p0+p1)),

{f0, f1}(c1, . . . , cp0+p1−1) :=(21)

1

(p0 + p1 − 1)!

∑
σ∈Sp0+p1−1

(p0f0(cσ(1), . . . , cσ(p0−1), f1(cσ(p0), . . . , cσ(p0+p1−1)))

−p1f1(cσ(1), . . . , cσ(p1−1), f0(cσ(p1), . . . , cσ(p0+p1−1)))).(22)

Definition 5. A nonlinear involutive distribution on a scheme SpecC over
R is a graded Poisson subalgebra B of the algebra SymCΘC/R of polynomial
functions on the relative cotangent bundle of the scheme SpecC over R such
that B0 = C. A graded sheaf with a flat connection along the nonlinear
involutive distribution B is a graded Poisson module N over B together with
a structure of a graded Poisson module over B on N0 ⊗C SymCΘC/R and an
embedding of N as a graded Poisson submodule of N0 ⊗C SymCΘC/R.

Example 2. Let L ⊂ ΘC/R = DerR(C, C) be a finitely generated projective
C-submodule which is also an R-Lie-subalgebra. It describes an involutive dis-
tribution on SpecC over R. The C-linear embedding L ↪→ ΘC/R is equivalent to
the grading preserving embedding of graded C-algebras

SymCL ↪→ SymCΘC/R.(23)
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The Lie subalgebra structure defines on the image of (23) a structure of a graded
Poisson subalgebra uniquely determined by the following brackets for θ ∈ ΘC/R,
c ∈ C, l ∈ L

{θ, c} = θ(c), {θ, l} = [θ, l].(24)

This shows that an involutive distribution is an instance of a nonlinear involutive
distribution. On the other hand, every nonlinear involutive distribution of the
form SymCL for some finitely generated projective C-module L defines on L
a structure of an involutive distribution. Assume now that N0 is a C-module
equipped with a flat connection along an involutive distribution L ⊂ ΘC/R

∇ : N0 ⊗R L → N, n0 ⊗ l 7→ ∇ln0,(25)

∇cln0 = c∇ln0, ∇l(n0c) = (∇ln0)c + n0l(c), [∇l′ ,∇l] = ∇[l,l′].

Then the brackets

{n0 ⊗ 1, 1⊗ c} = 0, {n0 ⊗ 1, 1⊗ l} = −∇ln0 ⊗ 1(26)

determine uniquely structures of graded Poisson modules over SymCL on N :=
N0 ⊗C SymCL and N0 ⊗C SymCΘC/R, and an embedding (of graded Poisson
modules over SymCL) N ↪→ N0⊗C SymCΘC/R. In this way N becomes a graded
sheaf with a flat connection along the nonlinear involutive distribution SymCL.

Theorem 3. Let C be a smooth commutative R-subalgebra of an associative R-
algebra A and let M be an arbitrary R-symmetric A-bimodule. Then GrCA is
a nonlinear involutive distribution on a scheme SpecC over R and GrCM is a
graded sheaf with a flat connection along GrCA.

Proof. Since an A-bimodule M is symmetric as an R-bimodule and C is a
commutative R-subalgebra in A M is a left module over C ⊗R C, where (c0 ⊗
c1)m := c0mc1. Let us consider the kernel I of the multiplication map C⊗R C →
C. This is an ideal in C ⊗R C generated by elements of the form c ⊗ 1 − 1 ⊗ c.
Since (c ⊗ 1 − 1 ⊗ c)m = adc(m) the filtration (16) gives rise, for any k ≤ p, to
the embedding

GrC
p M ↪→ HomC(Ik/Ik+1, GrC

p−kM),(27)

m + FC
p−1M 7→

((c1⊗1−1⊗ c1) · · · (ck⊗1−1⊗ ck)+ Ik+1 7→ (−1)k

k!
adc1 . . . adck

(m)+FC
p−k−1M).

Since for C smooth over R one has the isomorphism of symmetric C-bimodules

Symk
CΩ1

C/R

∼=→ Ik/Ik+1(28)

and GrC
0 M is a symmetric C-bimodule the latter embedding can be rewritten as

GrC
p M ↪→ HomC(Symk

CΩ1
C/R, GrC

p−kM) = GrC
p−kM ⊗C Symk

CΘC/R.(29)

In particular, since GrC
0 A = C, we obtain the embedding

GrC
p A ↪→ HomC(Symp

CΩ1
C/R, C) = Symp

CΘC/R.(30)

Then the embeddings (30) define a grading preserving embedding of graded
Poisson algebras

GrCA ↪→ SymCΘC/R.(31)
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The canonical structure of a graded module over the graded algebra SymCΘC/R

on GrC
0 M ⊗C SymCΘC/R is consistent through (31) with the following structure

of a graded Poisson module over GrCA on GrC
0 M ⊗C SymCΘC/R identified with⊕

p≥0 HomC(Symp
CΩ1

C/R, GrC
0 M): for all s0 ∈ HomC(Symp0

C Ω1
C/R, GrC

0 M)) and

f1 ∈ HomC(Symp1

C Ω1
C/R, C)

(s0f1)(c1, . . . , cp0+p1) :=(32)

1

(p0 + p1)!

∑
σ∈Sp0+p1

s0(cσ(1), . . . , cσ(p0))f1(cσ(p0+1), . . . , cσ(p0+p1)),

{s0, b1}(c1, . . . , cp0+p1−1) :=(33)

1

(p0 + p1 − 1)!

∑
σ∈Sp0+p1−1

(p0s0(cσ(1), . . . , cσ(p0−1), b1(cσ(p0), . . . , cσ(p0+p1−1)))

+p1{s0(cσ(p1), . . . , cσ(p0+p1−1)), b1(cσ(1), . . . , cσ(p1−1),−)}),

where {−,−} on the right hand side is the bracket GrC
0 M ⊗R GrC

1 A → GrC
0 M .

Then the embeddings (29) for k = p define an embedding of graded Poisson
modules over GrCA

GrCM ↪→ GrC
0 M ⊗C SymCΘC/R.(34)

�
There are also interesting examples of non-smooth maximal commutative sub-

algebras.

Example 3. Let A = Mn(k) be the (n× n) matrix algebra over an algebraically
closed field k of characteristic 0. Among its many non-isomorphic maximal com-
mutative subalgebras [11] one has the following two extremes:

1) Diagonal subalgebra C ∼= kn = k × · · · × k. It is smooth (semisimple) and
the filtration stabilizes at C, hence DCA = C, GrCA = C,

2) Subalgebra C ∼= k[x]/(xn+1) generated by the nilpotent (n × n) Jordan
block. Then the filtration is exhaustive, DCA = DiffRC, the algebra of differential
operators of the commutative k-algebra C, and GrCA is isomorphic as a graded
Poisson algebra to the polynomial algebra of the nth infinitesimal neighborhood
of the nilpotent cone in sl∗2 with its canonical Kirillov-Kostant-Souriau Poisson
structure and the grading such that deg(e) = 0, deg(h) = 1, deg(f) = 2 [10].

8. Deformation of the differential hull to a nonlinear involutive dis-
tribution. According to the construction of Gerstenhaber [4] we apply a slight
generalization of the Rees algebra to our almost commutative algebra DCA and
an almost symmetric bimodule DCM .

Definition 6. For any bimodule M over an associative R-algebra A, and a max-
imal commutative subalgebra C of A, we define

DefM :=
∑

p

FC
p M · tp ⊂ M [t] = M ⊗R R[t].(35)

By Theorem 3, according to [4], we have the following corollary.
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Corollary 1. In the situation of Definition 6 the following holds.
1) DefA is a subalgebra in A[t] and DefM is a sub-bimodule of a DefA-bimodule

M [t],
2) At t = 1 DefA (resp. DefM) specializes to the almost commutative algebra

DCA (resp. to the almost symmetric DefA-bimodule DefM),
3) At t = 0 DefA (resp. DefM) specializes to the nonlinear involutive distri-

bution GrCA (resp. to a graded sheaf with a flat connection along GrCA) on the
scheme SpecC over R.

9. Hochschild homology of the differential hull. As a corollary of Theorem
1 and Theorem 2 we obtain the following

Theorem 4. Let C be a maximal commutative subalgebra of an associative R-
algebra A and M be a bimodule over A. Then

1) C defines filtrations FC making DCA almost commutative and DCM almost
symmetric over DCA, such that GrCA is a graded Poisson algebra and GrCM a
graded Poisson module over GrCA.

2) These filtrations give rise to a spectral sequence converging to the Hochschild
homology

Er
p,q ⇒ Hp+q(D

CA, DCM).

3) If GrCA is smooth over R then

E2
p,q
∼= Hcan

p+q(GrCA, GrCM)p.
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