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Abstract

The PDO on R1+n of the form P=∂0M(∂1, . . . , ∂n)−L(∂1, . . . , ∂n)
is considered, M and L being square m × m matrices whose en-
tries are scalar PDOs on Rn with constant coefficients. It is proved
that

(i) the real parts of the λ-roots of det(λM(iξ)−L(iξ)) are bounded
from above when ξ ranges over Rn

if and only if

(ii) P has a fundamental solution with support in H+ = {(x0, x1,
. . . , xn) ∈ R1+n : x0 ≥ 0} having some special properties ex-
pressed in terms of the L. Schwartz space O′C of rapidly de-
creasing distributions.

Moreover, it is proved that the fundamental solution with support in
H+ having these special properties is unique.
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1 Introduction and the main result

1.1 Rapidly decreasing distributions

By Theorem IX in Sec. VII.5 of L. Schwartz’s book [13], for every distribu-

tion T ∈ D′(Rn) the following two conditions are equivalent:

T ∗ ϕ ∈ S(Rn) for every ϕ ∈ D(Rn),(1.1)

for every k ∈ N0 there is mk ∈ N0 such that T =
∑
|α|≤mk ∂

αFk,α
where, for every multiindex α = (α1, . . . , αn) ∈ Nn

0 of length |α| =
α1 + · · · + αn ≤ mk, Fk,α is a continuous function on Rn such that
supx∈Rn(1 + |x|)k|Fk,α(x)| <∞.

(1.2)

In the above ∂α = ∂α1
1 . . . ∂αnn where ∂1, . . . , ∂n are partial derivatives of

the first order not multiplied by any factor. Each of the conditions (1.1),

(1.2) is satisfied if and only if the distribution T is rapidly decreasing, where

the definition of rapid decrease, due to L. Schwartz, refers to the notion of

boundedness of a distribution. The space of rapidly decreasing distributions

on Rn is denoted by O′C(Rn). From (1.2) it follows that

(1.3) whenever T ∈ O′C(Rn) and ϕ ∈ C∞b (Rn), then ϕT ∈ O′C(Rn).

It is visible from (1.2) that O′C(Rn) ⊂ S ′(Rn), so that the Fourier trans-

form FT makes sense for every T ∈ O′C(Rn). By Theorem XV in Sec. VII.8

of [13],

(1.4) FO′C(Rn) = OM(Rn),

whereOM(Rn) denotes the space of infinitely differentiable slowly increasing

functions on Rn. Recall that φ ∈ OM(Rn) if and only if φ ∈ C∞(Rn) and

for every α ∈ Nn
0 there is mα ∈ N0 such that

sup
ξ∈Rn

(1 + |ξ|)−mα|∂αφ(ξ)| <∞.

1.2 The main result

Denote by Mm×m the set of m × m matrices with complex entries. Let

M(∂1, . . . , ∂n) and L(∂1, . . . , ∂n) be PDOs on Rn with constant coefficients

belonging to Mm×m. In other words, M(∂1, . . . , ∂n) and L(∂1, . . . , ∂n) are

m×m matrices whose entries are scalar PDOs on Rn with constant complex

coefficients. If we replace each ∂ν by iξν where i is the imaginary unit and

ξν ∈ R, then M(∂1, . . . , ∂n) and L(∂1, . . . , ∂n) will change into matrices
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M(iξ1, . . . , iξn) and L(iξ1, . . . , iξn) whose entries are complex polynomials

of n real variables ξ1, . . . , ξn.

Our object of interest will be the differential operator

P = ∂0M(∂1, . . . , ∂n)− L(∂1, . . . , ∂n)

on R1+n = {(x0, x1, . . . , xn) : xν ∈ R for ν = 0, . . . , n}, and the associated

m×m matrix λM(iξ1, . . . , iξn)−L(iξ1, . . . , ξn) whose entries are polynomials

of 1+n variables, λ ∈ C and ξ1, . . . , ξn ∈ R. EveryMm×m-valued distribution

N on R1+n such that

PN = δ ⊗ 1m×m

is called a fundamental solution for the operator P .

Let O′C(R1+n;Mm×m) be the space of m×m matrices whose entries are

scalar distributions on R1+n belonging to O′C(R1+n). For every fixed λ ∈ C
let e−λ be the function on R1+n given by e−λ(x0, x1, . . . , xn) = exp(−λx0)

for (x0, x1, . . . , xn) ∈ R1+n. For ϑ ∈ D(R), denote by ϑ0 the function on

R1+n defined by ϑ0(x0, x1, . . . , xn) = ϑ(x0).

Theorem. Let P = ∂0M(∂1, . . . , ∂n)−L(∂1, . . . , ∂n) be the above differential

operator on R1+n with constant coefficients belonging to Mm×m. Let

ω0 = sup{Reλ : λ ∈ C and there is (ξ1, . . . , ξn) ∈ Rn

such that q(λ, iξ1, . . . , iξn) = 0}

where

q(λ, iξ1, . . . , iξn) = det(λM(iξ1, . . . , iξn)− L(iξ1, . . . , iξn)).

Then the following two conditions are equivalent:

(i) ω0 <∞,

(ii) the differential operator P has a fundamental solution N with sup-

port in H+ = {(x0, x1, . . . , xn) ∈ R1+n : x0 ≥ 0} such that ϑ0N ∈
O′C(R1+n;Mm×m) for every ϑ ∈ D(R).

Furthermore, if (i) and (ii) are satisfied, then the fundamental solution N

as in (ii) is unique and satisfies

(iii) ω0 = inf{Reλ : λ ∈ C, e−λN ∈ O′C(R1+n;Mm×m)}, and e−λN ∈
O′C(R1+n;Mm×m) whenever Reλ > ω0.
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1.3 Remarks

Condition (i) can be called the Petrovskĭı condition because it first ap-

peared in I. G. Petrovskĭı’s paper [9]. Namely, in [9], in the footnote on

p. 24, it was conjectured that, if M(∂1, . . . , ∂n) = 1m×m, then (i) is equiv-

alent to a certain formally weaker condition also concerning the λ-roots of

det(λ1m×m−L(iξ1, . . . , iξn)). The validity of this conjecture was proved by

L. G̊arding in [3]. I. G. Petrovskĭı noticed the significance of smooth slowly

increasing functions for the theory of evolutionary PDEs with constant co-

efficients. L. Schwartz explained in [11] how the results of Petrovskĭı may

be elucidated by placing them in the framework of rapidly decreasing dis-

tributions and smooth slowly increasing functions. (Condition (i) was not

mentioned in [11]; notice that [11] was earlier than [3].)

L. Hörmander proved in [5] that if q is a polynomial of 1 + n variables

with complex coefficients, then the following two conditions are equivalent:

(i)∗ there are constants A ∈ ]−∞,∞[ and r ∈ ]0,∞[ such that

inf{ReF (ζ1, . . . , ζn) : (ζ1, . . . , ζn) ∈ Biξ1,...,iξn;r} ≤ A

for every (ξ1, . . . , ξn) ∈ Rn and every function F holomorphic in the

ball

Biξ1,...,iξn;r =
{

(ζ1, . . . , ζn) ∈ Cn :
n∑
ν=1

|ζν − iξν |2 < r2
}

such that q(F (ζ1, . . . , ζn), ζ1, . . . , ζn) = 0 in Biξ1,...,iξn;r,

(ii)∗ the differential operator q(∂0, ∂1, . . . , ∂n) has a fundamental solution

with support in H+.

The equivalence (i)∗⇔(ii)∗ was reproved in Sec. 12.8 of [6]. The fundamental

solution occurring in (ii)∗ need not be unique. It is non-unique if (i)∗ holds

and the boundary of H+ is characteristic for q(∂0, ∂1, . . . , ∂n). Obviously (i)

implies (i)∗. Furthermore, as indicated in [5], the operator ∂0 − i(∂1 + 1)2

satisfies (i)∗ but does not satisfy (i). Therefore condition (i)∗ is essentially

weaker than (i).

In [5], the largest power of λ in q(λ, iξ1, . . . , iξn) is multiplied by a poly-

nomial of ξ1, . . . , ξn which, in contrast to the assumption (5) in Sec. 3.10

of [R], may vanish for some (ξ1, . . . , ξn) ∈ Rn. Similarly, in our Theorem

it is allowed that for some (ξ1, . . . , ξn) ∈ Rn the matrix M(iξ1, . . . , iξn) is
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not invertible. It follows that, for some fixed (ξ1, . . . , ξn) ∈ Rn, the ma-

tricial differential operator ∂0M(iξ1, . . . , iξn) − L(iξ1, . . . , iξn) may repre-

sent an implicit ordinary differential-algebraic system whose fundamental

solution with support in [0,∞[ is an Mm×m-valued distribution on R not

equal to a function. See [7], Sec. 6.4. Therefore it should not be expected

that in our Theorem the fundamental solution is a function of the vari-

able x0 with values in O′C(Rn;Mm×m). However, if (i) is satisfied and for

every (ξ1, . . . , ξn) ∈ Rn the matrix M(iξ1, . . . , iξn) is invertible, then the

restriction to H+ of the fundamental solution N satisfying (ii) belongs to

C∞([0,∞[;O′C(Rn;Mm×m)). See [8].

2 Existence of a fundamental solution satis-

fying (ii) and (iii)

2.1 Application of the Tarski–Seidenberg theorem

We are going to prove that if (i) holds, then the differential operator

∂0M(∂1, . . . , ∂n) − L(∂1, . . . , ∂n) has a fundamental solution N satisfying

the conditions (ii) and (iii). So, suppose that (i) holds and let

N = {(σ, ξ0, . . . , ξn) ∈ R2+n : q(σ + iξ0, iξ1, . . . , iξn) = 0}.

Then N ⊂ {(σ, ξ0, . . . , ξn) ∈ R2+n : σ ≤ ω0}, and hence, by Theorem A.3

from the Appendix to [14] or by Theorem 3.2 of [4]∗) , there are c, µ, µ′ ∈
]0,∞[ such that whenever σ ∈ ]ω0,∞[ and (ξ0, . . . , ξn) ∈ R1+n, then

(2.1) |q(σ + iξ0, iξ1, . . . , iξn)| ≥ c(dist((σ, ξ0, . . . , ξn);N ))µ

· (1 + (σ2 + ξ2
0 + · · ·+ ξ2

n)1/2)−µ
′

≥ c(σ − ω0)
µ(1 + |σ + iξ0|+ (ξ2

1 + · · ·+ ξ2
n)1/2)−µ

′
.

If (λ, ξ) ∈ C× Rn and Reλ > ω0, then

(λM(iξ1, . . . , iξn)− L(iξ1, . . . , iξn))−1

= (q(λ, iξ1, . . . , iξn))−1 Adj(λM(iξ1, . . . , iξn)− L(iξ1, . . . , iξn))

where the entries of the matrix Adj(λM(iξ1, . . . , iξn) − L(iξ1, . . . , iξn)) are

polynomials on C × Rn. Therefore, by (2.1), there are C ∈ ]0,∞[ and k ∈
]0,∞[ such that

∗)In accordance with the idea of L. Hörmander, these theorems are deduced from the
Tarski–Seidenberg theorem about projections of semi-algebraic sets.
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(2.2) ‖(λM(iξ1, . . . , iξn)− L(iξ1, . . . , iξn))−1‖Mm×m

≤ C(Reλ− ω0)
−µ(1 + |λ|+ |ξ|)k

for every (λ, ξ) ∈ C× Rn such that Reλ > ω0.

2.2 The slowly increasing functions N̂σ and the rapidly
decreasing distributions Nσ

For every σ ∈ ]ω0,∞[ define the Mm×m-valued function N̂σ on R1+n by

(2.3) N̂σ(ξ0, . . . , ξn) = ((σ + iξ0)M(iξ1, . . . , iξn)− L(iξ1, . . . , iξn))−1

= (q(σ + iξ0, iξ1, . . . , iξn))−1 Adj((σ + iξ0)M(iξ1, . . . , iξn)− L(iξ1, . . . , iξn))

for (ξ0, . . . , ξn) ∈ R1+n. Then, for every multiindex α ∈ N1+n,

∂αN̂σ(ξ0, . . . , ξn) = (q(σ + iξ0, iξ1, . . . , iξn))−1−|α|Pα(σ, ξ0, . . . , ξn)

where Pα is an m×m matrix with polynomial entries. Consequently, (2.1)

implies that

(2.4) N̂σ ∈ OM(R1+n;Mm×m) for every σ ∈ ]ω0,∞[.

Let

(2.5) Nσ = F−1N̂σ

where F denotes the Fourier transformation on R1+n. From (1.4) and (2.4)

it follows that

(2.6) Nσ ∈ O′C(R1+n;Mm×m) for every σ ∈ ]ω0,∞[.

Furthermore, from (2.3) it follows that

(2.7) if σ ∈ ]ω0,∞[ then Nσ is a fundamental solution for the differential
operator (σ + ∂0)M(∂1, . . . , ∂n)− L(∂1, . . . , ∂n).

Let eσ be the scalar function on R1+n defined by eσ(x0, . . . , xn)=exp(σx0).

Take σ ∈ ]ω0,∞[, and consider the distribution eσNσ ∈ D′(R1+n;Mm×m).

By the Parseval equality, for every ϕ ∈ D(R1+n) one has

〈eσNσ, ϕ〉 = 〈Nσ, eσϕ〉 = (2π)−1−n〈N̂σ, êσϕ
∨〉

= (2π)−1−n
∫
· · ·
∫

R1+n

(êσϕ(−ξ0, . . . ,−ξn))

· ((σ + iξ0)M(iξ1, . . . , iξn)− L(iξ1, . . . , iξn))−1 dξ0 . . . dξn.



The Petrovskĭı condition and rapidly decreasing distributions 7

For every ϕ ∈ D(R1+n) the Fourier integral

ϕ̂(ζ0, . . . , ζn) =

∫
· · ·
∫

R1+n

e−i
Pn
ν=0 xνζνϕ(x0, . . . , xn) dx0 . . . dxn

makes sense for (ζ0, . . . , ζn) ∈ C1+n and defines the holomorphic extension

of ϕ̂ from R1+n onto C1+n. This holomorphic extension satisfies

êσϕ(ζ0, . . . , ζn) = ϕ̂(ζ0 + iσ, ζ1, . . . , ζn).

Consequently, whenever ϕ ∈ D(R1+n) and σ ∈ ]ω0,∞[, then

(2.8) 〈eσNσ, ϕ〉 = (2π)−1−n
∫
· · ·
∫

R1+n

ϕ̂(−ξ0 + iσ,−ξ1, . . . ,−ξn)

· ((σ + iξ0)M(iξ1, . . . , iξn)− L(iξ1, . . . , iξn))−1 dξ0 . . . dξn.

An integration by parts shows that whenever ϕ ∈ D(R1+n) and l ∈ N, then

(2.9) (1 + |ξ0 − iσ|l + |ξ1|l + · · ·+ |ξn|l)|ϕ̂(−ξ0 + iσ,−ξ1, . . . ,−ξn)|

≤
(
‖ϕ‖L1(R1+n) +

n∑
ν=0

‖∂lνϕ‖L1(R1+n)

)
exp(Hϕ(σ))

for every σ, ξ0, . . . , ξn ∈ R where

(2.10) Hϕ(σ) = sup{σx0 : (x0, . . . , xn) ∈ suppϕ}.

Furthermore, by (2.2), there are C, k ∈ ]0,∞[ such that

(2.11) ‖((σ + iξ0)M(iξ1, . . . , iξn)− L(iξ1, . . . , iξn))−1‖Mm×m

≤ C(σ − ω0)
−µ(1 + |ξ0 − iσ|+ |ξ1|+ · · ·+ |ξn|)k

for every σ ∈ ]ω0,∞[ and ξ0, . . . , ξn ∈ R. From (2.8)–(2.11) and the Cauchy

integral theorem it follows that

the distribution eσNσ ∈ D′(R1+n;Mm×m) does not depend on σ
provided that σ ∈ ]ω0,∞[,

(2.12)

lim
σ→∞
〈eσNσ, ϕ〉 = 0 whenever ϕ ∈ D(R1+n) and suppϕ ⊂ R1+n\H+.(2.13)

2.3 The fundamental solution N

Thanks to (2.12) we may define the distribution N ∈ D′(R1+n;Mm×m) by

the equality

(2.14) N = eσNσ for every σ ∈ ]ω0,∞[.
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From (2.13) it follows that

(2.15) suppN ⊂ H+.

For every σ ∈ R let

(2.16) Sσ = ((σ + ∂0)M(∂1, . . . , ∂n)− L(∂1, . . . , ∂n))(δ ⊗ 1m×m).

Then Sσ = D′(R1+n;Mm×m), suppSσ = {0}, and

(2.17) Sσ = e−σS0 for every σ ∈ R,

because whenever ϕ ∈ D(R1+n), then

〈e−σS0, ϕ〉 = 〈S0, e−σϕ〉
= [(−∂0M(−∂1, . . . ,−∂n)− L(−∂1, . . . ,−∂n))(e−σϕ)](0)

= [((σ − ∂0)M(−∂1, . . . ,−∂n)− L(−∂1, . . . ,−∂n))ϕ](0)

= 〈Sσ, ϕ〉.

From (2.7), (2.14) and (2.17) it follows that whenever σ ∈ ]ω0,∞[, then

PN = (∂0M(∂1, . . . , ∂n)− L(∂1, . . . , ∂n))N

= S0 ∗N = (eσSσ) ∗ (eσNσ) = eσ(δ ⊗ 1m×m) = δ ⊗ 1m×m,

proving that

N is a fundamental solution for the operator P .(2.18)

Above we have used the fact that whenever T, U ∈ D′(R1+n;Mm×m), σ ∈ R,

and one of T, U has compact support, then eσ(T ∗U) = (eσT ) ∗ (eσU). This

is true under the additional assumption that T, U ∈ L1
loc(R1+n;Mm×m), and

this case implies the general assertion by regularization.

2.4 Properties of N

If ϑ ∈ D(R) and σ ∈ ]ω0,∞[, then ϑ0eσ is bounded on R1+n together with all

its partial derivatives, so that, by (1.3), ϑ0N = (ϑ0eσ)Nσ∈O′C(R1+n;Mm×m)

because Nσ ∈ O′C(R1+n;Mm×m). Therefore

(2.19) whenever ϑ ∈ D(R), then ϑ0N ∈ O′C(R1+n;Mm×m).

By (2.15), (2.18) and (2.19), N has all the properties specified in (ii).
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It remains to prove that N also satisfies (iii). To this end, take λ ∈ C
such that Reλ ∈ ]ω0,∞[. Let σ = 1

2
(ω0 + Reλ). Then e−λN = eσ−λNσ ∈

O′C(R1+n;Mm×m) because Nσ∈O′C(R1+n;Mm×m), suppNσ⊂H+, and eσ−λ

is bounded together with all its partial derivatives on the set {(x0, . . . , xn)

∈ R1+n : x0 > −1}.
Now, to show (iii), it remains to prove that

(2.20) if λ ∈ C and e−λN ∈ O′C(R1+n;Mm×m), then Reλ ≥ ω0.

So, suppose that λ ∈ C and e−λN ∈ O′C(R1+n;Mm×m). Take any σ ∈
[Reλ,∞). Since eλ−σ is bounded on {(x0, . . . , xn) ∈ R1+n : x0 > −1} to-

gether with all its partial derivatives, from (1.3) it follows that e−σN =

eλ−σ(e−λN) ∈ O′C(R1+n;Mm×m). Furthermore

Sσ∗(e−σN) = (e−σS0)∗(e−σN) = e−σ(S0∗N) = e−σ(δ⊗1m×m) = δ⊗1m×m.

Let φ = F(e−σN). Then φ ∈ OM(R1+n;Mm×m) and

((σ + iξ0)M(iξ1, . . . , iξn)− L(iξ1, . . . , iξn) · φ(ξ0, . . . , ξn)

= [F(Sσ ∗ (e−σN))](ξ0, . . . , ξn) = 1m×m

for every (ξ0, . . . , ξn) ∈ R1+n. This implies that for every (ξ0, . . . , ξn) ∈ R1+n

the matrix ((σ + iξ0)M(iξ1, . . . , iξn)− L(iξ1, . . . , iξn)) is invertible, so that

q(σ + iξ0, iξ1, . . . , iξn) 6= 0. Since the last is true for every σ ∈ [Reλ,∞), it

follows that Reλ ≥ ω0, proving (2.20).

3 Uniqueness of the fundamental solution

satisfying (ii)

3.1 Some general associativity relations for convolu-
tion

In what follows, convolution ∗ will occur only in the following circumstances:

(a) ϕ ∗ ψ where ϕ, ψ ∈ D(R1+n),

(b) T ∗ ϕ where T ∈ D′(R1+n;Mm×m) and ϕ ∈ D(R1+n),

(c) S ∗T where S, T ∈ D′(R1+n;Mm×m) and one of the distributions S, T

has compact support.
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In (b) the convolution is compatible with multiplication of matrices by

scalars. In (c) the convolution is compatible with multiplication of matrices

by matrices. We shall use the identities

(3.1) S ∗ (T ∗ ϕ) = (S ∗ T ) ∗ ϕ = (S ∗ ϕ) ∗ T

whenever ϕ ∈ D(R1+n), S, T ∈ D′(R1+n;Mm×m), and one of S, T has com-

pact support. See [12], the formulas (II, 7;2), p. 152, and (II, 7;9), p. 168.

However the advanced theory of [12] is not necessary to prove (3.1) in our

case of Mm×m-valued distributions. From (3.1) it is easy to deduce that

(3.2) (S ∗ T ) ∗ (ϕ ∗ ψ) = (S ∗ ϕ) ∗ (T ∗ ψ)

whenever φ, ψ ∈ D(R1+n), S, T ∈ D′(R1+n;Mm×m), and one of S, T has

compact support, where it is important that S ∗ ϕ and T ∗ ψ are functions.

3.2 Nσ as a left-side fundamental solution

Let Sσ ∈ D′(R1+n;Mm×m) be defined by (2.16). Then suppSσ = {0}.

Lemma 3.1. If (i) holds, σ ∈ ]ω0,∞[ and Nσ ∈ O′C(R1+n;Mm×m) is de-

fined by (2.5), then

(3.3) Nσ ∗ Sσ = δ ⊗ 1m×m.

Proof. By (1.4) the equality (3.3) is equivalent to the equality

(3.3)∧ N̂σ(ξ0, . . . , ξn) · Ŝσ(ξ0, . . . , ξn) = 1m×m

for every (ξ0, . . . , ξn) ∈ R1+n, where ∧ denotes the Fourier transformation

on R1+n and

Ŝσ(ξ0, . . . , ξn) = (iξ0 + σ)M(iξ1, . . . , iξn)− L(iξ1, . . . , iξn).

The meaning of (3.3)∧ is exactly this: whenever (ξ0, . . . , ξn) ∈ R1+n, then

N̂σ(ξ0, . . . , ξn) is the matrix inverse to Ŝσ(ξ0, . . . , ξn). The last is equivalent

to the definition (2.3) of N̂σ.

3.3 Reduction to an associativity relation for convo-
lution

Suppose now that (i) holds, and let N be a fundamental solution satis-

fying (ii). Fix σ ∈ ]ω0,∞[, and define Nσ by (2.5), and Sσ by (2.16).
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The uniqueness of N is a consequence of the equality e−σN = Nσ. Since

(∂0M(∂1, . . . , ∂n)− L(∂1, . . . , ∂n))N = δ ⊗ 1m×m, it follows that

Sσ ∗ (e−σN) = ((∂0 + σ)M(∂1, . . . , ∂n)− L(∂1, . . . , ∂n))(e−σN)

= M(∂1, . . . , ∂n)[σe−σN + (∂0e−σ)N + e−σ∂0N ]

+ e−σL(∂1, . . . , ∂n)N

= e−σ(∂0M(∂1, . . . , ∂n)− L(∂1, . . . , ∂n))N

= e−σ(δ ⊗ 1m×m) = δ ⊗ 1m×m.

Hence

Nσ = Nσ ∗ (Sσ ∗ (e−σN)).

On the other hand, by Lemma 3.1,

e−σN = (Nσ ∗ Sσ) ∗ (e−σN).

Therefore the proof of the uniqueness of N reduces to the proof of the

equality

(3.4) (Nσ ∗ Sσ) ∗ (e−σN) = Nσ ∗ (Sσ ∗ (e−σN)).

The associavity in (3.4) is not obvious because from among the three factors

Nσ, Sσ, e−σN only Sσ has compact support.

3.4 Proof of (3.4) by the method of C. Chevalley

We shall prove (3.4) following the argument of C. Chevalley from the proof

of Theorem 2.2 on pp. 120–121 of [2]. This argument is based on (3.2) and

the Fubini theorem. Notice that our ∗ will always denote the “classical”

convolution (where one factor has a compact support), and not the “gener-

alized” convolution of C. Chevalley. We shall use the following lemma.

Lemma 3.2. Suppose that ϕ ∈ D(R1+n), N ∈ D′(R1+n;Mm×m), and ϑ0N ∈
O′C(R1+n;Mm×m) whenever ϑ∈D(R). Then N ∗ ϕ∈C∞(R;S(Rn;Mm×m)).

Proof. It is sufficient to prove that (N ∗ ϕ)|[−a,a]×Rn ∈ C∞([−a, a];S(Rn;

Mm×m)) for every a ∈ ]0,∞[. So, take a, b ∈ ]0,∞[ such that suppϕ ⊂
[−b, b]× Rn, and ϑ ∈ D(R) such that ϑ = 1 on [−a− b, a+ b]. Then

(N ∗ ϕ)|[−a,a]×Rn = ((ϑ0N) ∗ ϕ)|[−a,a]×Rn .

Since ϑ0N ∈O′C(R1+n;Mm×m), by (1.1) one has (ϑ0N)∗ϕ∈S(R1+n;Mm×m),

and a fortiori ((ϑ0N) ∗ ϕ)|[−a,a]×Rn ∈ C∞([−a, a];S(Rn;Mm×m)).
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Since the set {ϕ1 ∗ ϕ2 ∗ ϕ3 : ϕi ∈ D(R1+n) for i = 1, 2, 3} is dense in

D(R1+n), (3.4) will follow once it is proved that

(3.5) [(Nσ∗Sσ)∗(e−σN)]∗[ϕ1∗ϕ2∗ϕ3] = [Nσ∗(Sσ∗(e−σN))∗[ϕ1∗ϕ2∗ϕ3]

for every ϕ1, ϕ2, ϕ3 ∈ D(R1+n). To prove (3.5), define the Mm×m-valued

functions on R1+n by

f = Nσ ∗ ϕ1, g = Sσ ∗ ϕ2, h = (e−σN) ∗ ϕ3.

Then, by (1.1), Lemma 3.2 and the equality h = (e−σN) ∗ (e−σeσϕ3) =

e−σ(N ∗ (eσϕ3)),

(3.6)
f ∈ S(R1+n;Mm×m), g ∈ D(R1+n;Mm×m),

h ∈ C∞(R;S(Rn;Mm×m)).

Furthermore, since suppNσ ⊂ H+, suppSσ = {0}, and supp e−σN ⊂ H+, it

follows that there is b ∈ R such that

(3.7) supp f, supp g, supph ⊂ [b,∞[× Rn.

From (3.6) and (3.7) it follows that for every (x0, . . . , xn) ∈ R1+n the mul-

tiple integral∫
· · ·
∫

R1+n×R1+n

f(v0, . . . , vn)g(u0 − v0, . . . , un − vn)h(x0 − u0, . . . , xn − un)

dv0 . . . dvndu0 . . . dun

is absolutely convergent. Consequently, (f ∗g)∗h = f ∗ (g ∗h) by the Fubini

theorem. This implies (3.5) because

[(Nσ ∗ Sσ) ∗ (e−σN)] ∗ [ϕ1 ∗ ϕ2 ∗ ϕ3] = (f ∗ g) ∗ h

and

[Nσ ∗ (Sσ ∗ (e−σN))] ∗ [ϕ1 ∗ ϕ2 ∗ ϕ3] = f ∗ (g ∗ h),

as may be deduced from (3.2).

4 Proof of (ii)⇒(i)

4.1 The distributions ϑ0N(ϕ⊗ ·)

Take N satisfying (ii). Fix a, b such that 0 < a < b < ∞, and ϑ ∈ D(R)

such that ϑ = 1 on [−b, b]. For every ϕ ∈ D(R) consider the mapping

T (ϕ) : D(Rn) 3 φ 7→ 〈ϑ0N,ϕ⊗ φ〉 ∈Mm×m.
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Obviously, the correspondence ϕ 7→ T (ϕ) is linear. Since ϑ0N ∈ O′C(R1+n;

Mm×m), from (1.2) it follows that for every k ∈ N0 there is mk ∈ N0 such

that

(4.1) ϑ0N =
∑

p+|α|≤mk

∂p0∂
α1
1 · · · ∂αnn Fk;p,α

where every Fk;p,α is a continuous Mm×m-valued function on R1+n = {(t, x)

∈ R× Rn} for which

sup
(t,x)∈R1+n

(1 + |t|+ |x|)k|Fk;p,α(t, x)| <∞.

Consequently, whenever ϕ ∈ D(R), then

(4.2) T (ϕ) =
∑
|α|≤mk

∂α1
1 · · · ∂αnn fk;α;ϕ

where

fk;α;ϕ(x) =
∑

p≤mk−|α|

∫
R
((−∂0)

pϕ(t))Fk;p;α(t, x) dt.

It follows that, whenever |α| ≤ mk, ϕ ∈ D(R), and x ∈ Rn, then

|fk;α;ϕ(x)| ≤ Ck
∑

p≤mk−|α|

∫
suppϑ

|∂p0ϕ(t)|(1 + |t|+ |x|)−k dt(4.3)

≤ Dk(1 + |x|)−k sup{|∂p0ϕ(t)| : p = 0, . . . ,mk, t ∈ R},

where Ck, Dk ∈ ]0,∞[ depend only on k. In particular this shows that

(4.4) T (ϕ) ∈ O′C(Rn;Mm×m) for every ϕ ∈ D(R).∗)

Since N is the fundamental solution for ∂0M(∂1, . . . , ∂n) − L(∂1, . . . , ∂n)

with support in H+, and ϑ = 1 on [−b, b], it follows that

T (ϕ) = 0 whenever suppϕ ⊂ ]−∞, 0[,(4.5)

M(∂1, . . . , ∂n)(T (−∂0ϕ)) − L(∂1, . . . , ∂n)(T (ϕ)) = ϕ(0)(δ ⊗ 1m×m)
for every ϕ ∈ C∞[−b,b](R) where δ is the Dirac distribution on Rn.

(4.6)

In the subsequent lemmas it will be tacitly assumed that (ii) holds and

N , a, b, ϑ, T are fixed. For every ϕ ∈ D(R) denote by T̂ (ϕ) the image of T (ϕ)

under the Fourier transformation on Rn. Then T̂ (ϕ) ∈ OM(Rn;Mm×m), by

(4.4) and (1.4).

∗) After introducing the topology in O′C(Rn;Mm×m), it is possible to prove that the
mapping D(R) 3 ϕ 7→ T (ϕ) ∈ O′C(Rn;Mm×m) is a vector-valued distribution. However
this is insignificant for the present proof.
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Lemma 4.1. There are p0,m0 ∈ N0 and C ∈ ]0,∞[ such that

‖T̂ (ϕ)(ξ)‖Mm×m ≤ C(1 + |ξ|)m0 sup{|∂p0ϕ(t)| : p = 0, . . . , p0, a ≤ t ≤ b}

for every ξ ∈ Rn and ϕ ∈ C∞[a,b](R).

Proof. If in (4.1) we take k > n, then, by (4.2) and (4.3),

T (ϕ) =
∑
|α|≤mk

∂α1
1 · · · ∂αnn fk;α;ϕ for every ϕ ∈ C∞[a,b](R)

where

‖fk;α;ϕ‖L1(Rn;Mm×m) ≤ D sup{|∂p0ϕ(t)| : p = 0, . . . ,mk, a ≤ t ≤ b}

for every α with |α| ≤ mk and every ϕ ∈ C∞[a,b](R), with D ∈ ]0,∞[ depend-

ing only on k. Consequently, whenever ϕ ∈ C∞[a,b](R), then

‖T̂ (ϕ)(ξ)‖Mm×m ≤ (1 + |ξ|)mk‖gϕ(ξ)‖Mm×m for every ξ ∈ Rn

for some gϕ ∈ Cb(Rn;Mm×m) with

sup
ξ∈Rn
‖gϕ(ξ)‖Mm×m ≤ C sup{|∂p0ϕ(t)| : p = 0, . . . ,mk, a ≤ t ≤ b}

for some C ∈ ]0,∞[ depending only on k.

4.2 An inequality of Chazarain type

Lemma 4.2. There are a ∈ R and b ∈ ]0,∞[ such that whenever (λ, ξ) ∈
C× Rn and

Reλ > a+ b log(1 + |λ|+ |ξ|) ∗),

then the matrix λM(iξ)− L(iξ) is invertible, so that q(λ, iξ) 6= 0.

Proof. From (4.6) it follows that

(4.7) M(iξ)T̂ (−∂0ϕ)(ξ)− L(iξ)T̂ (ϕ)(ξ) = ϕ(0)1m×m

for every ϕ ∈ C∞[−b,b](R) and ξ ∈ Rn. Take ϕ0 ∈ C∞[−b,b](R) such that ϕ0 = 1

on [−a, a]. Following J. Chazarain [1], p. 394, consider functions of the form

∗) This inequality and its proof are similar to the inequality (1.2) on p. 394 of [1]
and the argument on p. 395 of [1]. There is however an important difference. In [1] the
inequality (1.2) does not involve ξ and determines the “logarithmic region” Λ ⊂ C such
that for every λ ∈ Λ an abstract operator Q(λ) = λnAm + · · ·+ λA1 + A0 is invertible.
In our case the inequality involves ξ but the operator Q(λ) is replaced by the polynomial
q(λ, iξ), and Lemma 4.2 is not the final step of the argument.
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ϕ = e−λϕ0 where λ ranges over C. By (4.5) and (4.7), for every (λ, ξ) ∈
C× Rn one has 1[a,b]∂0ϕ0 ∈ C∞[a,b](R) and

(λM(iξ)− L(iξ))T̂ (e−λϕ0)(ξ) = 1m×m +M(iξ)T̂ (e−λ1[a,b]∂0ϕ0)(ξ).

This implies that if

‖M(iξ)T̂ (e−λ1[a,b]∂0ϕ0)(ξ)‖Mm×m < 1

for some (λ, ξ) ∈ C×Rn, then them×mmatrix λM(iξ)−L(iξ) is invertible.

Therefore, by Lemma 4.1, it is invertible for every (λ, ξ) ∈ C×Rn such that

(4.8) sup{|∂p0(e−λt∂0ϕ0(t))| : p = 0, . . . , p0, a ≤ t ≤ b}
· ‖M(iξ)‖Mm×m(1 + |ξ|)m0 < C−1.

Since M(iξ) is a matrix with polynomial entries, there are K ∈ ]0,∞[ and

k ∈ N0 such that

(4.9) ‖M(iξ)‖Mm×m ≤ K(1 + |ξ|)k for every ξ ∈ Rn.

Since sup{|∂p0ϕ0(t)| : p = 1, . . . , p0+1, a ≤ t ≤ b} is finite and supa≤t≤b |e−λt|
= e−aReλ whenever Reλ ≥ 0, there is L ∈ ]0,∞[ such that

(4.10) sup{|∂p0(e−λt∂0ϕ0(t))| : p = 0, . . . , p0, a ≤ t ≤ b}
≤ Le−aReλ(1 + |λ|)p0 whenever Reλ ≥ 0.

By (4.8)–(4.10), the matrix λM(iξ)− L(iξ) is invertible if Reλ ≥ 0 and

e−aReλ(1 + |λ|)p0(1 + |ξ|)k+m0 < (CKL)−1,

and therefore if

Reλ > a−1 log(CKL+ 1) + a−1(k +m0 + p0) log(1 + |λ|+ |ξ|).

4.3 The Chazarain type inequality implies (i)

The implication (ii)⇒(i) is an immediate consequence of Lemma 4.2 and

the following

Lemma 4.3. Let p be a polynomial of 1 + n variables with complex coeffi-

cients. Suppose that there are a ∈ R and b ∈ ]0,∞[ such that

(4.11) Reλ ≤ a+ b log(1 + |λ|+ |ξ|)
whenever (λ, ξ) ∈ C× Rn and p(λ, ξ) = 0.

Then

sup{Reλ : (λ, ξ) ∈ C× Rn, p(λ, ξ) = 0} <∞.
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The proof follows the scheme due to L. G̊arding and L. Hörmander. Let

σ(r) = sup{Reλ : λ ∈ C and there is ξ ∈ Rn such that

|λ2|+ |ξ2| ≤ 1
2
r2 and p(λ, ξ) = 0}.

Then, by (4.11),

(4.12) σ(r) ≤ a+ b log(1 + r) for every r ∈ [0,∞[.

Following an idea of L. Hörmander (presented in the Appendix to [6]),

the Tarski–Seidenberg theorem is used to show that there is a polynomial

V (z, w) (not vanishing identically) of two variables such that V (r, σ(r)) = 0

for every r ∈ [0,∞[. Then, as in L. G̊arding’s proof of the Lemma on p. 11

of [3], the Puiseux expansions of the w-roots of V (z, w) for large |z| show

that (4.12) is possible only if sup{σ(r) : r ∈ [0,∞[} <∞.
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1966.

[14] F. Treves, Lectures on Linear Partial Differential Equations with Con-

stant Coefficients, Inst. Mat. Pura Apl., Rio de Janeiro, 1961.


