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Abstract

Picard-Vessiot theory, that is, Galois theory of homogeneous linear differential
equations, has been established for differential fields with algebraically closed field
of constants. In this paper, we prove the existence of a Picard-Vessiot extension for
a homogeneous linear differential equation defined over a real differential field K
with real closed field of constants. To this aim, we use a Taylor morphism to obtain
a differential embedding of the field K in a ring of formal power series. We give an
adequate definition of the differential Galois group of a Picard-Vessiot extension of
a real differential field with real closed field of constants, inspired in Kolchin’s one
for strongly normal extensions, and we prove a Galois correspondence theorem for
such a Picard-Vessiot extension.
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1 Introduction

Picard-Vessiot theory denotes Galois theory of homogeneous linear differential equations.
It was established in a rigorous form by Kolchin under the hypothesis that the constant
field of the base differential field is algebraically closed (see [5], [6]). The Picard-Vessiot
extension associated to a given homogeneous linear differential operator is the analog of
the splitting field of a given polynomial. For a homogeneous linear differential equation
L(Y) = 0 defined over a differential field K with field of constants C, a Picard-Vessiot
extension is a differential field L, differentially generated over K by a fundamental system
of solutions of L(Y) = 0 and with constant field equal to C. In the case C' algebraically
closed, the Picard-Vessiot extension exists and is unique up to K-differential isomorphism.
In [5], Kolchin quotes a remark of Baer who notes that the difficulty lies not in proving
the existence of a fundamental system of solutions of the given differential equation but
in proving the existence of one which brings in no new constants.

In [14], Seidenberg constructed an example of a linear differential equation defined over
a differential field K with constant field the field R of real numbers, for which no Picard-
Vessiot extension exists (see Example 2.3). At first sight, this example seems to indicate
that it is not possible to obtain a general result on existence of Picard-Vessiot extension
beyond the class of differential fields with algebraically closed field of constants (see [2]
Section 5.3). Some misinterpretation of this example, quoted by several specialists, may
explain the fact that such a general result has not been obtained since now. However, the
differential field K in Seidenberg’s example is not a real field (see Definition 2.4). In this
paper we present an existence theorem of Picard-Vessiot extensions for real differential
fields with real closed field of constants. It is worth noting that the field of rational
functions R(xy, ..., x,) and the field of real meromorphic functions are real fields hence
our result will lead to applications in real analytic mechanics (see [9]).

It is well known that if L is a splitting field of a polynomial in K[X], the extension
L|K is normal, i.e. for any a € L\ K, there exists o € Auty L such that o(a) # a. If L|K
is a normal algebraic extension, then, for any field F' with K C F' C L, L|F is normal as
well. In his quest for a good concept of normality for differential field extensions, Kolchin
observed that the direct analog of normality for differential field extensions is defective, as
the property does not translate to intermediate differential fields (see Example 2.5). He
defined then a differential field extension L|K to be normal when for any differential field
F with K C F C Land any a € L\ F, there exists a differential automorphism o of L over
F such that o(a) # a. However, the Galois correspondence theorem for normal differential
extensions has some failures. Kolchin finally introduced the concept of strongly normal
extension (see Definition 2.1) and obtained a satisfactory Galois correspondence theorem
for this class of extensions. Note that, for a strongly normal extension L|K, the differential
Galois group is no longer the group D Aut L of K-differential automorphisms of L, rather
one has to consider as well K-differential morphisms of L in larger differential fields.

It is worth noting that a Picard-Vessiot extension of a differential field with alge-
braically closed field of constants is normal, in Kolchin’s sense, but this is no longer true
for a Picard-Vessiot extension of a real differential field with real closed field of con-
stants. However a Picard-Vessiot extension is always strongly normal. In the case of



Picard-Vessiot extensions of real fields with real closed field of constants, we can adopt a
definition of the differential Galois group inspired by Kolchin’s but simpler than his one.
We obtain then a Galois correspondence theorem which classifies intermediate differen-
tial fields of a Picard-Vessiot extension of a real differential field with real closed field of
constants in terms of its differential Galois group.

We refer the reader to [1] for topics on real field theory, to [3], [7] or [11] for topics on
differential Galois theory.

2 Preliminaries

In the sequel, all fields considered will be of characteristic 0 and Cx will denote the
constant field of the differential field K.

We recall now the notions of normality for differential field extensions introduced by
Kolchin and the precise definition of Picard-Vessiot extension. We adopt Umemura’s
definition of strong morphism and strongly normal extension (see [20]).

Definition 2.1. Let L|K be an extension of differential fields.

1. L|K is weakly normal if for every a € L\ K, there exists 0 € DAuty L such that
o(a) # a.

2. LIK is normal if for every differential field F', with K C F C L, L|F is weakly
normal.

3. If M is a differential field extension of K, f,g : L — M are differential K-
morphisms, we say that f is strong over g if the following two conditions are
satisfied.

(a) f(a) = g(a), for alla € Cr,
(b) the composite field f(L)g(L) is generated by constants over g(L).

4. L|K is strongly normal if for any differential field extension M of L and every pair
(f,q) of K-differential morphisms of L in M, f is strong over g.

Definition 2.2. Given a homogeneous linear differential equation

L) =YD 4a, YUY 4 40 Y +aY =0

of order r over a differential field K, a differential extension L|K is a Picard-Vessiot
extension for L if

1. L =K(n,...,n.), where m,...,n, is a fundamental set of solutions of L(Y) =0
in L.

2. Every constant of L lies in K, i.e. Cx = CT.



As mentioned in the introduction, in the case when the constant field Cx of the dif-
ferential field K is algebraically closed, it is known that there exists a Picard-Vessiot
extension for a given homogeneous linear ordinary differential equation defined over K
which is unique, up to K-differential isomorphism. The following example due to Sei-
denberg ([14]) proves that one cannot expect a Picard-Vessiot extension to exist for any
linear differential equation over an arbitrary differential field.

Example 2.3. We consider the field of real numbers R with trivial derivation and the
differential field K obtained by adjoining to R a solution of the differential equation
4a® + a’?> = —1, such that a' # 0. Let us look at the homogeneous linear differential
equation Y +Y = 0 defined over K. Seidenberg proved that for any differential field
extension L of K containing a solution of this last equation, the inclusion of R in the
constant field of L is strict. In other words, there is no Picard-Vessiot extension of K
for this equation.

In this paper we shall deal with linear differential equations defined over real differ-
ential fields with real closed field of constants. We recall now the meaning of real and
real closed field and some of their properties.

Definition 2.4. An ordered field is a field endowed with an ordering compatible with
the field operations. A field K is called a real field if K can be ordered or equivalently if
—1 is not a sum of squares in K. A real field K which has no nontrivial real algebraic
extensions is called a real closed field. An algebraic extension L of an ordered field K
15 called a real closure of K if L is real closed and the inclusion K — L preserves the
ordering of K.

A real field always has characteristic zero. If K is a real field, the ring K[i] :=
K[X]/(X?+ 1) is a field which is a quadratic extension of K. If K is a real field, the
field of rational functions K (X) is as well real.

A field K is a real closed field if and only if the ring K[i] is an algebraically closed
field.

Every ordered field K has a real closure which is unique up to K-isomorphism. The
fields Q and R with their natural orderings are clearly real fields. Moreover R is a real
closed field.

Let us note that the field K in example 2.3 is not real since, by construction, —1 is a
sum of squares in K. However the class of real differential fields with real closed field of
constants will be a good setting to establish the existence of Picard-Vessiot extensions.
We note that a partial result in this direction has been obtained in [18].

Regarding Galois correspondence theorem, it is worth noting that a Picard-Vessiot
extension of a differential field with algebraically closed field of constants is normal, in
Kolchin’s sense (see Definition 2.1). This is not longer true for Picard-Vessiot extensions
of real fields with real closed field of constants, though, as it can be seen in the following
example.



Example 2.5. Let us consider the real differential field K := R(t), with derivation %. Its
constant field is clearly R. We consider the differential field extension L := K(e")|K. It is
a Picard-Vessiot extension for the equation Y' =Y, defined over K. Any K-differential
automorphism of L sends e' to \e*, with A € R*, so L|K is weakly normal. Now consider
the intermediate field F = K(e*'). The only F-automorphism of L is identity, hence L|F

is not weakly normal, so L|K is not normal.

3 Existence of Picard-Vessiot extension

3.1 The Seidenberg-Singer embedding theorem

In this section we will state and prove an embedding theorem which will be crucial in the
proof of the existence of a Picard-Vessiot extension for a differential equation defined over
a real field K differentially finitely generated over its constant field C' which is assumed
to be real closed.

Definition 3.1. Let A be a differential ring and let B be a Ritt algebra (i.e. a differential
ring which is a Q-algebra). Let 0 : A — B be a ring homomorphism. The map

o(a™
T, A= B[X]], a—>_ %X”,

n>0
1s called the Taylor morphism associated to o.

The properties of the Taylor morphism given in the following proposition are easy to
prove. If I is an ideal of a differential ring A, we denote by I* the largest differential ideal
of A contained in I.

Proposition 3.2. Let A, B, o0 and T, be as in 3.1. Then:

1. If B[[X]] is endowed with the derivation d/dX, the map T, is a differential homo-
morphism and ker(T,) = (ker(o))?,

2. If Ais a field, then T,(A) is a field.

In the following lemma, we prove a stronger version of results of A. Seidenberg pre-
sented in [13], which were also explained by M. F. Singer in [17].

Lemma 3.3. Let I be an arbitrary field of characteristic zero considered as a differential
field with trivial derivation and let K = F(y1,...,yn) be a differential extension of F,
with derivation D. Let L be an arbitrary field of characteristic zero. Let the ring L[[X]] be
endowed with the derivation d/dX. Let o : K — L be a field isomorphism. We consider
F as a subfield of L via o.

Then the Taylor morphism T, : K — L[[X]] associated to o gives a differential
isomorphism ¢ : K — F{(y1,...Yn), where y; :== T,(y;), 1 <i <n.
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Proof. By 1. in proposition 3.2, T, is a differential monomorphism. So by 2. in
proposition 3.2, we obtain the differential field isomorphism ¢ : K — Im(T,). O

Let us recall the Tarski-Seidenberg principle, which states that semialgebraic sets
in C", where C is a real closed field, are stable under projection. We can formulate
Tarski-Seidenberg Principle in the language of model theory. The principle states that
the language of real closed fields admits elimination of quantifiers, i.e. every first-order
formula in the language of real closed fields is equivalent to a quantifier-free formula (see
for example [8]).

A consequence of this result is a theorem analogous to the Principle of Lefschetz.
Namely, any formula of first-order language which holds true in one real closed field is
also true in all real closed fields. So the problem always reduces to answering the question
whether the statement of our result can be described in first-order language and if it holds
true for some real closed field (for more details see [8] and [12]). For our purposes we can
formulate the following proposition based on this argumentation.

Proposition 3.4. Let F' be a real field and let f;,g; € F[X1,..., Xy, fori=1,... )k
and j =1,...,1. The polynomial system

f’i(le"';Xn) :O, Zzl,,k
g](X].?)Xn) >O, jzl,...7l,

has a solution in some real extension of I if and only if it has a solution in all real closed
fields containing F.

We will use the result above to prove the following lemma.

Lemma 3.5. Let F' be a real field and let K be a real extension of F' of the form K =
F({zx}ren,y), where z\ are algebraically independent over F, card(A) < k and y is
algebraic over G = F({z)}ren). Let M be a real closed field extension of F' such that
trdeg(M|F) > k. Then K is isomorphic to a subfield of M.

Proof. We consider the real field G = F({zx}xea). Since trdeg(M|F) > k, there exist a
subfield S of M and an F-isomorphism of fields ¢ : G — S. We can now extend ¢ to an
isomorphism of the polynomial rings ¢ : G[X] — S[X]. Let f € G[X] be the minimal
polynomial of y. We have K 2 G[X]/(f) = S[X]/(@f), so S := S[X]/(@f) is a real field
and @ f has a root in S. By proposition 3.4 it has a root, say y*, in M. Then we obtain
an isomorphism of fields ¢ : K = G(y) — S(y*) € M. O

The existence of the field M postulated in the lemma above is guaranteed by Skolem-
Léwenheim theorem (see [10]). Let us recall that as a consequence of this theorem we
obtain that, if M is an infinite model of the complete theory T in the language L, then
for every cardinal number k not less than card(M) and not less than card(L), M has an
elementary extension of cardinality k. The theory of real closed fields is complete, so this
kind of choice of the real closed field is possible. In other words one can choose a real
closed field extension of arbitrary large cardinality.
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The following result is a generalization of the embedding theorem proved by A. Sei-
denberg (see [13]) and later in the real case by M. F. Singer (see [17]).

Theorem 3.6 (Seidenberg-Singer Embedding Theorem). Let F' be a real closed field
considered as a differential field with trivial derivation. Let (K, D) be a real differential
field extension of F', differentially finitely generated over F with field of constants F. Let
M be a real closed extension of F' such that trdeg(M|F) > ¢. Then K is differentially
isomorphic to a subfield K1 = F (4, ...,Yn) of the ring M|[[X]], with derivation d/dX.

Proof. By using the differential primitive element theorem (see [15]), we may assume that
K =F(y1,...,Yn), where yy,...,y, 1 are differentially algebraically independent over F
and vy, is differentially algebraic over G = F(yi,...,y,—1). We consider G = F(D’y;),
where 1 <i¢<n—1and j € N. By lemma 3.5, there exists a field isomorphism o : G —
S C M. The element y, is differentially algebraic over G. Let f € G{Y,,} be the minimal
differential polynomial of y,. Let ord(f) =r. Then K = G(y,) = G(Yn, Dyn, ..., D"yn),
Yns DUn, . .., D" 1y, are algebraically independent over G and D"y, is algebraic over the
field Gy := G(Yn, Dy, ..., D" 'y,). SO yn, Dy, . .., D"y, are algebraically independent
over the real closed field F. By lemma 3.5, we can embed G; and also K = G1(D"y,)
into M. We can now apply lemma 3.3 and obtain a differential field isomorphism
v: K — F(yy,...,9,), where F(y,,...,7,) is a differential subfield of the differential

ring (M[[X]], &%) and 7, is the image of y; in M, 1 <i < n. O

Remark 3.7. We observe that lemma 3.5 and theorem 3.6 are also true without assuming
the fields F' and K to be real if we take them to be of characteristic zero and M to be an
algebraically closed extension of F.

3.2 Existence theorem

Let K be a real differential field with real closed field of constants C'. We consider a
homogeneous linear ordinary differential equation of order r of the form

LOY):=Y" 44, ;YO 4 4 a Y +ayY =0, (1)

where a; € K for i € {0,1,...,r — 1}. In this section we shall prove that there exists
a Picard-Vessiot extension for this equation, which moreover is a real field (see [19]). In
the sequel, for a real field K, we shall denote by K the field K (7).

Theorem 3.8. Let K be a real differential field with real closed field of constants C'. For
a homogeneous linear differential equation defined over K, there exists a Picard-Vessiot
extension, which moreover is a real field.

Proof. We shall consider the linear differential equation (1) defined over K. We shall
prove the existence of a real Picard-Vessiot extension for such an equation first in the case
K differentially finitely generated over its field of constants C, then obtain the general
result by applying the Kuratowski-Zorn lemma. We shall consider the differential field
K whose constant field is the algebraically closed field C.
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Case 1. We assume K = C{y1,...,yn) for some yi,...,y, € K and some n € N.
We have then K = C(y1,...,ya). Let M be a real closed extension of C' such that
trdeg(M|C) > ¢. By lemma 3.5 we may embed the real field K = C(yy,...,y,) into the
real closed field M. Let us denote this embedding by 0. We define then an embedding
G:K = C(yl, e Yn) — M extending o.

By theorem 3.6 we have the following differential isomorphisms:

o I,: K=C{yy,...,yn) — K1 :=C(t,...,0n) C M[[X]],
L4 Tﬁ:k:a<yla"'ayn> _)[?1 = a<?717"'7gn> CM[[XH

Now we consider equation (1) over K. The field of constants C of K is algebraically
closed, so there exists a unique Picard-Vessiot extension of K for this equation. Let us
denote it by L:=K (M, ...,mr), where ny,...,n, is a fundamental set of solutions of
equation (1) in L.

By lemma 3.3, we obtain a differential isomorphism

~

o:L=K(m,...,n.) — Ly :=K(in,...,7) C M[[X]].
So 71, ...,n, is a fundamental set of solutions of equation
YO 40, VO 4 45 Y + Y =0, (2)

considered over IA(l, where the coefficients b; := T,(a;) belong to the real field K, for
1=0,...,r—1.

The 1nvolut10n ¢ of M given by i — —i and Cm = Idy; extends to M[[X]] in a
natural way. The vector space of solutions V' := 0771 ) C’nr is c-stable. Let V¢
be the C-subspace of V' fixed by the involution ¢ and let L1 be the differential subfield
of Ly generated by K; and V¢ By definition, it is differentially generated over K; by
a fundamental system of solutions of (2). As it is a differential subfield of Zl, Cr, C
C;, = C. But Ly is contained in M[[X]], so it is a real field, hence Cp, = C. We
have then proved that L, is a Picard-Vessiot extension for equation (2) over K;. Hence
L := ¢ !(L,) is a Picard-Vessiot extension for equation (1) over K, and L is a real field.

Case 2. Now the real differential field K has arbitrary differential degree over its constant
field C'. We will prove that we can embed K into a real closed extension M of C', which
is large enough. Then the proof of the existence theorem of Picard-Vessiot extension for
K follows the same steps as in Case 1.

By lemma 3.5, we can embed into M all these subfields of K, which are compositions of
differentially transcendental extensions of arbitrary large differential transcendence degree
and a differentially algebraic extension of finite differential degree. Let us denote the
family of all embeddable subfields of K by §. Let us consider the space £ of embeddings
of subfields from §. Clearly £ # @. We introduce a partial order relation < in £ by

Y1 =2 p2 = o1 C o,



for p1,ps € £. We observe that every totally ordered subset G of £ has an upper bound,
ie. U%eg ;. Hence by Kuratowski-Zorn lemma there exists a maximal element ¢,
in £&. We claim that ¢, is an embedding of K. Indeed, if not then there exist a
proper subfield S € S such that ., is an embedding of S. So there exists an element
a € K\ S which is not embedded by ¢4, We consider the differential field S{a). If a
is differentially transcendental over S, then there exists clearly an embedding ¢ of S{a)
into M. If a is differentially algebraic over S, by lemma 3.5, there exists an embedding
¥ of S{a) into M. Hence @4, < ¥. We have a contradiction with the maximality of

Spmax . |:|

Remark 3.9. In the case of a linear differential equation defined over a differential field
K with algebraically closed constant field, the Picard-Vessiot extension is proved to be
unique, up to K-differential isomorphism. Hence, if we consider a linear differential equa-
tion L(Y') = 0, defined over a real differential field K with real closed constant field C' and
L is a Picard-Vessiot extension for it, the set of K-isomorphism classes of Picard-Vessiot
extensions of K for L(Y) = 0 is in bijection with H'(Gal(K|K), DAut(L)). Hence,
the Picard-Vessiot extension is in general not unique. For example, H'(Cy, SO(n,R)) is
not trivial, as it can be identified with the set of equivalence classes of quadratic forms
of rank n with positive discriminant (see [16] III 3.2). However, if we want to restrict
to real Picard-Vessiot extensions, the problem of uniqueness is more subtle (see example
3.10 below). It is connected to the problem of determining the isomorphism classes of real
fields K having isomorphic extensions K (i) which is, as far as we know, not solved.

Example 3.10. Let us consider the differential equation Y" +Y = 0 defined over the
field K = C(t), with derivation d/dt. Its Picard-Vessiot extension is L = K (sint,cost)
and its differential Galois group is SO(2,C).

We consider now the same equation over the field K = R(t). We have two Picard-
Vessiot extensions of K for this equation which are not K-isomorphic, namely L, =
K(sint,cost) and L, = K(isint,icost) corresponding to the two elements in
H'(Gal(C|R),SO(2,C)). We observe that Ly is a real field, while Ly is not as (isint)? +
(icost)? = —1.

4 (Galois correspondence

4.1 Galois group

Let K be a real field with real closed field of constants C'. For a real Picard-Vessiot
extension L|K, we shall consider the set DHomg (L, L) of K-differential morphisms from
L into L. We shall see that we can define a group structure on this set and we shall take
it as the Galois group G(L|K) of the Picard-Vessiot extension L|K. We shall prove that
it is a C-defined (Zariski) closed subgroup of some C-linear algebraic group.

We observe that we can define mutually inverse bijections

DHomy (L, L) — DAutf{z DAutf(E — DHomg(L, L)

o — o T s TIL



where 3 is the extension of o to L defined by &(a + ib) = o(a) + io(b), for a,b € L. We
may then transfer the group structure from D Aut f(f to DHomy (L, L).

Let now n, . .., 1 be C-linearly independent elements in L such that L = K{(ny,...,n,)
and 0 € DHomy (L, L). We have then o(n) =i ciymi, 1 < j <r with ¢;; € C. We

A~

may then associate to o the matrix (¢;;) in GL(r, C).

Proposition 4.1. Let K be a real differential field with real closed field of constants C',
L= K(n,...,n) a real Picard-Vessiot extension of K. There exists a set S of polyno-
mials F(X;;),1 <1i,j <r, with coefficients in C' such that

1) If 6 € DHomg (L, L) and o(nj) = > i, cijni, then F(c;;) =0,VF € S.

2) Given a matriz (¢;;) € GL(r, 6) with F(c;j) = 0,YF € S, there exists a differential

~

K-morphism o from L to L such that o(n;) = > _i_, cijn;.

Proof. The proof follows the steps of prop. 6.2.1 in [3]. Let K{Z1,..., Z,} be the ring of
differential polynomials in r indeterminates over K. We define a differential K-morphism
e from K{Z,...,Z,} in L by Z; — n;. Then I' := Ker ¢ is a prime differential ideal of
K{Z,...,Z.}. Let E[Xij], 1 <,7 <r be the ring of polynomials in the indeterminates
X;j with the derivation defined by X;; = 0. We define a differential K-morphism % from

K{Zy,...,Z.} to L|X;;] such that Z; — Y7 X;m;. Let A := (T). Let {wz} be a basis
of the C-vector space L. We write each polynomial in A as a linear combination of the
wy, with coefficients polynomials in C[X;;]. We take S to be the collection of all these
coefficients.

1. Let o be a differential K-morphism from L to L and o(nj) = >.i_, ciyni- We consider

the diagram

i 15
= @
K{Z,...,Z.} L
P o
! - v -

> Xijni LX) L
Xi i b Cij
It is clearly commutative. The image of I' by 0 o ¢ is 0. Its image by vo is A evaluated

in X;; = ¢;;. Therefore all polynomials of A vanish at ¢;;. Writing this down in the basis
{wy}, we see that all polynomials of S vanish at ¢;;.

2. Let us now be given a matrix (¢;;) € GL(r, C) such that F(c;j) =0 for every Fin S.
We consider the differential morphism

K{Z,....Z.} — L
Zj = DGt

10



By the hypothesis on (¢;;), and the definition of the set S, we see that the kernel of this
morphism contains I' and so, we have a differential K-morphism

~

o: K{m,...,n.} — L
1j = 2 Cigh
Taking into account that the elements o(n;),1 < j <r, are C-linearly independent, we
obtain that o is injective and so extends to a K-differential morphism from L to L. 0O

If L|K is areal Picard -Vessiot extension for a homogeneous linear differential equation
of order r defined over K, the preceding proposition gives that G(L|K) is a C-defined
closed subgroup of GL(r, C).

Real Picard-Vessiot extensions satisfy the following normality property.

Proposition 4.2. Let K be a real differential field with real closed field of constants C',
L|K a real differential Picard-Vessiot extension. For a € L\ K, there exists a K-

differential morphism o : L — L such that o(a) # a.

Proof. As L|K is a Picard-Vessiot extension and the constant field C of K is algebralcally
closed, we know ([3] prop. 6.1.2) that there exists a K-differential automorphism & of L
such that (a) # a. We can then take o = o). 0

For a subset S of G(L|K), we set L® :={a € L : o(a) = a, Vo € S}.

Corollary 4.3. Let K be a real differential field with real closed field of constants C,
L|K a real differential Picard-Vessiot extension. We have LEHE) = [

4.2 Fundamental theorem

Let K be a real differential field with real closed field of constants C' and L| K a real differ-
ential Picard-Vessiot extension. For a closed subgroup H of G(L|K), L* is a differential
subfield of L containing K. If F' is an intermediate differential field, i.e. K C F' C L,

then L|F is a real Picard-Vessiot extension and G(L|F) is a C-defined closed subgroup
of G(L|K).

Theorem 4.4. Let L|K be a real Picard-Vessiot extension, G(L|K) its differential Galois
group.

1. The correspondences

Hw— L" | Fw G(L|F)

define inclusion inverting mutually inverse bijective maps between the set of C-defined
closed subgroups H of G(L|K) and the set of differential fields F with K C F C L.

11



2. The intermediate differential field F' is a Picard-Vessiot extension of K if and only if
the subgroup G(L|F) is normal in G(L|K). In this case, the restriction morphism

GLK) — G(FIK)

o — O|F
mduces an isomorphism

G(L|K)/G(L|F) ~ G(F|K).

Proof. 1. It is clear that both maps invert inclusion. If F'is an intermediate differential
field of L|K, we have LEHF) = [ taking into account that L|F is Picard-Vessiot and
corollary 4.3. For H a C-defined closed subgroup of G(L|K), the equality H = G(L|L™)
follows from the correspondent equality in Picard-Vessiot theory for differential fields
with algebraically closed field of constants ([3] theorem 6.3.8).

2. If F'is a Picard-Vessiot extension of K, then F is a Picard-Vessiot extension of K and
so G(L|F) is normal in G(L|K). Reciprocally, if G(L|F') is normal in G(L|K), then the
subfield of L fixed by G(L|F) is a Picard-Vessiot extension of K. Now, this field is F. So,
if F'is differentially generated over K by a C-vector space of finite dimension V', then F is
differentially generated over K by the C-vector space V¢ = {y € V : ¢(y) = y}, where ¢ is
the F-automorphism of F determined by (i) = —i. Hence F|K is a real Picard-Vessiot
extension. The last statement of the theorem follows from the fundamental theorem of
Picard-Vessiot theory in the case of algebraically closed fields of constants ([3] theorem
6.3.8). O

Remark 4.5. All results in sections 4.1 and 4.2 remain valid for K any differential field
with real closed field of constants C and LIK a Picard-Vessiot extension. Just observe
that, as —1 is not a square in C, K = K (1) is also in this case a quadratic extension of
K. However, without assuming K real, we cannot assure that a Picard-Vessiot extension
exists for a given linear differential equation defined over K.
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