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Abstract

Let K be a real closed field, R a subring of K, and An(K;R) the
algebra of subsets of Kn generated by sets of the form {(y1, . . . , yn) ∈
Kn : sgn P (y1, . . . , yn) = s} where s ranges over {−1, 0, 1} and P
ranges over the polynomials of n variables with coefficients in R. The
Tarski–Seidenberg projection theorem ([H3], Theorem A.2.2; [Tr],
Theorem A.1) is extended to the algebras An(K;R).

1 Introduction and the main result

Throughout the present paper, K will denote a real closed field, i.e. an

ordered field satisfying the equivalent conditions (2.1)–(2.4) of the next

section. Let sgn be the map of K into itself such that, for every x ∈ K,

sgnx =


−1 if x < 0,

0 if x = 0,

1 if x > 0.

For any subring R of K and n = 1, 2, . . . denote by R[Y1, . . . , Yn] the ring of

polynomials of n variables over R, and by An(K;R) the algebra 1 of subsets

of Kn generated by the sets

{(y1, . . . , yn) ∈ Kn : sgnP (y1, . . . , yn) = s}

2000 Mathematics Subject Classification: Primary 12D99, 12E05; Secondary 12L05,
35E99.

Key words and phrases: real-closed field, polynomials over a ring, the signature of a
finite sequence of polynomials.

1A family F of subsets of a space X is called an algebra if X \A ∈ F whenever A ∈ F ,
and A ∩B ∈ F whenever A, B ∈ F .
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2 J. Kisyński

where P ∈ R[Y1, . . . , Yn] and s ∈ {−1, 0, 1}. It is not difficult to prove that

every set belonging to An(K;R) may be represented in the form

(1.1) A =
⋃
ι

⋂
µ

{(y1, . . . , yn) ∈ Kn : sgnPι,µ(y1, . . . , yn) = sι,µ}

where
⋃
ι and

⋂
µ are finite, Pι,µ ∈ R[Y1, . . . , Yn], and sι,µ ∈ {−1, 0, 1}.

Our aim is to present a detailed proof of the following projection theorem.

Theorem 1.1. Let K be a real closed field, R a subring of K, and l, n =

1, 2, . . . . Let PK : (x1, . . . , xl, y1, . . . , yn) 7→ (y1, . . . , yn) be the projection of

Kl+n onto Kn. Then PKA ∈ An(K;R) for every A ∈ Al+n(K;R).

If (K,R) = (R,R), then Theorem 1.1 coincides with the Tarski–Seiden-

berg theorem from the Appendix to L. Hörmander’s book [H3]. In applica-

tions of the projection theorem to PDE, noticed by L. Hörmander ([H1],

proof of Lemma 3.9; [H2], proof of Theorem 5.4.1; [H3], proofs of The-

orems 12.3.1 and 12.9.2) and discussed also in [G] and [F], one also has

(K,R) = (R,R). However, the ideas of various proofs of the projection the-

orem come from the papers [T1, 2], [S] and [C1, 2] related to mathematical

logic where the case of R = Z is of particular interest. See also Chapter

23 of [A-Z]. Our proof of Theorem 1.1 refers to the Appendix to [H3], and

thus, indirectly, also to [C1, 2].

Theorem 1.1 is equivalent to the statement that whenever P1, . . . , Pm ∈
R[X1, . . . , Xl, Y1, . . . , Yn], s1, . . . , sm are constants belonging to {−1, 0, 1},
and

B = {(y1, . . . , yn) ∈ Kn : ∃(x1,...,xl)∈Kl [sgnPµ(x1, . . . , xl, y1, . . . , yn) = sµ

for every µ = 1, . . . ,m]},

then

B ∈ An(K;R).

This means that the system of m equations

sgnPµ(x1, . . . , xl, y1, . . . , yn) = sµ, µ = 1, . . . ,m,

with given (y1, . . . , yn) ∈ Kn and unknown (x1, . . . , xl) ∈ Kl has a solution

if and only if (y1, . . . , yn) ∈ B for a suitable B ∈ An(K;R).

Theorem 1.1 is also equivalent to the following Polynomial Mapping The-

orem which for K = R = R is stated in the Appendix A to [Tr].
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Theorem 1.2. Let Q be a polynomial mapping of Kl into Kn such that

Q(x1, . . . , xl) = (Q(x1, . . . , xl), . . . , Qn(x1, . . . , xl)) where Q1, . . . , Qn ∈
R[X1, . . . , Xl]. Then Q(A) ∈ An(Kl;R) for every A ∈ Al(K;R).

Indeed, if

A =
⋃
ι

mι⋂
µ=1

{(x1, . . . , xl) ∈ Kl : sgnPι,µ(x1, . . . , xl) = sι,µ} ∈ Aι(K;R),

then

Q(A) =
⋃
ι

Q
( mι⋂
µ=1

{(x1, . . . , xl) ∈ Kl : sgnPι,µ(x1, . . . , xl) = sι,µ}
)

=
⋃
ι

{(y1, . . . , yn) ∈ Kn : ∃(x1,...,xl)∈Kl [sgn(Qν(x1, . . . , xl)− yν) = 0

for every ν = 1, . . . , n,

sgnPι,µ(x1, . . . , xl) = sι,µ for every µ = 1, . . . ,mι]} ∈ An(K;R),

by Theorem 1.1. Hence Theorem 1.1 implies Theorem 1.2. The converse

implication is obvious.

Theorem 1.3. Let R be a commutative ring. For every finite system of

polynomials Pi,µ ∈ R[X1, . . . , Xl, Y1, . . . , Yn] and numbers si,µ ∈ {−1, 0, 1},
i ∈ I, µ ∈ Mi, there is a finite system of polynomials P̃j,ν ∈ R[Y1, . . . , Yn]

and numbers s̃j,ν ∈ {−1, 0, 1}, j ∈ J , ν ∈ Nj, such that whenever K is a

real closed field containing R as a subring and

AK =
⋃
i∈I

⋂
µ∈Mi

{(x1, . . . , xl, y1, . . . , yn) ∈ Kl+n :

sgnPi,µ(x1, . . . , xl, y1, . . . , yn) = si,µ},

then

PKAK =
⋃
j∈J

⋂
ν∈Nj

{(y1, . . . , yn) ∈ Kn : sgn P̃j,ν(y1, . . . , yn) = s̃j,ν}.

Theorem 1.3 implies Theorem 1.1. In the case when R is the field of

rational numbers Theorem 1.3 was proved by A. Seidenberg in [S]. The

proof of Theorem 1.3 for general R may be obtained by the same algorithm

which is used in the proof of Theorem 1.1 and is presented in Sections 6

and 7.
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2 Real closed fields

An ordered field is defined as a field which is linearly ordered in a manner

compatible with the field structure. Let K, H be ordered fields. Then H
is called an ordered extension of K if K is a subfield of H and the order

induced on K by H coincides with the original order on K. An ordered field

K is called maximal if there is no ordered field H strictly larger than K such

that simultaneously H is an ordered extension of K and H is an algebraic

extension of K.

For every ordered field the following four conditions are equivalent:

K is a maximal ordered field,(2.1)

the complexification of K is an algebraically closed field,(2.2)

every positive element of K is equal to the square of some element
of K and every polynomial over K of odd degree has a root in K,

(2.3)

every polynomial over K, treated as function on K, has the property
of passing through intermediate values, i.e. whenever P ∈ K[X],
a ∈ K, b ∈ K and a < b, then

{y∈K : P (a) ∧ P (b)<y<P (a) ∨ P (b)}⊂{P (x) : x ∈ K, a<x<b}.

(2.4)

Evidently (2.4) implies (2.3), and conversely (2.3) implies (2.4) by Propo-

sition 5 of Sec. VI.2.5 of [B]. The equivalence of (2.1)–(2.3) follows from

Theorem 3 of Sec. VI.2.6 of [B], called there the Euler–Lagrange theorem.

One can also refer to Chapter XI of [W] or to Chapter XI of [L] 2.

A field is called real closed if it is ordered and satisfies the equivalent

conditions (2.1)–(2.4). For every ordered field there is an algebraic extension

which is real closed; this algebraic extension is unique up to equivalence of

extensions, and is called the real closure of the given ordered field. See [W],

Sec. XI.82, Theorem 8. Examples of real closed fields are: the field of real

numbers and the field of real algebraic numbers.

In the subsequent sections we will refer only to (2.4) and the two propo-

sitions formulated below. For any polynomial P of one variable denote by

P ′ the derivative of P defined algebraically.

Proposition 2.1. Suppose that K is an ordered field, 0 6≡ P ∈ K[X], a ∈ K
and P (a) = 0. Then there is h0 ∈ K such that h0 > 0 and whenever h ∈ K
and 0 < |h| < h0, then P (a+ h) 6= 0 and

(2.5) sgn(P ′(a+ h)) = sgn(h) sgn(P (a+ h)).

2In these references the equivalence of (2.1)–(2.4) is proved with the use of set-
theoretical tools permitted in the usual theory of fields, and not with the limited tools
of the axiomatic theory of real fields used in [T1, 2] and [C1, 2].
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Proof. Since P 6≡ 0 and P (a) = 0, one has

(2.6) P (a+h) = akh
k+ak+1h

k+1+· · ·+anhn = hk(ak+ak+1h+· · ·+anhn−k)

for every h ∈ K, where 1 ≤ k ≤ n, ak, ak+1, . . . , an ∈ K and ak 6= 0.

Consequently,

P ′(a+ h) = kakh
k−1 + (k + 1)ak+1h

k + · · ·+ nanh
n−1(2.7)

= hk−1(kak + (k + 1)ak+1h+ · · ·+ nanh
n−k)

for every h ∈ K. Let

h0 = 1 ∧ |ak|
2(|ak+1|+ · · ·+ |an|) + 1

∧ k|ak|
2((k + 1)|ak+1|+ · · ·+ n|an|) + 1

.

Whenever h ∈ K and 0 < |h| < h0, then

sgn(kak+(k+1)ak+1h+· · ·+nanhn−k) = sgn(kak)=sgn(ak)

= sgn(ak+ak+1h+· · ·+anhn−k),

whence (2.5) follows, by (2.6) and (2.7).

Proposition 2.2 ([B], Sec. VI.2.6, Exercise 13). Suppose that K is a real

closed field, a ∈ K, b ∈ K, a < b, and P ∈ K[X]. Then there is ξ ∈ K such

that a < ξ < b and

P (b)− P (a) = (b− a)P ′(ξ).

Proposition 2.2 states that the Lagrange theorem about increments, well-

known from elementary calculus, remains valid for polynomials over any real

closed field.

Proof. Let

Q(X) =
P (b)− P (a)

b− a
(X − a) + P (a)− P (X).

Then Q(a) = Q(b) = 0. The proof of Proposition 2.2 reduces to showing

that there is ξ ∈ K such that a < ξ < b and Q′(ξ) = 0. If Q ≡ 0 then there

is nothing to prove. If Q 6≡ 0, then let b′ ∈ K be the smallest element of the

set {x ∈ K : x > a, Q(x) = 0}, which is non-empty (because it contains b)

and finite (because it consists of some zeros of a polynomial which does not

vanish identically). Then b′ ∈ K, a < b′, Q(b′) = 0 = Q(a) and Q(x) 6= 0

whenever x ∈ K and a < x < b′. By Proposition 2.1, there is h0 ∈ K such

that 0 < h0 <
1
2
(b′ − a) and, whenever h ∈ K and 0 < h < h0, then

sgn(Q′(a+ h)) = sgn(Q(a+ h)) 6= 0
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and

sgn(Q′(b′ − h)) = − sgn(Q(b′ − h)) 6= 0.

Fix h ∈ K such that 0 < h < h0. Then a < a+h < b′−h < b′. SinceQ(x) 6= 0

whenever x ∈ K and a < x < b′, from (2.4) it follows that sgn(Q(b′ − h)) =

sgn(Q(a + h)). Therefore sgn(Q′(b′ − h)) = − sgn(Q′(a + h)) 6= 0, and so,

by (2.4), there is ξ ∈ K such that a+ h < ξ < b′ − h and Q′(ξ) = 0.

3 Division with remainder for polynomials

over a ring

Proposition 3.1. Let P, S ∈ K[X] be polynomials over a commutative

ring K. Suppose that degP = p ≥ degS = d > 0, so that

S(X) =
d∑

ν=0

bνX
d−ν

where bν ∈ K for ν = 1, . . . , d and b0 6= 0. Then there is k0 ∈ {1, . . . , p −
d + 1} such that for every l ∈ {k0, k0 + 1, . . .} there is a unique pair of

polynomials Q,R ∈ K[X] satisfying the conditions

(3.1) degR < d and bl0P (X) = Q(X)S(X) +R(X).

Proof. For k = 0, 1, . . . define successively the polynomials

Rk(X) = ak,0X
dk + ak,1X

dk−1 + · · ·+ ak,dk−1X + ak,dk

such that R0(X) = P (X), and whenever degRk−1 ≥ d, then

Rk(X) = b0Rk−1(X)− ak−1,0X
dk−1−dS(X).

The procedure terminates once Rk0 is defined where k0 is the first k for which

degRk < d. Since p = d0 > d1 > · · · > dk0−1 ≥ d, one has k0 − 1 ≤ p − d.

For every k = 1, . . . , k0 one has

bk0P (X) = bk0R0(X) = bk−1
0 a0,0X

d0−dS(X) + bk−1
0 R1(X)

= (bk−1
0 a0,0X

d0−d + bk−2
0 a1,0X

d1−d)S(X) + bk−2
0 R2(X)

= · · · = Qk(X)S(X) +Rk(X)

where

Qk(X)

= bk−1
0 a0,0X

d0−d + bk−2
0 a1,0X

d1−d + · · ·+ b0ak−2,0X
dk−2−d + ak−1,0X

dk−1−d.
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As degRk0 < d and k0 ≤ p−d+1, it follows that for every l ∈ {k0, k0 + 1, . . .}
the conditions (3.1) are satisfied by Q = bl−k00 Qk0 and R = bl−k00 Rk0 .

In order to prove the uniqueness of Q and R, suppose thatQi, Ri ∈ K[X],

degRi < d, and bl0P = QiS + Ri for i = 1, 2 and some natural l. Then

(Q2−Q1)S = R1−R2, whence deg[(Q2−Q1)S] = deg(R1−R2) < d = degS.

It follows that Q1 = Q2, and consequently also R1 = R2.

4 Signatures as rectangular matrices

By an m-dimensional signature we mean a rectangular matrix

ŝ =


s1,0 s1,1 · · · s1,2N

s2,0 s2,1 · · · s2,2N
...

...
...

sm,0 sm,1 · · · sm,2N


with m rows and an odd number 2N + 1, N = 0, 1, . . . , of columns such

that

(i) the entries sµ,ν , µ = 1, . . . ,m, ν = 0, . . . , 2N , may take only three

values −1, 0, 1,

(ii) sµ,ν−1 · sµν 6= −1 for every µ = 1, . . . ,m and ν = 1, . . . , 2N (i.e. a

succession −1, 1 or 1,−1 never occurs in any row of ŝ),

(iii) no two adjacent columns of ŝ are identical,

(iv) for every µ = 1, . . . ,m either sµ,0 = sµ,1 = · · · = sµ,2N = 0 or sµ,0 ·
sµ,2 · . . . · sµ,2N 6= 0.

The set of m-dimensional signatures is denoted by Sm. The number of

columns of an m-dimensional signature is called the length of the signa-

ture. The length of an m-dimensional signature is always an odd number

2N + 1, N = 0, 1, . . . . A column of a signature ŝ ∈ Sm will be called even

or odd according as the index of this column belongs to {0, 2, . . . , 2N} or

{1, 3, . . . , 2N − 1}.

4.1 Cancellation of rows

If ŝ ∈ Sm, m ≥ 2, then the matrix ŝ′ obtained from ŝ by cancelling a

row need not be a signature because it may not satisfy condition (iii). If

(iii) is not satisfied for ŝ′, then any succession of two or more adjacent
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identical columns (s.a.i.c.) of ŝ′ contains an odd column. By (ii) and (iv),

this odd column of ŝ′ is identical with both the adjacent even columns of ŝ′.

Consequently, any s.a.i.c. of ŝ′ contains an odd number of columns, and it

begins and ends with even columns. It follows that if every s.a.i.c. of ŝ′ is

reduced to one column, then one obtains a signature ŝ′′ ∈ Sm−1 of length

no greater than the length of ŝ. Furthermore, the evenness and the oddness

of columns is not changed by the above described compression of ŝ′.

The cancellation of several rows of a signature, and the related replace-

ment of the resulting s.a.i.c.’s by single columns, is a procedure similar to

the one described above.

4.2 Adjoining a special row

Let ŝ = (sµ,ν)µ=1,...,m;ν=0,...,2N ∈ Sm be a signature of length 2N + 1, and let

(s1, . . . , sN) ∈ {−1, 0, 1}N be a sequence without any pair of adjacent zeros.

Then there is a unique signature ŝ′ = K(ŝ; s1, . . . , sN) ∈ Sm+1 of length no

smaller than 2N + 1 having the form

(4.1) ŝ′ =


s1,0 s1,1

... L0
...

sm,0 sm,1
−sm,0 s1

∣∣∣∣∣∣∣∣∣ · · ·
∣∣∣∣∣∣∣∣∣
s1,2ν−1 s1,2ν s1,2ν+1

... L−ν
... L+

ν

...
sm,2ν−1 sm,2ν sm,2ν+1

sν uν sν+1

∣∣∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣∣∣
s1,2N−1 s1,2N

... LN
...

sm,2N−1 sm,2N
sN sm,2N


where uν , ν = 1, . . . , N − 1, are to be determined, and L0, L

−
ν , L+

ν and LN

indicate places where some new columns can be put, if needed, in accordance

with the following three rules:

(i) If s1 · sm,0 6= 1, then L0 is not used. If s1 · sm,0 = 1, then in L0 the

following block of two columns is placed:
s1,0 s1,0

...
...

sm,0 sm,0
0 s1

 .
(ii) If sν ·sν+1 6= −1, then 0 6= uν ∈ {sν , sν+1} and L−ν and L+

ν are not used.

If sν · sν+1 = −1, then uν = 0, in L−ν the column (s1,2ν , . . . , sm,2ν , sν)
†

is placed, and in L+
ν the column (s1,2ν , . . . , sm,2ν , sν+1)

† is placed.
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(iii) If sN · sm,2N 6= −1, then LN is not used. If sN · sm,2N = −1, then in

LN the following block of two columns is placed:
s1,2N s1,2N

...
...

sm,2N sm,2N
sN 0

 .

It is easy to check that, using the scheme (4.1) and the rules described above,

one obtains a signature ŝ′ ∈ Sm+1. Obviously, ŝ′ is uniquely determined

by the given signature ŝ′ ∈ Sm of length 2N + 1 and the given sequence

(s1, . . . , sn) ∈ {−1, 0, 1}N not containing any pair of consecutive zeros.

4.3 The mapping H from S2m into Sm

Consider a signature ŝ ∈ S2m of the form

(4.2) ŝ =



s1,0 s1,1 . . . s1,2N
...

...
...

sm,0 sm,1 . . . sm,2N
r1,0 r1,1 . . . r1,2N

...
...

...
rm,0 rm,1 . . . rm,2N


where the length of ŝ is an arbitrary odd number 2N + 1. Let D(H) be the

set of the signatures (4.2) belonging to S2m and satisfying the following four

conditions:

none of the upper m rows of ŝ consists only of zeros, so that by (iv)
in each of the m upper rows every even element is non-zero,

(4.3)

#{ν = 1, . . . , N : sµ,2ν−1 = 0 for some µ = 1, . . . ,m} = N ′ ≥ 1,(4.4)

whenever µ1, µ2 ∈ {1, . . . ,m}, ν ∈ {1, . . . , N} and sµ1,2ν−1 =
sµ2,2ν−1 = 0, then rµ1,2ν−1 = rµ2,2ν−1,

(4.5)

if ν1 < · · · < νN ′ , and {sk} = {rµ,2νk−1 : νk ∈ {1, . . . ,m}, sµ,2νk−1 =
0} for k = 1, . . . , N ′, then the sequence s1, . . . , sN ′ does not contain
any pair of consecutive zeros.

(4.6)

Conditions (4.3)–(4.6) imply that the upper m rows of ŝ constitute a matrix

that consists of N ′+1 s.a.i.c. separated by the columns (s1,2νk−1, s2,2νk−1, . . . ,

sm,2νk−1)
†, k = 1, . . . , N ′. For every ŝ ∈ D(H) we construct the signature

H(ŝ) ∈ Sm as follows.

Step 1. We define the sequence s1, . . . , sN ′ , 1 ≤ N ′ ≤ N , as in (4.6).
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Step 2. We cancel all the m lower rows of ŝ and in the resulting m ×
(2N + 1)-matrix we replace every s.a.i.c. by one column, as described in

Section 4.1. We then obtain an m× (2N ′+ 1)-matrix ŝ′ which is a signature

belonging to Sm and having length 2N ′ + 1. The number N ′ is the same as

in Step 1.

Step 3. Using the rules described in Section 4.2 we construct the sig-

nature ŝ′′ = K(ŝ′; s1, . . . , sN ′) ∈ Sm+1 of length 2N ′′ + 1 no smaller than

2N ′ + 1.

Step 4. In the matrix ŝ′′ = K(ŝ′; s1, . . . , sN ′) ∈ Sm+1 we cancel the m-th

row, and in the resulting m× (2N ′′ + 1)-matrix we replace every s.a.i.c. by

one column, as described in Section 4.1. The result is a signature belonging

to Sm which we denote by H(ŝ).

5 The signature of a finite sequence of poly-

nomials

Let K be a real closed field, and P1, . . . , Pm ∈ K[X] polynomials of one

variable over K not all of order zero. For every µ = 1, . . . ,m define

N (Pµ) =

{
{x ∈ K : Pµ(x) = 0} if Pµ is not identically zero,

∅ if Pµ is identically zero.

Then #(
⋃m
µ=1N (Pµ)) = N ≥ 1. Let

m⋃
µ=1

N (Pµ) = {x1, . . . , xN} where x1 < · · · < xN if N > 1.

Let I0 = {x ∈ K : x < x1}, Iν = {x ∈ K : xν < x < xν+1} for

ν = 1, . . . , N − 1 if N > 1, and IN = {x ∈ K : xn < x}. Then, for

every µ = 1, . . . ,m and ν = 0, . . . , N, the set {sgnPµ(x) : x ∈ Iν} is a

singleton. We denote this singleton by sgnPµ(Iν) and define the signature

SGN(P1, . . . , Pm) of the sequence of polynomials P1, . . . , Pm not all of order

zero as the m× (2N + 1)-matrix
sgnP1(I0) sgnP1(x1) sgnP1(I1) . . . sgnP1(xN) sgnP1(IN)
sgnP2(I0) sgnP2(x1) sgnP2(I1) . . . sgnP2(xN) sgnP2(IN)

...
...

...
...

...
...

sgnPm(I0) sgnPm(x1) sgnPm(I1) . . . sgnPm(xN) sgnPm(IN)

 .
It is easy to check that this matrix is an m-dimensional signature in the

sense of Section 4. The symbol SGN denotes the mapping from the set of
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finite sequences of polynomials over K into the set of signatures defined in

Section 4 3.

If a sequence of polynomials P1, . . . , Pm belonging to K[X] is replaced

by its subsequence Pµ1 , . . . , Pµk , 1 ≤ µ1 < · · · < µk ≤ m, or if we adjoin to

the sequence P1, . . . , Pm a polynomial Pm+1 such that Pm is the derivative

of Pm+1, then the matrices SGN(Pµ1 , . . . , Pµk) and SGN(P1, . . . , Pm, Pm+1)

may be obtained directly from SGN(P1, . . . , Pm) by manipulations described

in Sections 4.1 and 4.2.

5.1

For instance, if in the sequence P1, . . . , Pm the last polynomial is cancelled,

then the elements of
⋃m−1
µ=1 N (Pµ) constitute a subsequence xν1 , . . . , xνN′

(N ′ ≤ N, xν1 < · · · < xνN′ ) of the sequence x1, . . . , xN of all elements of⋃m
µ=1N (Pµ) ordered so that x1 < · · · < xN . Then SGN(P1, . . . , Pm−1) is the

(m− 1)× (2N ′ + 1)-matrix

(5.1)


sgnP1(−∞, xν1) sgnP1(xν1) sgnP1(xν1 , xν2)
sgnP2(−∞, xν1) sgnP2(xν1) sgnP2(xν1 , xν2)

...
...

...
sgnPm−1(−∞, xν1) sgnPm−1(xν1) sgnPm−1(xν1 , xν2)

. . . sgnP1(xνN′ ) sgnP1(xνN′ ,∞)

. . . sgnP2(xνN′ ) sgnP2(xνN′ ,∞)
...

...
. . . sgnPm−1(xνN′ ) sgnPm−1(xνN′ ,∞)


and one has

(5.2)

(−∞, xν1) = I0 ∪ {x1} ∪ I1 ∪ · · · ∪ {xν1−1} ∪ Iν1−1 if 1 < ν1,

(xν1 , xν2) = Iν1 ∪ {xν1+1} ∪ Iν1+1 ∪ · · · ∪ {xν2−1} ∪ Iν2−1

if ν1 + 1 < ν2,

· · ·
(xνN′ ,∞) = IνN′ ∪ {xνN′+1} ∪ IνN′+1 ∪ · · · ∪ {xN} ∪ IN

if νN ′ < N.

If some of these unions consists of more than one member, then all the single-

tons {xk} occurring in the union must be contained inN (Pm)\
⋃m−1
µ=1 N (Pµ),

so that Pµ(xk) 6= 0 for µ = 1, . . . ,m − 1, and sgnPµ is the same on every

3If P1, . . . , Pm ∈ K[X] then SGN(P1, . . . , Pm) may be determined by means of the
theorem of Sturm ([W], Sec. XI.79), without computing the roots x1, . . . , xN exactly.
However, this does not influence our subsequent arguments.



12 J. Kisyński

member of the union. Thus the decompositions (5.2) correspond to the

s.a.i.c.’s of the matrix ŝ′ obtained from SGN(P1, . . . , Pm) by cancelling the

mth row, and hence (5.1) is equal to the matrix obtained from ŝ′ by reducing

each s.a.i.c. to a single column.

5.2

Suppose now that P1, . . . , Pm, Pm+1 ∈ K[X] and ∂
∂X
Pm+1 = Pm 6≡ 0. Then,

following Section 4.2, one can construct the matrix SGN(P1, . . . , Pm, Pm+1)

using only sgnPm+1|Sm
µ=1N (Pµ) and the matrix SGN(P1, . . . , Pm). To see this,

consider the sequence y1, . . . , yN ′ such that {y1, . . . , yN ′} =
⋃m+1
µ=1 N (Pµ) and

y1 < · · · < yN ′ . This sequence contains a subsequence x1, . . . , xN , N ≤ N ′,

such that {x1, . . . , xN} =
⋃m
µ=1N (Pµ) and x1 < · · · < xN . Any of the sets

(−∞, x1)∪{x1}, {xN}∪(xn,∞), {xν}∪(xν , xν+1)∪{xν+1}, ν = 1, . . . , N−1,

may contain at most one element of the sequence y1, . . . , yN ′ . Indeed, sup-

pose for instance that yn, yn′ ∈ N (Pm+1)∩ ({xν}∪ (xν , xν+1)∪{xν+1}). If yn

and yn′ were distinct, then, by the Lagrange theorem, there would exist a

root of Pm = ∂
∂X
Pm+1 between them, and hence in (xν , xν+1). But this is im-

possible, because all the roots of Pm belong to the sequence x1, . . . , xN . Let

sν = sgnPm+1(xν), ν = 1, . . . , N.

From what we have proved above it follows that the sequence s1, . . . , sN

does not contain any pair of adjacent zeros.

Following Section 4.2 we represent SGN(P1, . . . , Pm, Pm+1) by the scheme
sgnP1(−∞, x1) sgnP1(x1)

... L0
...

sgnPm(−∞, x1) sgnPm(x1)
− sgnPm(−∞, x1) s1

∣∣∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣∣∣
sgnP1(xν) sgnP1(xν , xν+1) sgnP1(xν+1)

... L−ν
... L+

ν

...
sgnPm(xν) sgnPm(xν , xν+1) sgnPm(xν+1)

sν uν sν+1

∣∣∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣∣∣
sgnP1(xN) sgnP1(xN ,∞)

... LN
...

sgnPm(xN) sgnPm(xN ,∞)
sN sgnPm(xN ,∞)

 .
The rules presented in Section 4.2 give the unique possibility of filling up

this scheme so that the result is an (m + 1)-dimensional signature. We are
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going to show that this last signature is equal to SGN(P1, . . . , Pm, Pm+1).

To this end, it is sufficient to express the results of the operations (i), (ii)

and (iii) from Section 4.2 in terms of SGN(P1, . . . , Pm, Pm+1).

(i) If s1 · sgnPm(−∞, x1) 6= 1, then ∂
∂X
Pm+1 = Pm does not vanish in the

interval (−∞, x1) because Pm 6≡ 0. Therefore if s1 ·sgnPm(−∞, x1) 6= 1, then

Pm+1 does not vanish in (−∞, x1), and sgnPm+1(−∞, x1)=sgnPm(−∞, x1).

The leftmost block in the scheme (4.1) consists in this case of two columns

and has the form
sgnP1(−∞, x1) sgnP1(x1)

...
...

sgnPm(−∞, x1) sgnPm(x)
sgnPm+1(−∞, x1) s1

 =


sgnP1(−∞, x1) sgnP1(x1)

...
...

sgnPm(−∞, x1) sgnPm(x1)
sgnPm+1(−∞, x1) sgnPm+1(x1)

 .
If s1 · sgnPm(−∞, x1) = 1, then sgnPm+1(x1) · sgn( ∂

∂X
Pm+1)(−∞, x1) = 1

and therefore (−∞, x1)∩N (Pm+1) 6= ∅. Consequently, y1 < x1. The leftmost

block in (4.1) then consists of four columns and has the form
sgnP1(−∞, x1) sgnP1(−∞, x1) sgnP1(−∞, x1) sgnP1(x1)

...
...

...
...

sgnPm(−∞, x1) sgnPm(−∞, x1) sgnPm(−∞, x1) sgnPm(x1)
sgnPm(−∞, x1) 0 s1 s1



=


sgnP1(−∞, y1) sgnP1(y1) sgnP1(y1, x1) sgnP1(x1)

...
...

...
...

sgnPm(−∞, y1) sgnPm(y1) sgnPm(y1, x1) sgnPm(x1)
sgnPm+1(−∞, y1) sgnPm+1(y1) sgnPm+1(y1, x1) sgnPm+1(x1)


where the equality of the first m rows follows from the fact that (−∞, x1)∩
N (Pµ) = ∅ for µ = 1, . . . ,m, and the equality of the bottom rows follows

from the fact that ((−∞, x1) ∪ {x1}) ∩N (Pm+1) = {y1}.
(ii) If sν · sν+1 6= −1, then (xν , xν+1) ∩ {y1, . . . , yN ′} = ∅, and we take

uν = {sν , sν+1} \ {0} without using L−ν , L
+
ν . The middle block in (4.1) then

consists of three columns and has the form
sgnP1(xν) sgnP1(xν , xν+1) sgnP1(xν+1)

...
...

...
sgnPm(xν) sgnPm(xν , xν+1) sgnPm(xν+1)

sν uν sν+1



=


sgnP1(xν) sgnP1(xν , xν+1) sgnP1(xν+1)

...
...

...
sgnPm(xν) sgnPm(xν , xν+1) sgnPm(xν+1)

sgnPm+1(xν) sgnPm+1(xν , xν+1) sgnPm+1(xν+1)





14 J. Kisyński

where sν = sgnPm+1(xν) and sν+1 = sgnPm+1(xν+1) by definition, and

sgnPm+1(xν , xν+1) ∈ {sgnPm+1(xν), sgnPm+1(xν+1)} \ {0}. To see that this

last must hold, it is sufficient to recall that {xν}∪(xν , xν+1)∪{xν+1} contains

at most one element of N (Pm+1), and to show that if sν · sν+1 6= −1, then

Pm+1 does not vanish in (xν , xν+1). To this end, notice that if sgnPm+1(xν) ·
sgnPm+1(xν+1) = 0, then Pm cannot vanish in (xν , xν+1) because #[({xν}∪
(xν , xν+1) ∪ {xν+1}) ∩ N (Pm+1)] ≤ 1. If sgnPm+1(xν) · sgnPm+1(xν+1) = 1,

then Pm+1 cannot vanish in (xν , xν+1) either because if (xν , xν+1)∩N (Pm+1)

= {y} then

sgnPm+1(xν , y) = sgnPm+1(xν) = sgnPm+1(xν+1) = sgnPm(y, xν+1) 6= 0,

whence Pm(y) = ( ∂
∂X
Pm+1)(y) = 0, by Proposition 2.1 and (2.4). However,

this last is impossible, because all the roots of Pm belong to the sequence

x1, . . . , xN .

If sν ·sν+1 = −1, then uν = 0 and the interval (xν , xν+1) contains exactly

one element of N (Pm+1), say yl. In this case the middle block in (4.1)

consists of five columns and takes the form
sgn P1(xν) sgn P1(xν , xν+1) sgn P1(xν , xν+1) sgn P1(xν , xν+1) sgn P1(xν+1)

...
...

...
...

...
sgn Pm(xν) sgn Pm(xν , xν+1) sgn Pm(xν , xν+1) sgn Pm(xν , xν+1) sgn Pm(xν+1)

sν sν uν sν+1 sν+1



=


sgn P1(xν) sgn P1(xν , yl) sgn P1(yl) sgn P1(yl, xν+1) sgn P1(xν+1)

...
...

...
...

...
sgn Pm(xν) sgn Pm(xν , yl) sgn Pm(yl) sgn Pm(yl, xν+1) sgn Pm(xν+1)

sgn Pm+1(xν) sgn Pm+1(xν , yl) sgn Pm+1(yl) sgn Pm+1(yl, xν+1) sgn Pm+1(xν+1)


where the equality of the first m rows follows from the fact that the polyno-
mials P1, . . . , Pm do not vanish in the interval (xν , xν+1), and the equality
of the bottom rows follows from the fact that ({xν}∪ (xν , xν+1)∪{xν+1})∩
N (Pm+1) = {yl}.

(iii) For the rightmost block in (4.1) the reasoning is similar to case (i).

The result of Section 5.2 may be summarized as follows.

Lemma 5.1. Let P1, . . . , Pm, Pm+1 ∈ K[X], ∂
∂X
Pm+1 = Pm 6≡ 0, and

sk = sgnPm+1(xk) for k = 1, . . . , N

where x1, . . . , xN is the sequence of elements of the field K such that

{x1, . . . , xn} =
m⋃
µ=1

N (Pµ) and x1 < · · · < xN .
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Then the sequence s1, . . . , sN does not contain any pair of successive zeros
and

SGN(P1, . . . , Pm, Pm+1) = K(SGN(P1, . . . , Pm); s1, . . . , sN)

where

K : {m-dimensional signatures of length 2N + 1}
× {sequences in {−1, 0, 1}N without any pair of adjacent zeros}

→ {(m+ 1)-dimensional signatures}

is the mapping from Section 4.2.

5.3 The L. Hörmander division proposition

We shall use the following definition of the degree with respect toX, denoted
by degX P , of a polynomial P ∈ R[X, Y1, . . . , Ym]:

(a) if P is identically zero, then degX P = 0,

(b) if P is not identically zero, then degX P = d if and only if P (X, Y1,
. . . , Yn) =

∑d
k=0 ak(Y1, . . . , Yn)Xk where ak ∈ R[Y1, . . . , Yn] for k =

0, . . . , d and the polynomial ad is not identically zero.

The polynomial ad ∈ R[Y1, . . . , Yn] occurring in (b) is called the leading
coefficient of P ∈ R[X, Y1, . . . , Ym] with respect to X.

Proposition 5.2. Let R be a subring of a real closed field K, and let
P1, . . . , Pm ∈ R[X, Y1, . . . , Yn]. Let dµ = degX Pµ and assume that 1 ≤ dµ ≤
dm for every µ = 1, . . . ,m−1. For every µ = 1, . . . ,m let aµ ∈ R[Y1, . . . , Yn]
be the leading coefficient of Pµ with respect to X. For every µ = 1, . . . ,m−1
fix lµ ∈ N such that 2lµ > dm − dµ. Then, by Proposition 3.1, there are
unique polynomials Q1, . . . , Qm, R1, . . . , Rm ∈ R[X, Y1, . . . , Yn] such that
degX Rµ < dµ for µ = 1, . . . ,m,

(5.3) a2lµ
µ Pm = QµPµ +Rµ for µ = 1, . . . ,m− 1

and

(5.4) a2
mPm = Qm

∂
∂X
Pm +Rm.

Let H be the mapping from S2m into Sm defined in Section 4.3. Finally,
suppose that y = (y1, . . . , yn) ∈ Kn and

m∏
µ=1

aµ(y) 6= 0.

Then

SGN(P1(·, y), . . . , Pm−1(·, y), ∂
∂X
Pm(·, y), R1(·, y), . . . , Rm(·, y)) ∈ D(H)
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and

H(SGN(P1(·, y), . . . , Pm−1(·, y), ∂
∂X
Pm(·, y), R1(·, y), . . . , Rm(·, y)))

= SGN(P1(·, y), . . . , Pm(·, y)).

The above proposition refines L. Hörmander’s Lemma A.2.3 from the Ap-
pendix to [H3] stating that, for polynomials of one variable, SGN(P1, . . . ,
Pm−1,

∂
∂X
Pm, R1, . . . , Rm) determines SGN(P1, . . . , Pm). In the proof of the

projection theorem for semi-algebraic sets, Lemma A.2.3 (or our Proposi-
tion 5.2) is applied in the situation where division is made in the ring of
polynomials of the variable X over the ring of polynomials of the variables
Y1, . . . , Yn. The assumption that

∏m
ν=1 aν(y) 6= 0 then causes difficulties

mentioned in [H3] in the proof of Theorem A.2.2. The splitting discussed in
Section 6 below permits us to overcome these difficulties.

Proof of Proposition 5.2. Fix ẙ ∈ Kn such that

(5.5)
m∏
µ=1

aµ(ẙ) 6= 0

and let

(5.6) SGN(P1(·, ẙ), . . . , Pm−1(·, ẙ), ∂
∂X
Pm(·, ẙ), R1(·, ẙ), . . . , Rm(·, ẙ))

=



sgnP1((−∞, x1), ẙ) · · · sgnP1(xν , ẙ) sgnP1((xν , xν+1), ẙ)
...

...
...

sgnPm−1((−∞, x1), ẙ) · · · sgnPm−1(xν , ẙ) sgnPm−1((xν , xν+1), ẙ)
sgn ∂

∂X
Pm((−∞, x1), ẙ) · · · sgn ∂

∂X
Pm(xν , ẙ) sgn ∂

∂X
Pm((xν , xν+1), ẙ)

sgnR1((−∞, x1), ẙ) · · · sgnR1(xν , ẙ) sgnR1((xν , xν+1), ẙ)
...

...
...

sgnRm((−∞, x1), ẙ) · · · sgnRm(xν , ẙ) sgnRm((xν , xν+1), ẙ)

sgnP1(xν+1, ẙ) · · · sgnP1((xN ,∞), ẙ)
...

...
sgnPm−1(xν+1, ẙ) · · · sgnPm−1((xN ,∞), ẙ)
sgn ∂

∂X
Pm(xν+1, ẙ) · · · sgn ∂

∂X
Pm((xN ,∞), ẙ)

sgnR1(xν+1, ẙ) · · · sgnR1((xN ,∞), ẙ)
...

...
sgnRm(xν+1, ẙ) · · · sgnRm((xN ,∞), ẙ)



=



s1,0 · · · s1,2ν−1 s1,2ν s1,2ν+1 · · · s1,2N
...

...
...

...
...

sm−1,0 · · · sm−1,2ν−1 sm−1,2ν sm−1,2ν+1 · · · sm−1,2N

sm,0 · · · sm,2ν−1 sm,2ν sm,2ν+1 · · · sm,2N
r1,0 · · · r1,2ν−1 r1,2ν r1,2ν+1 · · · r1,2N

...
...

...
...

...
rm,0 · · · rm,2ν−1 rm,2ν rm,2ν+1 · · · rm,2N


.
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Then conditions (4.3) and (4.4) are satisfied because degX Pµ ≥ 1 for every
µ = 1, . . . ,m. We are going to check that also conditions (4.5) and (4.6) are
satisfied. Indeed, whenever ν = 1, . . . , N and

sµi,2ν−1 =

{
sgnPµi(xν , ẙ) if µi = 1, . . . ,m− 1
sgn ∂

∂X
Pm(xν , ẙ) if µi = m

}
= 0, i = 1, 2, . . . ,

for some µ1, µ2 ∈ {1, . . . ,m}, then, by (5.3)–(5.4),

rµ1,2ν−1 = sgnRµ1(xν , ẙ) = sgnPm(xν , ẙ) = sgnRµ2(xν , ẙ) = rµ2,2ν−1,

so that condition (4.5) is satisfied. Finally, by (5.3) and (5.4), in the present
situation for the sequence s1, . . . , sN ′ defined in (4.6) one has

(5.7) sk = sgnPm(xνk , ẙ) for k = 1, . . . , N ′,

the subsequence ν1, . . . , νN being characterized by the condition that ν ∈
{ν1, . . . , νN ′} if and only if 0 ∈ {sgnP1(xν , ẙ), . . . , sgnPm−1(xν , ẙ),
∂
∂X
Pm(xν , ẙ)}. If for some k = 1, . . . , N ′ both sk and sk+1 were equal to

zero, then, by (5.7) and the Lagrange theorem, some x-root of ∂
∂X
Pm(x, ẙ)

would belong to (xνk , xνk+1
). But this is impossible, because by the charac-

terization of the sequence ν1, . . . , νN just given, every x-root of ∂
∂X
Pm(x, ẙ)

must be one of xν1 , . . . , xνN . Therefore condition (4.6) is satisfied.
Since conditions (4.3)–(4.6) are satisfied, the signature

ŝ = SGN(P1(·, ẙ), . . . , Pm−1(·, ẙ), ∂
∂X
Pm(·, ẙ), R1(·, ẙ), . . . , Rm(·, ẙ))

belongs to the set D(H) ⊂ S2m defined in Section 4.3, and so H(ŝ) makes
sense. Let us examine the results of the consecutive steps of the construction
of H(ŝ) for this ŝ.

Step 1. As already proved, the sequence s1, . . . , sN ′ defined as in (4.6)
coincides with sgnPm(xν1 , ẙ), . . . , sgnPm(xνN′ , ẙ).

Step 2. If in the matrix (5.6) we cancel all the m bottom rows, and next
in the resulting m × (2N + 1)-matrix we reduce every s.a.i.c. to a single
column, then we obtain an m × (2N ′ + 1)-matrix ŝ′ which is a signature
belonging to Sm and having length 2N ′ + 1, where N ′ is the same as in
Step 1. According to Section 5.1,

(5.8) ŝ′ = SGN(P1(·, ẙ), . . . , Pm−1(·, ẙ)).

Step 3. By (5.7), (5.8) and by Lemma 5.1, if the matrix K(ŝ′; s1, . . . , sN ′)
is constructed in accordance with the rules given in Section 4.2, then

K(SGN(P1(·, ẙ), . . . , Pm−1(·, ẙ), ∂
∂X
Pm(·, ẙ); s1, . . . , sN ′))

= SGN(P1(·, ẙ), . . . , Pm−1(·, ẙ), ∂
∂X
Pm(·, ẙ), Pm(·, ẙ)).

Step 4. In accordance with Section 4.3, in order to obtain H(ŝ) we have to
cancel in the matrix SGN(P1(·, ẙ), . . . , Pm−1(·, ẙ), ∂

∂X
Pm(·, ẙ), Pm(·, ẙ)) the

mth row and next replace each s.a.i.c. by a single column. According to
Section 5.1 we then obtain SGN(P1(·, ẙ), . . . , Pm−1(·, ẙ), Pm(·, ẙ)), and this
completes the proof of Proposition 5.2.
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6 Some splitting algorithms

Let K be a real closed field and R a subring of K. Write y and Y instead of
(y1, . . . , yn) and (Y1, . . . , Yn). For every P1, . . . , Pm ∈ R[X, Y ] and ŝ ∈ Sm
define

BP1,...,Pm;ŝ = {y ∈ Kn : SGN(P1(·, y), . . . , Pm(·, y)) = ŝ}.

For fixed P1, . . . , Pm define α = {µ ∈ {1, . . . ,m} : degX Pµ ≥ 1} and
β = {µ ∈ {1, . . . ,m} : degX Pµ = 0}. If α 6= ∅, then let α = {α1, . . . , αk}
where 1 ≤ α1 < · · · < αk ≤ m. If β 6= ∅, then let β = {β1, . . . , βl} where
1 ≤ β1 < · · · < βl ≤ m. If β 6= ∅, then the polynomials Pβ1 , . . . , Pβl do not
depend on X, so that BP1,...,Pm;ŝ may be non-empty only if sβλ,0 = sβλ,1 =
· · · = sβλ,2N for every λ = 1, . . . , l, and if this is the case, then

(6.1) BP1,...,Pm;ŝ = BPα1 ,...,Pαk ;ŝ′

∩
l⋂

λ=1

{y ∈ Kn : sgnPβλ(y) = sβλ,0 = sβλ,1 = · · · = sβλ,2N}

where ŝ′ = (sακ,ν)κ=1,...,k;ν=0,...,2N ∈ Sk and 2N + 1 = length(ŝ). If either

α = ∅ or β = ∅, then on the right of (6.1) either BPα1 ,...,Pαk;ŝ′
or
⋂l
λ=1 · · ·

has to be omitted.

Proposition 6.1. If maxµ=1,...,m degX Pµ = 0, then BP1,...,Pm;ŝ ∈ An(K;R).
If maxµ=1,...,m degX Pµ = d ≥ 1, then

(6.2) BP1,...,Pm;ŝ = A ∪
⋃
ι∈J

(Aι ∩BPι,1,...,Pι,mι ;ŝ)

where

J is a finite set,(6.3)

A ∈ An(K;R) and Aι ∈ An(K;R) for every ι ∈ J,(6.4)

1 ≤ mι ≤ m and ŝι ∈ Smι for every ι ∈ J,(6.5)

and the polynomials Pι,µ ∈ R[X, Y ], ι ∈ J , µ = 1, . . . ,mι, have the following
properties:

1 ≤ degX Pι,µ ≤ d for every ι ∈ J and µ = 1, . . . ,mι,(6.6)

#{µ = 1, . . . ,mι : degX Pι,µ = d} ≤ #{µ = 1, . . . ,m :
degX Pµ = d} for every ι ∈ J ,

(6.7)

whenever ι ∈ J , then y ∈ Aι ⇒ (aι,1(y) 6= 0) ∧ · · · ∧ (aι,mι(y) 6= 0)
where aι,µ ∈ R[Y ] is the leading coefficient in the development of
Pι,µ ∈ R[X, Y ] with respect to X.

(6.8)
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Proof. The statement concerning the case when degX Pµ = 0 for every µ
follows directly from (6.1). If maxµ=1,...,m degX Pµ = d ≥ 1, then for every µ
consider the development

Pµ(X, Y ) =
d∑

k=0

aµ,k(Y )Xk

where aµ,k ∈ R[Y ] for k = 0, . . . , d, and some of the polynomials aµ,k may
be identically zero.

For µ = 1, . . . ,m and ν = 0, . . . , d consider the polynomials

Pµ,ν(X, Y ) =
ν∑
k=0

aµ,k(Y )Xk

belonging to R[X, Y ], and the sets

Aµ,0 = {y ∈ Kn : aµ,k(y) = 0 for k = 1, . . . , d},
Aµ,ν = {y ∈ Kn : sup{k = 0, . . . , d : aµ,k(y) 6= 0} = ν} for ν = 1, . . . , d

belonging to An(K;R), some of which may be empty. Then

for every µ = 1, . . . ,m the sets Aµ,0, . . . , Aµ,d are mutually disjoint

and
⋃d
ν=0Aµ,ν = Kn,

(6.9)

whenever µ = 1, . . . ,m, ν = 0, . . . , d and Aµ,ν 6= ∅, then Pµ(x, y) =
Pµ,ν(x, y) for every x ∈ K and y ∈ Aµ,ν ,

(6.10)

degX Pµ,0 = 0 for µ = 1, . . . ,m,(6.11)

whenever µ = 1, . . . ,m, ν = 1, . . . , d and Aµ,ν 6= ∅, then
degX Pµ,ν = ν ≥ 1 and in the development of Pµ,ν with respect
to X the leading coefficient aµ,ν ∈ R[Y ] does not vanish on Aµ,ν .

(6.12)

By (6.9) and (6.10) one has

BP1,...,Pm;ŝ =
⋃

(ν1,...,νm)∈(0,...,d)m

A1,ν1 ∩ · · · ∩ Am,νm ∩BP1,ν1 ,...,Pm,νm ;ŝ

whence the conditions (6.2)–(6.8) follow from (6.1), (6.11) and (6.12).

Proposition 6.2. Let P1, . . . , Pm ∈ R[X, Y1, . . . , Yn] and define d =
maxµ=1,...,m dµ where dµ = degX Pµ. Assume that

dm = d and dµ ≥ 1 for every µ = 1, . . . ,m.

Assume further that

A ∈ An(K,R) and
m∏
µ=1

aµ(y1, . . . , ym) 6= 0 for every (y1, . . . , ym) ∈ A
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where a1, . . . , am ∈ R[Y1, . . . , Yn] are the leading coefficients in the devel-
opments of P1, . . . , Pm with respect to X. For every µ = 1, . . . ,m − 1 fix
lµ ∈ N such that 2lµ > d− dµ, and let R1, . . . , Rm ∈ R[X, Y1, . . . , Yn] be the

remainders of a2l1
1 Pm, . . . , a

2lm−1

m−1 Pm, a2
mPm divided by P1, . . . , Pm−1,

∂
∂X
Pm.

Finally, let ŝ ∈ Sm. Then

(6.13) A ∩BP1,...,Pm;ŝ =
⋃

ŝ′∈D(H)
length(ŝ′)≤l

H(ŝ′)=ŝ

(A ∩BP1,...,Pm−1,
∂
∂X

Pm,R1,...,Rm;ŝ′)

where H : S2m ⊃ D(H)→ Sm is the mapping defined in Section 4.3 and

l = 1 + 2((m− 1)d+ (m+ 1)(d− 1)).

Proposition 6.2 constitutes a basic element of the proof of the projection
theorem for semi-algebraic sets sketched by L. Hörmander in the Appendix
to [H3]. Let

k = #{µ = 1, . . . ,m : dµ = d},
d′ = max{degX P1, . . . , degX

∂
∂X
Pm, degX R1, . . . , degX Rm},

k′ = #{P ∈ {P1, . . . , Pm−1,
∂
∂X
Pm, R1, . . . , Rm} : degX P = d′}.

In Proposition 6.2 it is important that

(i) either d′ < d or (d′ = d and k′ < k).

It is also important that

(ii) the union in (6.13) is finite.

Proof of Proposition 6.2. Let us write y instead of (y1, . . . , yn). By Proposi-
tion 5.2, one has

SGN(P1(·, y), . . . , Pm−1(·, y), ∂
∂X
Pm(·, y), R1(·, y), . . . , Rm(·, y)) ∈ D(H)

for every y ∈ A, and

A ∩BP1,...,Pm;ŝ=A ∩ {y ∈ Kn : SGN(P1(·, y), . . . , Pm(·, y)) = ŝ}
=A ∩ {y ∈ Kn :H(SGN(P1(·, y), . . . , Pm−1(·, y), ∂

∂X
Pm(·, y),

R1(·, y), . . . , Rm(·, y))) = ŝ}.

It follows that

A ∩BP1,...,Pm;ŝ = A ∩ {y ∈ Kn : Hl(SGN(P1(·, y), . . . , Pm−1(·, y), ∂
∂X
Pm(·, y),

R1(·, y), . . . , Rm(·, y))) = ŝ}

where Hl = H|D(Hl) and D(Hl) = {ŝ′ ∈ D(H) : length(ŝ′) ≤ l}. Hence

A ∩BP1,...,Pm;ŝ = A ∩ {y ∈ Kn : SGN(P1(·, y), . . . , Pm−1(·, y), ∂
∂X
Pm(·, y),

R1(·, y), . . . , Rm(·, y)) ∈ H−1
l (ŝ)}

=
⋃

ŝ′∈H−1
l (ŝ)

(A ∩BP1,...,Pm−1,
∂
∂X

Pm,R1,...,Rm;ŝ′).



The projection theorem for semi-algebraic sets 21

7 Proof of Theorem 1

In the present section, J denotes a finite set, ι is an element of J , and, for
every ι, mι is a finite natural number. It is sufficient to prove Theorem 1
for l = 1. In this case P is the projection of K1+n onto Kn such that
P(x, y1, . . . , yn) = (y1, . . . , yn) for every x, y1, . . . , yn ∈ K.

In accordance with (1.1) each set belonging to A1+n(K;R) has the form

A =
⋃
ι∈J

mι⋂
µ=1

{(x, y1, . . . , yn) ∈ K1+n : sgnPι,µ(x, y1, . . . , yn) = sι,µ}

where Pι,µ ∈ R[X, Y1, . . . , Yn] and sι,µ ∈ {−1, 0, 1}. It follows that

(7.1) PA =
⋃
ι∈J

{(y1, . . . , yn) ∈ Kn : ∃x∈K [sgnPι,µ(x, y1, . . . , yn) = sι,µ

for every µ = 1, . . . ,mι]}

=
⋃
ι∈J

{(y1, . . . , yn) ∈ Kn : the matrix SGN(Pι,1(·, y), . . . , Pι,mι(·, y))

contains a column equal to (sι,1, . . . , sι,mι)
†}

=
⋃
ι∈J

⋃
ŝ∈Fι

BPι,1,...,Pι,mι ;ŝ

where

Fι =
{
ŝ ∈ Smι : length(ŝ) ≤ 1 + 2

mι∑
µ=1

degX Pι,µ,

ŝ contains a column equal to (sι,1, . . . , sι,mι)
†
}

is a finite subset of Smι .
For every d = 0, 1, . . . and k = 1, 2, . . . denote by Bd,k the family of all

the subsets B of Kn of the form

(7.2) B =
⋃
ι∈J

(Aι ∩BPι,1,...,Pι,mι ;ŝι)

such that J is a finite set and, whenever ι ∈ J , then Aι ∈ An(K;R),
mι ∈ N, ŝι ∈ Smι , Pι,1, . . . , Pι,mι ∈ R[X, Y1, . . . , Yn], degX Pι,µ ≤ d for every
µ = 1, . . . ,mι and #{µ = 1, . . . ,mι : degX Pι,µ = d} ≤ k. From (7.1) it
follows that

(7.3) whenever A ∈ A1+n(K;R), then PA ∈ Bd,k for some d and k.

If d = 0, then all the polynomials of Pι,µ occurring in (7.2) are indepen-
dent of X, so that BPι,1,...,Pι,mι ;ŝι may be non-empty only if ŝι consists of a
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single column, say (sι,1, . . . , sι,mι)
†, and then

BPι,1,...,Pι,mι ;ŝι =
⋂
ι∈J

mι⋃
µ=1

{(y1, . . . , yn) ∈ Kn : sgnPι,µ(y1, . . . , yn) = sι,µ}

∈ An(K;R).

Therefore

(7.4)
∞⋃
k=1

B0,k = An(K;R).

Furthermore, a subsequent application of Propositions 6.1 and 6.2 shows
that for all d = 1, 2, . . . ,

(7.5)

Bd,k0 = Bd,k0−1 if k0 > 1,

Bd,k0 =
∞⋃
k=1

Bd−1,k if k0 = 1.

If A ∈ An+1(K;R), then, by (7.3), PA ∈ Bd,k0 for some d = 0, 1, . . . and
k0 = 1, 2, . . . . If d = 0, then PA ∈ An(K;R) by (7.4). If d > 0, then by
(7.5) there are k1, . . . , kd ∈ {1, 2, . . .} such that

PA ∈ Bd,k0 = Bd,k0−1 = · · · = Bd,1 ⇒ PA ∈ Bd−1,k1 = · · · = Bd−1,1

⇒ PA ∈ Bd−2,k2 = · · · = Bd−2,1

· · ·
⇒ PA ∈ B0,kd ⊂ An(K;R).
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