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ABSTRACT

There is an abundance of estimators of the autocorrelation coefficient ρ in the AR(1)

time series model Xt = ρXt−1 + εt. This calls for a criterion to select a suitable one. We

provide such a criterion. Typically estimators of an unknown parameter are compared with

respect to their mean square error (MSE) (or variance in the case of unbiased estimators),

and an estimator with uniformly minimum MSE is considered to be the best one. The

symmetric square-error loss is one of the most popular loss functions. It is widely employed

in inference, but it is not appropriate for our problem, in which the parameter space is the

bounded open interval (−1, 1). The risk based on MSE does not eliminate estimators that

may assume values outside the parameter space (for example, the Least Squares Estimator).

As a criterion for comparing estimators we propose the Entropy Loss Function (ELF) (or the

Kullback-Leibler information number). With that criterion the risk of estimators which may
1Address correspondence to Małgorzata Schroeder, Institute of Mathematics, Univer-

sity of Białystok, Akademicka 2, 15-267 Białystok, Poland;
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assume values greater than 1 or smaller than −1 is equal to infinity so they are naturally

eliminated. In this paper some well known estimators are compared with respect to their

risk under ELF. From among three acceptable estimators that we know, the Maximum

Likelihood Estimator (MLE) has the uniformly minimum risk but the estimator constructed

by the Method of Moments seems to be preferable. An open problem is if there exists a

uniformly best estimator. The problem of constructing a minimax estimator is also open.

1. INTRODUCTION AND NOTATION

Consider a stationary first-order autoregressive AR(1) process of the form

(1) Xt = ρXt−1 + εt, t = . . . ,−1, 0, 1, . . . , |ρ| < 1,

where εt, t = . . . ,−1, 0, 1, . . ., are independent identically distributed normal random va-

riables with expectations equal to zero. The variances of εt are assumed to be equal to an

unknown constant. All estimators of ρ we consider do not depend on the variance of εt hence

without loss of generality we assume that V ar(εt) = 1. For the process (1) we have

(2) Xt =
∞∑
i=0

ρiεt−i, Eρ(Xt) = 0, Eρ(X2t ) =
1

1− ρ2
, Eρ(XtXt−1) =

ρ

1− ρ2
.

The coefficient ρ is to be estimated. A stationary segment XT , XT+1, . . . , XT+n−1 of the

process is available. Without loss of generality we put T = 1. The stationarity of the segment

means that X1 is distributed as N(0, 1/(1− ρ2)).

2. ENTROPY LOSS FUNCTION

Recall that if fθ(x) is a probability density function, where θ is an unknown parameter

to be estimated and θ̂ is an estimator of θ, then the Entropy Loss Function is given by

the formula (see Kullback (1959), Rényi (1962), Sakamoto et al. (1986), Nematollahi and

Motamed-Shariati (2009))

(3) L(θ, θ̂) = Eθ log
(
fθ(x)
fθ̂(x)

)
.
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For a vector observation (X1, X2, . . . , Xn) of the process we have

fρ(X1, X2, . . . , Xn) =

(4) = (2π)−n/2
√

1− ρ2 exp
{
−1

2
(1− ρ2)X21

} n∏
i=2

exp
{
−1

2
(Xi − ρXi−1)2

}
,

so that for ρ, ρ̂ ∈ (−1, 1) we have

log
(fρ(X1, X2, . . . , Xn)
fρ̂(X1, X2, . . . , Xn)

)
=

1
2

log
1− ρ2

1− ρ̂2
+ (ρ− ρ̂)

n∑
i=2

XiXi−1 −
1
2

(ρ2 − ρ̂2)
n∑
i=2

X2i−1.

Now we assume

(5) L(θ, θ̂) =
1
n

∫ ∞
−∞

log
(fρ(x1, x2, . . . , xn)
fρ̂(x1, x2, . . . , xn)

)
fρ(x1, x2, . . . , xn)dx1dx2 · · · dxn.

For |ρ̂| ­ 1 we set L(θ, θ̂) =∞. Eventually

(6) L(ρ, ρ̂) =


1
n

(1
2

log
1− ρ2

1− ρ̂2
+

ρ− ρ̂
2(1− ρ2)

(
ρ− (1− 2

n
)ρ̂
))
, if |ρ̂| < 1,

+∞, if |ρ̂| ­ 1.

The coefficient 1/n in formula (5) comes from the fact that if (X1, X2, . . . , Xn) are i.i.d. then

the formula is identical with (3) for real x.

The function (6) of argument ρ̂ ∈ (−1, 1), for n = 10, ρ = 0, and ρ = 0.5, is presented

in Fig. 1. The function L(ρ, ρ̂) is convex, equals zero if ρ̂ = ρ and tends to infinity as ρ̂

approaches 1 or −1. The Entropy Loss Function has been successfully applied in estimation

of parameters when the standard Mean Square Error criterion appeared to be unsatisfactory.

Interesting applications can be found in Parsian et al. (1996) and Singh et al. (2008). The idea

of the criterion is strictly connected with the Kullback-Leibler divergence between probability

distributions: a distribution indexed by an unknown parameter and that indexed by an

estimator of the parameter.
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Fig.1. Entropy Loss Functions for ρ = 0 (solid) and ρ = 0.5 (dashed)

ρ̂

L(ρ, ρ̂)

The risk function of an estimator ρ̂ = ρ̂(X1, X2, . . . , Xn), to be denoted by Rρ̂(ρ),

ρ ∈ (−1, 1), is given by the formula

(7)

Rρ̂(ρ) =



∫
Rn

L
(
ρ, ρ̂(x1, x2, . . . , xn)

)
fρ(x1, x2, . . . , xn)dx1dx2 · · · dxn

for ρ such that Pρ{|ρ̂(X1, X2, . . . , Xn)| < 1} = 1,

∞ for ρ such that Pρ{|ρ̂(X1, X2, . . . , Xn)| ­ 1} > 0.

Analytic or numerical calculation of the risk Rρ̂(ρ) is rather difficult but Monte Carlo simu-

lations can be easily applied.

2. ESTIMATORS

To demonstrate our idea the following six estimators have been chosen.

Maximum Likelihood Estimator:

ρ̂MLE = arg max
ρ
L(ρ;X1, X2, . . . , Xn)

where

L(ρ;x1, x2, . . . , xn) = log(1− ρ2)− x21(1− ρ2)−
n∑
i=2

(xi − ρxi−1)2.

Observe that for every x1, x2, . . . , xn, the function L(ρ;x1, x2, . . . , xn) of ρ ∈ (−1, 1) is con-

cave (the second derivative is negative), L(ρ;x1, x2, . . . , xn) → −∞ as ρ → ±1 so that
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ρ̂MLE ∈ (−1, 1) is uniquely defined. A disadvantage of this estimator is that in order to cal-

culate the value of ρ̂MLE one has to solve numerically an algebraic equation of the third

order. A more serious problem is that the lack of a simple closed formula makes it difficult

to study the properties of the estimator.

Least Squares Estimator:

ρ̂LSE = arg min
ρ

n∑
i=2

(Xi − ρXi−1)2 =
∑n
i=2XiXi−1∑n
i=2X

2
i−1

.

Estimator constructed by the Method of Moments: The sample counterpart of the correlation

coefficient between Xt and Xt−1, t = 2, . . . , n,

ρ =
Cov(Xt, Xt−1)√

V ar(Xt)V ar(Xt−1)
,

if EXt = 0, t = 1, 2, . . . , n, is given by the formula

ρ̂MM =
∑n
i=2XiXi−1√∑n−1

i=1 X
2
i

∑n
i=2X

2
i

.

It should be noted that the support of the estimator ρMM is in the interval (−1, 1).

Hurwicz estimator [Hurwicz (1950), Zieliński (1999)]:

ρHUR = Med

(
X2
X1

,
X3
X2

, . . . ,
Xn

Xn−1

)
,

where Med(ξ1, ξ2, . . . , ξm) denotes a median of ξ1, ξ2, . . . , ξm. A nice property of the estimator

is that it is median-unbiased, which means that

Pρ{ρ̂HUR ¬ ρ} = Pρ{ρ̂HUR ­ ρ} =
1
2

for all ρ ∈ (−1, 1).

This property holds under very general distributional assumptions, without assuming stati-

stical independence (Luger 2005).

M-estimator with Huber loss function [Lehmann (1998)]:

ρMHU = arg min
ρ

n−1∑
i=1

L(Xi+1 − ρXi).
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with

L(x) =


1
2x
2 if |x| ¬ k,

k|x| − 12k
2 if |x| > k.

Following Lehmann we assume k = 3/2. Here also no simple explicit formula for ρ̂MHU is

known.

Burg’s estimator [Provost (2005), Brockwell, Davis (2002)]:

This estimator has been constructed as that minimizing the forward and backward pre-

diction errors:

ρBUR = arg min
ρ

n∑
i=2

((Xi − ρXi−1)2 + (Xi−1 − ρXi)2).

Then

ρBUR =
2
∑n
i=2XiXi−1∑n

i=2(X
2
i +X2i−1)

.

It should be noted that the support of the estimator ρBUR is in the interval (−1, 1).

3. DISTRIBUTIONS OF ESTIMATORS

To assess basic properties of the estimators a simulation study has been performed. Some

results (histograms) for ρ = 0.8 and n = 10, based on 10, 000 simulation runs, are exhibited in

Fig. 2. We can observe that only the Maximum Likelihood Estimator ρ̂MLE, Burg’s estimator

ρ̂BUR, and the estimator constructed by the Method of Moments ρ̂MM do not assume values

outside the interval (−1, 1).
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Fig. 2. Histograms
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4. RISK OF ESTIMATORS

The Maximum Likelihood Estimator ρ̂MLE, Burg’s estimator ρ̂BUR, and the estimator

constructed by the Method of Moments ρ̂MM assume all their values in the open interval

(−1, 1), so that the risk of these estimators is finite. The risk functions for n = 10 and

for 105 simulation runs for all three estimators are presented in Fig. 3. Numerical values

of the risk functions are presented in the Table. Two numbers in each entry are results of

two independent simulations of 105 runs. Small differences indicate that the accuracy of the

simulation results is satisfactory.
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Fig, 3. Risk functions of estimators:
MLE(solid), BURG (dashes),MM (dotted)
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It turns out that the Maximum Likelihood Estimator ρ̂MLE has the uniformly smallest

risk.
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Table. Risk of estimators

ρ RMLE RMM RMM/RMLE RBRU RBRU/RMLE

-0.8 0.2974 0.3249 1.09 0.3175 1.07
0.2992 0.3261 1.09 0.3188 1.07

-0.6 0.2338 0.2489 1.06 0.2496 1.07
0.2357 0.2500 1.06 0.2508 1.06

-0.4 0.2067 0.2151 1.04 0.2217 1.07
0.1953 0.2158 1.04 0.2225 1.07

-0.2 0.1941 0.1987 1.02 0.2090 1.08
0.1953 0.1991 1.02 0.2094 1.07

0 0.1903 0.1935 1.02 0.2052 1.08
0.1913 0.1939 1.01 0.2054 1.07

0.2 0.1940 0.1983 1.02 0.2087 1.08
0.1949 0.1988 1.02 0.2091 1.07

0.4 0.2065 0.2144 1.04 0.2210 1.07
0.2074 0.2154 1.04 0.2220 1.07

0.6 0.2333 0.2478 1.06 0.2486 1.07
0.2342 0.2493 1.06 0.2502 1.07

0.8 0.2975 0.3239 1.09 0.3165 1.06
0.2976 0.3248 1.09 0.3175 1.07

The risk functions for n = 10, 20, 50 and for 105 simulation runs for the estimator con-

structed by the Method of Moments ρ̂MM are presented in Fig. 4. It is obvious that the risk

is smaller if the number of observations is greater.
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Fig, 4. Risk functions of estimators constructed by the Method of Moments

R
is

k

10n = 

20n = 

50n = 
ρ

8



5. CONCLUDING REMARKS

The risk function based on the Entropy Loss Function enables one to eliminate estimators

which may assume values outside the parameter space. We call such estimators unacceptable.

We have considered three acceptable estimators. Among them, the Maximum Likelihood

Estimator ρ̂MLE has the uniformly smallest risk but the estimator ρ̂MM constructed by the

Method of Moments seems to be preferable in practice: its risk slightly exceeds that of ρ̂MLE

(not more than by 10 percent) but it is much easier to apply and it is easier to analyze its

theoretical properties (ratio of two quadratic forms). It would be interesting to know if there

exists an estimator with the uniformly smallest risk in the class of all acceptable estimators.

It is also of interest to construct a minimax estimator under the Entropy Loss Function.
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