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Abstract

This work aims to prove the convergence in the space L2 of an iterative algorithmic
method proposed by Kozlov et al. [Comput. Maths. Math. Phys. 31 (1991) 45] for the
reconstruction of solutions to a particular type of ill-posed Cauchy problem associated
with the Helmholtz equation on an infinite strip R3.

1 Introduction

Kozlov and Maz’ya [4] proposed an alternating iterative method to solve Cauchy prob-
lems for general strongly elliptic and formally self-adjoint systems. From the theoretical
aspect, the method is based on solving successive well-posed mixed boundary value prob-
lems by using the Cauchy data as part of the boundary data. In [3] a convergence of the
alternating method was proved for problems described by elliptic, symmetric and coercive
operators. In this work, we consider the following inverse Cauchy problem for the Helmholtz
equation in an infinite “strip”, Ω ⊂ R3.


∆u+ k2u = 0 , in Ω,

u(ρ, z) = g(ρ) on Γ,

∂zu(ρ, z) = h(ρ) on Γ,

u(·, z) ∈ L2(R) z∈ (0, d).

(1)

Recently, the Cauchy problem associated with the Helmholtz equation in a strip has been
considered in [9]. Here k > 0 is wave number [9], and the exact data g, h in (1) are from
the class L2 such that there exists unique solution u ∈ H2(Ω) to the problem (1). In this

Key words and phrases: Ill posed problems, Alternating method, inverse Cauchy problem, Helmholtz
equation.
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2 E. Altuntac

problem, the Cauchy data are given at the subset Γ ⊂ ∂Ω (figure 1). The primary purpose
of this alternating method is the reconstruction of appropriate solution to the problem (1)
at the subset Γ0 ⊂ ∂Ω (figure 1).

It has been shown in [4] that the convergence of the method holds for any initial ap-
proximation data h0(ρ) ∈ L2(Γ0). However, it is possible to give more particular case of
this requirement as is seen in this study. Here, we present the solution of this Cauchy prob-
lem explicitly and show the ill-posedness of the problem by this solution. Additionally, we
present a new convergence proof for the iterative algorithms. The key of the proof is simply
based on convergence of the compounds gn(ρ) and hn(ρ) forming the iteration data un(ρ, z).
To this end, besides of the solution, we also obtain the necessary estimations arising from
the alternating method.

Figure 1: Geometry of the problem

The work is organized as follows. In section 2 we present the spaces and notations, and
the ill-posedness of the problem (1). The alternating method is applied to the problem (1)
in section 3. Moreover, still in section 3, convergence of the method is discussed.



An alternating method for a Cauchy problem for the Helmhotz equation 3

2 Notations and definitions

We have Ω = R2 × (0, d) ⊂ R3, d > 0. First two spatial variables will be denoted by
ρ = (x, y). According to this notation the boundaries are Γ0 = {(ρ , 0) : ρ ∈ R2 } ⊂ ∂Ω
and Γ = {(ρ , d) : ρ ∈ R2 } ⊂ ∂Ω.

As usual, H1(Ω) denotes the first order Sobolev space of real-valued functions in Ω.
The space of traces of functions from H1(Ω) on Γ0 is denoted by H1/2(Γ0). This space is
equipped with the norm

∥u∥H1/2(Γ0) =
(∫

Γ0
(1 + |ξ|2)|û(ξ, 0)|2dξ

)1/2
where |ξ|2 = ξ1

2 + ξ2
2, and for ξρ = ξ1x + ξ2y, the Fourier transformation of the function

u(ρ, z) with respect to the variable ρ is û(ξ, z) = 1
2π

∫
R2 u(ρ, z)e

−iξ·ρdρ.

In order to show the ill-posedness of the problem (1), let us find the solution of the
problem. Since u(·, z) ∈ H1(R2) for z ∈ (0, d) and g, h ∈ L2 we can apply to them the
Fourier transform with respect to variables ρ ∈ R2. Thus


ûzz(ξ, z) = (|ξ|2 − k2)υ̂(ξ, z), ξ ∈ R2, z ∈ (0, d)

û(ξ,d) = ĝ(ξ), ξ ∈ R2

∂zû(ξ, d) = ĥ(ξ), ξ ∈ R2.

(2)

The solution of this problem is

û(ξ, z) = ĝ(ξ) cosh
(
(d− z)

√
η(ξ)

)
− ĥ(ξ)

sinh
(
(d− z)

√
η(ξ)

)
√
η(ξ)

, (3)

where η(ξ) = |ξ|2 − k2. It follows from here that

u(ρ, z) =
1

2π

∫
R2

eiξ·ρ

ĝ(ξ) cosh((d− z)
√
η(ξ)

)
− ĥ(ξ)

sinh
(
(d− z)

√
η(ξ)

)
√
η(ξ)

 dρ . (4)

Ill-posedness of the problem (1) can be seen from its solution (4). Boundedness of

u(·, z) in the L2−norm implies the rapid decay of ĥ(ξ) as ξ → ∞. Specifically, for Â(z) =
1

cosh
(
d
√

η(ξ)
) , a case of (3) can be presented as an operator equation when h(ρ) ≡ 0

Â(z)û(ξ, z) = û(ξ, d) ,

Â(z) : D(Â(z)) ⊂ L2(Γ0) → L2(Γ0). However, the operator Â(z) is merely bounded for
kd < π

2 . For details see Theorem 3.1 , [9] , and [10]. A well-posed system from this Cauchy
problem (1) is obtained by an alternating method which is presented below.
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3 Application of the alternating method

The Cauchy problem (1) cannot be solved numerically by using a direct approach, such
as the Gauss elimination method, since this problem is ill-posed. Instead we use a numeri-
cal method proposed by Kozlov et al. [4] for Cauchy problems associated to linear, elliptic,
self-adjoint and positive-definite operators. By this method, our objective is to reconstruct
traces of the solution of an elliptic equation in the region Γ0 ⊂ ∂Ω. To do so, we successively
solve on each step Dirichlet-Neumann or Neumann-Dirichlet boundary value problems. For
Lu = ∆u+ k2u, the method substantially consists of the following two algorithmic steps:

Step-1: The approximate solution u2n−1(ρ, z) ∈ H1(Ω) for n ≥ 1 solves the following mixed
boundary value problem,


Lu2n−1 = 0, in Ω,

u2n−1(ρ, z) = g(ρ) on Γ,

h2n−1(ρ) ≡ ∂zu
2n−1(ρ, z) = ∂zu

2n−2(ρ, z) on Γ0.

(5)

in order to determine u2n−1(ρ, z) in Ω and u2n−1(ρ, z) on Γ0.

Step-2: The approximate solution u2n(ρ, z) ∈ H1(Ω) for n ≥ 1 is constructed, and the
following mixed boundary value problem


Lu2n = 0 in Ω,

u2n(ρ, z) = u2n−1(ρ, z) on Γ0,

h2n(ρ) ≡ ∂zu
2n(ρ, z) = h(ρ, z) on Γ,

(6)

is solved in order to determine u2n(ρ, z) in Ω and ∂zu
2n(ρ, z) on the boundary Γ0.

The mixed boundary value problems (5) and (6) are solvable in H1(Ω) provided that k2

is not an eigenvalue of the Laplacian operator ∆, see [5].
In order for initiation of the procedure, let us consider the case of n = 1. Thus for

a specified initial approximation h0(ρ) on Γ0, u
1(ρ, z) ∈ H1(Ω) solves the following mixed

boundary value problem,


Lu1 = 0 in Ω,

u1(ρ, z) = g(ρ) on Γ,

h1(ρ) ≡ ∂zu
(1)(ρ, z) = h0(ρ) on Γ0.

(7)

By this problem we obtain u1(ρ, z) in Ω, and u1(ρ, z) on the boundary Γ0.

Theorem 3.1. For dk < π
2 ; If the given data (g, h0) ∈ (L2(Γ) × L2(Γ0)), then solution of

the problem (7) is

u1(ρ, z) =
1

2π

∫
R2

eiξ·ρ

ĝ(ξ) cosh
(
z
√

η(ξ)
)

cosh
(
d
√
η(ξ)

) − ĥ0(ξ)
sinh

(
(d− z)

√
η(ξ)

)
√
η(ξ) cosh

(
d
√
η(ξ)

)
 dρ, (8)
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and this solution is unique and continuously dependent in L2−norm on the given data g and
h0, as follows:

∥u1∥2L2(Ω) ≤ 2dK
(
∥g∥2L2(Γ) + ∥h0∥2L2(Γ0)

)2
.

Proof: After applying the Fourier transformation to the problem (7), its solution reads

û1(ξ, z) = ĝ(ξ)
cosh

(
z
√

η(ξ)
)

cosh
(
d
√
η(ξ)

) − ĥ0(ξ)
sinh

(
(d− z)

√
η(ξ)

)
√
η(ξ) cosh

(
d
√
η(ξ)

) , (9)

where η(ξ) = |ξ|2 − k2. In order to obtain the continuous dependence of the solution with
respect to L2-norm on the given data, we have to consider

∥u1∥2L2(Ω) = ∥û1∥2L2(Ω) =

∫ d

0

∥û1(·, z)∥2L2(R2)dz,

where

∥û1(·, z)∥2L2(R2) =

∫
R2

|û1(ξ, z)|2dξ =

∫
|ξ|<k

|û1(ξ, z)|2dξ +
∫
|ξ|>k

|û1(ξ, z)|2dξ = I1(k) + I2(k).

Considering (9), the first integral

I1(k) =

∫
|ξ|<k

∣∣∣∣∣∣ĝ(ξ)
cos
(
z
√
−η(ξ)

)
cos
(
d
√
−η(ξ)

) − iĥ0(ξ)
sin
(
(d− z)

√
−η(ξ)

)
√

−η(ξ) cos
(
d
√
−η(ξ)

)
∣∣∣∣∣∣
2

dξ

≤ 2

∫
|ξ|<k

∣∣∣∣∣∣ĝ(ξ)
cos
(
z
√
−η(ξ)

)
cos
(
d
√
−η(ξ)

)
∣∣∣∣∣∣
2

dξ + 2

∫
|ξ|<k

∣∣∣∣∣∣ĥ0(ξ)
sin
(
(d− z)

√
−η(ξ)

)
√

−η(ξ) cos
(
d
√
−η(ξ)

)
∣∣∣∣∣∣
2

dξ.

In the interval (0, π/2), the function cos(x) is decreasing while sin(x) is increasing. So

that, for |ξ| < k and 0 < (d − z)
√
η(·) < d

√
η(·),

∣∣∣sin((d− z)
√
−η(ξ)

)∣∣∣ ≤ |sin(dk)| and∣∣∣cos(d√−η(ξ)
)∣∣∣ ≥ |cos(dk)| . Also, for x ∈ (0, π/2), | cos(x)| ≤ 1, then we have

I1(k) ≤ 2
1

| cos2(dk)|

∫
|ξ|<k

|ĝ(ξ)|2dξ + 2
| tan2(dk)|

k2

∫
|ξ|<k

|ĥ0(ξ)|2dξ.

On the other hand,
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I2(k) =

∫
|ξ|>k

∣∣∣∣∣∣ĝ(ξ)
cosh

(
z
√
η(ξ)

)
cosh

(
d
√
η(ξ)

) − ĥ0(ξ)
sinh

(
(d− z)

√
η(ξ)

)
√
η(ξ) cosh

(
d
√

η(ξ)
)
∣∣∣∣∣∣
2

dξ

≤ 2

∫
|ξ|>k

∣∣∣∣∣∣ĝ(ξ)
cosh

(
z
√
η(ξ)

)
cosh

(
d
√
η(ξ)

)
∣∣∣∣∣∣
2

dξ + 2

∫
|ξ|>k

∣∣∣∣∣∣ĥ0(ξ)
sinh

(
(d− z)

√
η(ξ)

)
√
η(ξ) cosh

(
d
√
η(ξ)

)
∣∣∣∣∣∣
2

dξ.

For |ξ| > k and z ∈ (0, d), sinh
(
(d− z)

√
η(ξ)

)
≤ sinh

(
d
√
η(ξ)

)
and cosh

(
z
√
η(ξ)

)
≤

cosh
(
d
√
η(ξ)

)
. So that,

I2(k) ≤ 2

∫
|ξ|>k

|ĝ(ξ)|2dξ + 2

∫
|ξ|>k

|ĥ0(ξ)|2
∣∣∣∣∣∣
tanh

(
d
√
η(ξ)

)
√

η(ξ)

∣∣∣∣∣∣
2

dξ,

for |ξ| > k.
Since for d, x > 0, tanh(dx) ≤ dx, then

I2(k) ≤ 2

∫
|ξ|>k

|ĝ(ξ)|2dξ + 2d2
∫
|ξ|>k

|ĥ0(ξ)|2dξ

For C1 = max{1, 1
|cos2(dk)|} and C2 = max{d2, | tan2(dk)|

k2 }, we obtain

∥u1∥2L2(R2) ≤ 2
(
C1∥g∥2L2(Γ) + C2∥h0∥2L2(Γ0)

)
,

it follows that for K = max{C1, C2},

∥u1∥2L2(R2) ≤ 2K
(
∥g∥2L2(Γ) + ∥h0∥2L2(Γ0)

)
.

Hence,

∥u1∥2L2(Ω) =

∫ d

0

∥u1(·, z)∥2L2(R2)dz ≤ 2dK
(
∥g∥2L2(Γ) + ∥h0∥2L2(Γ0)

)
. (10)

which is the desired conclusion.

�

We have analyzed the existence and continuous dependency of the data for the boundary
value problem (7). The same estimation can also be obtained by replacing Γ with Γ0.

Now, let us analyze the boundedness of u(1)(ρ, 0). To do so, we inherently address (9).
So,



An alternating method for a Cauchy problem for the Helmhotz equation 7

û1(ξ, 0) = ĝ(ξ)
1

cos
(
d
√
−η(ξ)

) − iĥ0(ξ)
tan

(
d
√
−η(ξ)

)
√

−η(ξ)
, for|ξ| < k (11)

û1(ξ, 0) = ĝ(ξ)
1

cosh
(
d
√
η(ξ)

) − ĥ0(ξ)
tanh

(
d
√
η(ξ)

)
√
η(ξ)

, for|ξ| > k. (12)

If we multiply both sides of (11) and (12) by
√

−η(ξ) and
√

η(ξ) respectively, then we have

û1(ξ, 0)
√
−η(ξ) = ĝ(ξ)

√
−η(ξ)

1

cos
(
d
√
−η(ξ)

) − iĥ0(ξ)tan
(
d
√
−η(ξ)

)
, (13)

and

û1(ξ, 0)
√
η(ξ) = ĝ(ξ)

√
η(ξ)

1

cosh
(
d
√

η(ξ)
) − ĥ0(ξ)tanh

(
d
√
η(ξ)

)
. (14)

By this construction of u1(ρ, z) on the boundary Γ0, one can see that the boundedness of
the specified data h0(ρ) in L2−norm is provided by the restriction of dk ∈ (0, π/4). In the
following Lemma, for smooth enough functions g(ρ), we show that the norm ∥u1(ρ, 0)∥H1/2

is bounded under this restriction.

Lemma 3.2. For 0 < dk < π/4; If the given data (g, h0) ∈ (H1/2(Γ) × L2(Γ0)), then
u1(·, 0) ∈ L2(R2), and the following estimation holds for C1 = max{1, 1

|cos2(dk)|},

∥u1(·, 0)∥2
H1/2(R2)

≤ 2
(
C1∥g∥2L2(Γ) + ∥h0∥2L2(Γ0)

)
. (15)

Proof: In the same manner with the Theorem (3.1), one can easily find the constant
C1 = max{1, 1

|cos2(dk)|}, such that (15) holds.

�

So far, we have analyzed the solution u1(ρ, z) over Ω and more particularly trace of it on
the boundary Γ0. However, we are interested in this analysis for un(ρ, z), for n ≥ 1. To this
end, the convergence of hn(ρ) on the boundary Γ0 is necessary. We can define the sequence
of Neumann condition emerging from the boundary value problem (6).

∂zû
2n(ξ, 0) = ĥ(ξ)

1

cosh
(
d
√
η(ξ)

) − ĝ2n−1(ξ)
√
η(ξ) tanh

(
d
√
η(ξ)

)
≡ ĥ2n(ξ). (16)

Here, Dirichlet condition ĝ2n−1(ξ) := û2n−1(ξ, 0) can easily be obtained solving the former
boundary value problem (6). Considering the Fourier transform to the problem, we obtain
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û2n−1(ξ, z) = ĝ(ξ)
cosh

(
z
√
η(ξ)

)
cosh

(
d
√

η(ξ)
) − ĥ2n−2(ξ)

sinh
(
(d− z)

√
η(ξ)

)
√
η(ξ) cosh

(
d
√

η(ξ)
) ,

and hence

û2n−1(ξ, 0) = ĝ(ξ)
1

cosh
(
d
√
η(ξ)

) − ĥ2n−2(ξ)
tanh

(
d
√
η(ξ)

)
√
η(ξ)

≡ ĝ2n−1(ξ). (17)

If we plug the formula (17) into (16), then one gets

ĥ2n(ξ) = ĥ(ξ)
1

cosh
(
d
√

η(ξ)
) + ĥ2n−2(ξ)tanh2

(
d
√
η(ξ)

)
− ĝ(ξ)

√
η(ξ)

tanh
(
d
√
η(ξ)

)
cosh

(
d
√

η(ξ)
) . (18)

As an immediate consequence of this tiny analysis, we can give the following Lemma.

Lemma 3.3. For the specified initial data h0(ρ) ∈ L2(R2), if the formula (18) is valid for
any n = 1, 2, 3 · ··, then the following formula also holds for any n = 1, 2, 3 · ··,

ĥ2n(ξ) = ĥ0(ξ) tanh2n
(
d
√
η(ξ)

)
+

ĥ(ξ)

cosh
(
d
√

η(ξ)
) n∑

j=1

tanh2j−2
(
d
√
η(ξ)

)
−

−
ĝ(ξ)

√
η(ξ)

cosh
(
d
√
η(ξ)

) n∑
j=1

tanh2j−1
(
d
√
η(ξ)

)
. (19)

Proof: We prove the formula (19) by the method of induction.
For n = 1, equation (18)

ĥ2(ξ) = ĥ0(ξ) tanh2
(
d
√

η(ξ)
)
+

ĥ(ξ)

cosh
(
d
√
η(ξ)

) −
ĝ(ξ)

√
η(ξ)

cosh
(
d
√
η(ξ)

) tanh(d√η(ξ)
)
.

Thus formula (19) is true for n = 1. Now, let us assume that the formula (19) is valid for
n− 1. That is,

ĥ2n−2(ξ) = ĥ0(ξ) tanh2n−2
(
d
√
η(ξ)

)
+

ĥ(ξ)

cosh
(
d
√

η(ξ)
) n−1∑

j=1

tanh2j−2
(
d
√

η(ξ)
)
−

−
ĝ(ξ)

√
η(ξ)

cosh
(
d
√

η(ξ)
) n−1∑

j=1

tanh2j−1
(
d
√

η(ξ)
)
. (20)
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Since (18) is true for any n, including (20) inside (18), we get

ĥ2n(ξ) = ĥ0(ξ) tanh2n
(
d
√
η(ξ)

)
+

ĥ(ξ)

cosh
(
d
√
η(ξ)

) n∑
j=1

tanh2j−2
(
d
√
η(ξ)

)
−

−
ĝ(ξ)

√
η(ξ)

cosh
(
d
√
η(ξ)

) n∑
j=1

tanh2j−1
(
d
√
η(ξ)

)
. (21)

This shows that formula (19) is valid for any n = 1, 2, 3....

�

Of course, the convergence of un(ρ, z) depends on the reconstructed data hn(ρ). Thus,
it should be expected that the data hn(ρ) is convergent. Since we are interested in the
reconstruction of the approximate solution on the boundary Γ0, h

n should converge to the
exact data defined on the boundary Γ0. Let us recall (3) to investigate this convergence. It
follows that for ∂zû(ξ, z) where ξ ∈ Γ0,

∂zû(ξ, z)|ξ∈Γ0 ≡ ̂̃h(ξ) = −ĝ(ξ)
√

η(ξ) sinh
(
d
√
η(ξ)

)
+ ĥ(ξ) cosh

(
d
√
η(ξ)

)
. (22)

For |ξ| < k;

ĥ2n(ξ) = (−1)nĥ0(ξ) tan2n
(
d
√
−η(ξ)

)
+

ĥ(ξ)

cos
(
d
√
−η(ξ)

) n∑
j=1

(
i tan

(
d
√

−η(ξ)
))2j−2

−

−
ĝ(ξ)

√
−η(ξ)

cos
(
d
√
−η(ξ)

) n∑
j=1

(
i tan

(
d
√

−η(ξ)
))2j−1

,

by considering the value of two finite sums above, we obtain

ĥ2n(ξ) = (−1)nĥ0(ξ) tan2n
(
d
√
−η(ξ)

)
+ ĥ(ξ) cos

(
d
√
−η(ξ)

) [
1 + (−1)n+1tan2n

(
d
√

−η(ξ)
)]

−

−iĝ(ξ)
√
−η(ξ)sin

(
d
√
−η(ξ)

) [
1 + (−1)n+1tan2n

(
d
√
−η(ξ)

)]
,

which is in other words
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ĥ2n(ξ) = (−1)nĥ0(ξ) tan2n
(
d
√

−η(ξ)
)
+ {ĥ(ξ) cos

(
d
√

−η(ξ)
)
−

−iĝ(ξ)
√
−η(ξ)sin

(
d
√
−η(ξ)

)
}
[
1 + (−1)n+1tan2n

(
d
√
−η(ξ)

)]
. (23)

On the other hand, for |ξ| > k;

ĥ2n(ξ) = ĥ0(ξ) tanh2n
(
d
√
η(ξ)

)
+

ĥ(ξ)

cosh
(
d
√
η(ξ)

) n∑
j=1

tanh2j−2
(
d
√

η(ξ)
)
−

−
ĝ(ξ)

√
η(ξ)

cosh
(
d
√

η(ξ)
) n∑

j=1

tanh2j−1
(
d
√
η(ξ)

)
,

again, in the same manner of above one can easily get

ĥ2n(ξ) = ĥ0(ξ) tanh2n
(
d
√
η(ξ)

)
+ {ĥ(ξ)cosh

(
d
√
η(ξ)

)

−ĝ(ξ)
√

η(ξ)sinh
(
d
√
η(ξ)

)
}
[
1− tanh2n

(
d
√
η(ξ)

)]
. (24)

For |ξ| < k,

ĥ2n(ξ)− ̂̃h(ξ) = (−1)nĥ0(ξ) tan2n
(
d
√
−η(ξ)

)
−

−(−1)n{ĥ(ξ)− iĝ(ξ)
√
−η(ξ)sin

(
d
√
−η(ξ)

)
} tan2n

(
d
√
−η(ξ)

)
,

thus

ĥ2n(ξ)− ̂̃h(ξ) = (−1)nĥ0(ξ) tan2n
(
d
√
−η(ξ)

)
− (−1)n

̂̃
h(ξ) tan2n

(
d
√
−η(ξ)

)
, (25)

where
̂̃
h(ξ) = −iĝ(ξ)

√
−η(ξ) sin

(
d
√
−η(ξ)

)
+ ĥ(ξ) cos

(
d
√

−η(ξ)
)
, for |ξ| < k. On the

other hand, for |ξ| > k, we have

ĥ2n(ξ)− ̂̃h(ξ) = ĥ0(ξ) tanh2n
(
d
√
η(ξ)

)
−

−{ĥ(ξ) cosh
(
d
√
η(ξ)

)
− ĝ(ξ)

√
η(ξ)sinh

(
d
√
η(ξ)

)
} tanh2n

(
d
√
η(ξ)

)
,
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and thus

ĥ2n(ξ)− ̂̃h(ξ) = ĥ0(ξ) tanh2n
(
d
√
η(ξ)

)
− ̂̃h(ξ) tanh2n (d√η(ξ)

)
, (26)

where
̂̃
h(ξ) = −ĝ(ξ)

√
η(ξ) sinh

(
d
√
η(ξ)

)
+ ĥ(ξ) cosh

(
d
√
η(ξ)

)
, for |ξ| > k.

The main result of this work can be formulated as follows;

Theorem 3.4. For dk ∈ (0, π
4 ). If h̃, h

0 ∈ H1/2(Γ0), then ∥h2n − h̃∥L2 → 0 as n → ∞.

Proof: Again we have to consider

∥h2n(ρ)− h̃(ρ)∥2L2 =

∫
|ξ|<k

|ĥ2n(ξ)− ̂̃h(ξ)|2dξ + ∫
|ξ|>k

|ĥ2n(ξ)− ̂̃h(ξ)|2dξ
≤
∫
|ξ|<k

[∣∣∣ĥ0(ξ)
∣∣∣ ∣∣∣tan2n (d√−η(ξ)

)∣∣∣+ ∣∣∣∣̂̃h(ξ)∣∣∣∣ ∣∣∣tan2n (d√−η(ξ)
)∣∣∣]2 dξ+

+

∫
|ξ|>k

[∣∣∣ĥ0(ξ)
∣∣∣ ∣∣∣tanh2n (d√η(ξ)

)∣∣∣+ ∣∣∣∣̂̃h(ξ)∣∣∣∣ ∣∣∣tanh2n (d√η(ξ)
)∣∣∣]2 dξ

In the name of simplicity let us set

I1(k) =
∫
|ξ|<k

[∣∣∣ĥ0(ξ)
∣∣∣ ∣∣∣tan2n (d√−η(ξ)

))
|+
∣∣∣∣̂̃h(ξ)∣∣∣∣ ∣∣∣tan2n (d√−η(ξ)

)∣∣∣]2 dξ
and

I2(k) =
∫
|ξ|>k

[∣∣∣ĥ0(ξ)
∣∣∣ ∣∣∣tanh2n (d√η(ξ)

)∣∣∣+ ∣∣∣∣̂̃h(ξ)∣∣∣∣ ∣∣∣tanh2n (d√η(ξ)
)∣∣∣]2 dξ.

Since sup(0,π/4)| tan(x)| = 1, thus

I1(k) ≤
∫
|ξ|<k

[∣∣∣ĥ0(ξ)
∣∣∣ ∣∣∣tan2n (d√−η(ξ)

)∣∣∣+ ∣∣∣∣̂̃h(ξ)∣∣∣∣ ∣∣∣tan2n (d√−η(ξ)
)∣∣∣]2 dξ.

The function tan(x) is decreasing in this interval. So that, this last inequality can also be
written as follows;

I1(k) ≤ | tan2n(dk)|2
∫
|ξ|<k

(
|ĥ0(ξ)|+ |̂̃h(ξ)|)2

dξ. (27)

For a δ ∈ (0, π/4), let us set tn = sup0<dk≤π/4−δ | tan2n(dk)|2. By this setting one can see
that as n → ∞, tn → 0. In the same manner, the following inequality also holds for |ξ| > k;

I2(k) ≤
∫
|ξ|>k

[∣∣∣ĥ0(ξ)
∣∣∣ ∣∣∣tanh2n (d√η(ξ)

)∣∣∣+ ∣∣∣∣̂̃h(ξ)∣∣∣∣ ∣∣∣tanh2n (d√η(ξ)
)∣∣∣]2 dξ

≤ 2

∫
|ξ|>k

[∣∣∣ĥ0(ξ)
∣∣∣2 ∣∣∣tanh2n (d√η(ξ)

)∣∣∣2 + ∣∣∣∣̂̃h(ξ)∣∣∣∣2 ∣∣∣tanh2n (d√η(ξ)
)∣∣∣2] dξ
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≤ 2

∫
|ξ|>k

[∣∣∣ĥ0(ξ)
∣∣∣2 ∣∣tanh2n (d(1 + |ξ|2)

)∣∣2 + ∣∣∣∣̂̃h(ξ)∣∣∣∣2 ∣∣tanh2n (d(1 + |ξ|2)
)∣∣2] dξ

= 2

∫
|ξ|>k

[
|ĥ0(ξ)|2(1 + |ξ|2)

| tanh2n
(
d(1 + |ξ|2)

)
|2

(1 + |ξ|2)
+ |̂̃h(ξ)|2(1 + |ξ|2)

| tanh2n
(
d(1 + |ξ|2)

)
|2

(1 + |ξ|2)

]
dξ.

In order to estimate I2(k) we are going to estimate the maximum value of the function

F (ξ) =
| tanh4n(d(1+|ξ|2))|

(1+|ξ|2) on the set {ξ ∈ R2 : |ξ| ∈ [k,∞)}. Let us rewrite this function;

F (ξ) = d
| tanh4n(d(1+|ξ|2))|

d(1+|ξ|2) . Maximum value of the function F (ξ) can also be obtained study-

ing on the function F̃ (x) = | tanhn(x)|
x . If we evaluate the derivative of the last function and

set it to zero, then we get

n =
sinh(2xn)

2xn
, (28)

here n → ∞ as xn → ∞. There exists unique solution xn for each n ∈ N. The equation
(28) can not be solved explicitly. So that, it is necessary to reform the function F̃ (x) with

respect to xn for estimating F̃ (xn). It follows from the identity tanh(2φ) = 2 tanh(φ)
1+tanh2(φ)

that

tanh(φ) =
cosh(2φ)− 1

sinh(2φ)

=

√
1 + sinh2(2φ)− 1

sinh(2φ)
.

This identity can also be defined with respect to (28) as follows

tanh(xn) =

√
1 + 4x2

nn
2 − 1

2xnn
.

Thus, the maximum value of F̃ (x) for each n ∈ N is

F̃ (xn) =
(
√
1 + 4x2

nn
2 − 1)n

xn(2xnn)n
=

(√
1

x2
nn

2 + 4− 1
xnn

)n
2nxn

(29)

lim
n→∞

F (xn) = lim
n→∞

1

xn


√

1
x2
nn

2 + 4− 1
xnn

2

n

= lim
n→∞

1

xn

(√
1

4x2
nn

2
+ 1− 1

2xnn

)n

1

≤ lim
n→∞

1

xn

(
1 +

1

8x2
nn

2
− 1

2xnn

)n

= lim
n→∞

1

xn

(
1 +

1− 4xnn

8x2
nn

2

)n

1Here, we have used a basic result of the Taylor expansion which is
√
1 + x2 ≤ 1 + x2

2
.
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= lim
n→∞

1

xn

(1 + 1
8x2

nn
1−4xnn

) 8x2
nn2

1−4xnn


n−4x2

nn2

8xnn

= 0, (30)

which together with the sequence emerged from (27) gives the desired result.

�

4 Conclusion

In this work, we have used an alternating method proposed by Kozlov & Maz’ya (1989)
for solving a Cauchy problem for the Helmholtz operator which is defined on an infinite
“strip” Ω ⊂ R3. Besides of where our problems is defined, another challenging side of this
work is that non-coercivity of the Helmholtz operator. In Marin et al. (2003) [6], it was
shown that if the operator is coercive, then the method is convergent. In this paper we show
that the method may also be convergent for certain problems with non-coercive operators.

It is known that Cauchy problems for elliptic equations are ill-posed [2], i.e. the solution
does not depend continuously on the boundary data. By the alternating method applied to
this problem, we have solved successive well-posed boundary value problems.

Note that, for solvability of the problems (5) and (6), it is sufficient that the specified
data h0(ρ) is the class of L2(Γ0) . However, for the convergence of the method, it is necessary

to take h0(ρ) from the class H1/2(Γ0).
A number of numerical methods have been proposed to solve the problem. Marin et

al. [6, 7, 8] have solved the Cauchy problem for the Helmholtz equation by employing the
boundary element method (BEM) in conjunction with iterative algorithm.
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[10] T. Regińska, U. Tautenhahn, Conditional stability estimates and regularization with ap-
plications to Cauchy problems for the Helmholtz equation, Numer. Funct. Anal. Optim.,
30(9-10), 2009, 1065-1097.


