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1

Let n > 1 be odd and let x,, (sometimes abbreviated as x,) be the trivial
Dirichlet character modulo n (with y,, designating the constant function
Xo,1(z) = 1 for all integers x). For r > 2 prime to n denote by ¢.(n) the
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Here and throughout the paper ¢ is the Euler phi-function and B, , denotes
the n-th generalized Bernoulli number attached to the Dirichlet character y.
For definitions see [18], [8] or [17].

Given the discriminant d of a quadratic field, let x4 denote its quadratic
character (Kronecker symbol). We shall denote by x,, the character xq
modulo n. ’

It was proved in [4] that the numbers B, ,,/i are rational integers unless
d = —4 or d = +p, where p is an odd prime of a special form. If d = —4 and 7
is odd, then the numbers E;_; = —2B;, ,/i are odd integers, called the Euler
numbers. If d = £p, then the numbers B;,, have p in their denominators
and pB;,, = p — 1 (mod pordr®+1),

We consider the ordinary Bernoulli numbers B;(!) and the so-called D-
numbers defined in [10] and [6] by D,y = —3B;,_,/i¢ for i odd, having
powers of 3 in their denominators. We also consider the rational integers
Ai—l = Bi,xs/i7 -Fi—l = Bi7X73X74/Z. and Gi—l = B@ngxfg/i’ if 4 2 2 even,
and Cz‘—l = —Bijxis/ll and Hi—l = _Bi,X_3X8/7: if ¢ Z 1 odd.

In this paper we shall consider congruences for the character sums with
negative weight

0<i<n/r

modulo powers n*™! for n > 1 odd and s € {0,1,2} where x,, = Xo.n and
r(r|24and 1 < r < n)is coprime to n, and k£ > 1 is subject to the
condition k < n®¢p(n). Note that since x, (i) = 0 for (i,n) > 1, the sum is
over (i,n) = 1.

The central role in this paper is played by an identity proved in [16]. Let
x be a Dirichlet character modulo M, N a positive integral multiple of M,
and 7 (> 1) a positive integer prime to N. Then for any integer m > 0 we
have

(1)

0 S = =B 0"+ S S BN By V),
0<n<N/r PeG(r)

where the sum on the right hand side is taken over all Dirichlet characters
1 modulo r. We denote by G(r) the group of all such characters; then
#G(r) = ¢(r). Here B, (X) = >, (") Bp—ix X" denotes the n-th gener-
alized Bernoulli polynomial attached to . Since r | 24, the group G(r) has
exponent 2 and all characters modulo r are quadratic.

(UWhich are generalized Bernoulli numbers attached to the trivial primitive character
Xo,1 (except when i = 1; then By, =1/2=—B).
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If the character xy modulo M is induced from a character Y modulo some
divisor of M then

(2) B, =B, J[Q-x@pr").

p|M

where the product is taken over all primes p dividing M.
If (i,n) = 1, then by Euler’s theorem we have %™ = 1(modn), and
more generally,

i = 1 (mod n**1)

for s > 0.
Given 7 prime to n and integers s > 0, k > 1 we denote

Srks(n) = D X, ()i *0E,

o<i<n/r
Then we have the congruence
(3) T,1(n) = Sy p.s(n) (modn),

which allows us to study T, x(n) through S, s s(n).

The main results of the paper are congruences for the sums 7. ;. (n) modulo
n**t! for s € {0,1,2}. The congruences will be obtained by applying identity
(1) to the sums S, ;(n).??) They extend those proved by M. Lerch [12], E.
Lehmer [11] and Z.-H. Sun [14] in the case when n = p is an odd prime. In
principle, the congruences in this particular case have a different form from
those obtained for any natural odd n. Sometimes it is not easy to derive the
former congruences from the latter. We shall do it in the second part of the
paper.

Two such congruences modulo n? were earlier obtained, by using (1), in
[1] for r = 2, k = 1 and in [9] for r = 4, kK = 2. In the present paper we
find 82 new congruences for the sums 7, ;(n) (modn**t) for s € {0,1,2},
r | 24 and k > 1, in particular for k£ = 1 or 2. Most of our congruences for
T, 1(n) have not been known earlier even in the particular case when n = p
is a prime. The machinery introduced in [16] is much more efficient than the
methods exploited in [12], [11] and [14]. In an appendix to the paper we shall
extend some congruences of E. Lehmer’s type proved in [2] and [3].

(2)This identity was earlier successfully exploited in [16], [13] and [7] to solve some other
problems. See also the book [17] devoted to the identity and related problems.
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2 Some auxiliary formulae

The idea exploited in [1] and [9] to use identity (1) to extend classical congru-
ences for the sums 7). ;(n) seems to be very efficient. This identity allows us
to obtain almost automatically many new congruences. Usually the proofs
using (1) are much easier, more unified and much shorter than those applying
other methods.

The general scheme of reasoning is uniform. To obtain congruences for
the sums T, (n) modulo n**! we first determine, using (1), the sums S, 4 s(n)
modulo n**1. We substitute in (1) m = n°¢(n) —k > 0 (and so m + 1 =
n*¢p(n) —k+1) and N = M = n. Since r | 24 we assume that n > 1 is odd;
then we have (n,r) = 1. If 3 1 r then we have (n,r) = 1. If 3 | r, then we
additionally assume that n is not divisible by 3. Note that, since r | 24, all
generalized Bernoulli numbers occurring in S, (n) are rational.

Thus, throughout the paper, we write m = n®¢(n) — k > 0.4 Conse-
quently, we obtain

(4) Sr,k,s(n) == Sl + 527

where, by (2),

B
m+1,x0 5 Bm+1
5 S| =— = — 1—p™m
(5) ! m+1 m+1 ll_[ ( P )
pln
and
S2 m Z erlX w(n) :
o(r (m + )r R 0,n

Note that x, , is even. Thus, if m # 0 is even, then B, =0, and so 51 = 0.
If m =0, then 1 — p™ =0, and so S; = 0 too. Otherwise, in view of (5), we
have S; # 0. Furthermore,

m—+1 77’L—|—1
S — B. m—+1—1
= g 2 (")

PeG(r =0
m+1
_ m+1\ i
- ¢( m + 1 rm Z ( 7 )n Z ¢(_n)Bi7X0,n¢
YeG(r)

—o(r) (m—l—l yrm Z Y= 0X0n

(®)That is, k < n*¢(n).
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1 L m+1 g 1—i
i ereav-D M () LD DR

YeEG(r)
. n"¢(n)
(m+ 1)7“erl
* o(r)(m + 1)rm Z < i+ 1 ) Z w(_n)BiHvXo,W

PeG(r)

because B = 0 if ¢ is not trivial modulo r and
07X07n¢

¢(rn)

0,X0,n.X0,r o rn

otherwise, and hence (recall that (r,n) = 1)

m+1 Z _ m¢( )
S+ ) 2 VT oo = G
Consequently,
1 “(m\
(6) SQ:@S—i_gb(r)rm; (Z>n Ui(r),
where o(n)
nmo(n
@s - ®S<n7 m, T) - (m + 1)Tm+1
and
Ur) = Y wl-n)— et
YeG(r)

2.1 Uyr) for r | 24

Let n > 1 be odd and relatively prime to r. Here and subsequently, we set

Ei:BiH(l

),
pln

(n 1) n+5) (p 1>(p+5) i
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D = (—1)™ D, T (1 = (~1)wp),

pln
B= ()T E][ (- (-7 D),

P - (_1)"21+1/(:)7;1i H (1 _ (_1>PT*1+u(p)pi)7
@szMW”$éHU—FNNWMMw7
pln

i = (—1)n28_1+”(”)Hi H (1- (_1)1728—1+u(p)pi>7

pln
where x_3(n) = (—1)"™, v(n) =0, resp. 1 if n = 1, resp. — 1 (mod 3).
In the following, we compute U;(r) for r = 2, 3, 4, 6, 8, 12 or 24.
1. Case r =2

Then #G(2) = 1 and G(2) = {X,,}- Then, by definition and identity (2),

0, if 7 is even.

Biy1 i AP )
(7) Ui(2):{i+_+1(1_2)7 if 7 is odd;

2. Caser =3

Then #G(3) = 2 and G(3) = {Xxy 3, X-3}. Then, by definition and identity
(2),

Biy1 i e '
(8) U(3) = { Z-E:l (1_3)7 if ¢ is Odd7
l 5D if 7 is even.
3
3. Caser =4

Then #G(4) = 2 and G(4) = {X, 4, X-4}. Thus, by definition and the same
arguments as in the case r = 3 (note that both characters x_3 and y_4 are
odd), in view of (2) we obtain

Bity i e .
9) Uy = | (-2, ifiis odd
%Ei if 7 is even.

4. Caser =6
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Then #G(6) = 2 and G(6) = {xy4 X_34}- Consequently, by (2) and the
same arguments as in the previous case we obtain

Bis1 (1 _ o _ai e ‘
(10) U;(6) = fg; (1 21)(1 31), ?fz.%s odd;

§D,~(1+2)’ if 7 is even.
5. Case r =8

Then #G(8) = 4 and G(8) = {X; 4, X_45 X—s: Xs}. Therefore, in view of (2),

11— 20) + A, if 4 is odd;
E + C if 7 is even.

(11) Ui(8) = {

6. Case r =12

Then #G(12) = 4 and G(12) = {Xg12: X 319 X_412> X(_3)(_ay)- Conse-
quently, by definition and (2),

(12) U,(12) = Bi(1-2)(1-3) + F, ifiis odd;
Di(1+2) + 1E;(1+37), ifiiseven.

1
3
7. Case r =24
Then #G(24) = 8 and
G(24) = {X0,247 X 3,249 X424 X(—3)(—4),24> X(=3)(=8)> X(—3)8> X—8,24’X8,24}'

Consequently, in view of (2),

(13) )
Ui(24) = Bﬁl(l_?)(l_?’i) +ﬁi+vai_|_A'i(1+3i)7 if 7 is odd;
LD;(1+2) + LEi(1+3) + Hi+ Ci(1 - 3), if i is even.

2.2 The sums S, 4(n) (modn**!) for m > s, r |24, s <2

The generalized Bernoulli numbers attached to Dirichlet characters modulo
r, with 7 | 24, are rational numbers. In what follows we consider congruences
for S,..s(n) modulo n*** for n > 1 odd and s € {0,1,2}. We assume that n
is not divisible by 3 if 3 | ; then r and ¢(r) are coprime to n.

It is shown in the previous section that the numbers U;(r) are linear

combinations of the numbers gi, @, IN)Z, E;, E, GZ, H and the quotients sz‘

Denote by Uf4(r), resp. Uf"(r) the sum U;(r) taken over odd, resp. even
characters 1) modulo 7. Note that U;(r) = U?%(r)+ U (r) and U2%(r) = 0
Ugve™(r) = 0 if i is odd or even, respectively.
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. e . . Biy1, .
First we recall some divisibility properties of the quotients = X for prim-

itive Dirichlet characters x of conductors f, | nr. These quotients, multiplied
by some Euler factors, are summands of U;. We start with some elementary
lemmas on the quotients lj++11 of the ordinary Bernoulli numbers. Lemma 1
is called the von Staudt and Clausen theorem. Lemma 2 due to L. Carlitz is
its generalization.

Lemma 1. (See [18, Theorem 5.10] or [8, Corollary to Theorem 3, p. 233]).
Let k be an even natural number and let p be a prime number. Then By
contains p in its denominator if and only if p—1 | k and pBr = —1 (mod p).

Lemma 2. (See [5].) If p*(p—1) | k, v >0 then pBy = p — 1 (mod p**1).

Lemma 3. (See [8, Proposition 15.2.4, p. 238]). If p—11 k then the quotients
By /k are p-integral.

Since conductors of non-trivial characters occurring in U;(r) are coprime
to n, they are not powers of a prime divisor of n. In such cases we have a
useful lemma:

Lemma 4. (See [6, Theorem 1.5].) Let x be a primitive Dirichlet character
with conductor f,. If f, is not a power of a given prime number p, then the

quotients BZ’X (n > 1) are p-integral.

We set NTU"(r) = U (r) — ijll ol (1 — p'). By Lemma 4 we
obtain:

Lemma 5. Let r be coprime to p for a given prime number p | n. Then
the numbers U?%(r) for i even and the numbers NTU*"(r) for i odd are
p-integral.

Assume that m = n®¢(n) — k > s for s € {0,1,2}.® Since for odd n > 1
¢(n) is even, m and k are of the same parity. We divide each of the cases
s =20,1 or 2 into two subcases:

(i) if k is even (example: k = 2),
(ii) if k£ is odd (example: k = 1).

Our purpose is to obtain some congruences for the sums S, s(n) modulo
n*t for s € {0,1,2}, and next using congruence (3) to obtain congruences
for the sums 7). x(n). We prove that the latter sums are congruent modulo

n**! to linear combinations of the quotients By, /m and some of the numbers

D Then k < n*¢(n) — s.
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Em,l, 5m, 5m,2, ﬁmklﬁjm,g, Eny En_2, Frna, ém,l, ﬁ[m, ﬁm,g if k is even,
and of the quotients B,,_1/(m —1), By,41/(m+ 1) and some of the numbers
gm, Zm—% 6771—17 5771—17 Em—ly ﬁm» ﬁm_g, én“ ém_g, ﬁm—l if k£ is Odd(5)

We start with the study of the case s = 2. Next, similarly, we derive the
remaining congruences modulo n? and modulo n. First we show when the
numbers O (defined in (6)) are congruent to 0 modulo n**.

Lemma 6. Let n > 1 be odd and let 1 < r < n be coprime to n. Assume
that m > s and p | n is a prime. Then the numbers ©, in (6) are p-integral
and

n"¢(n)

@5 = m =0 (modn5+1)

except when s = 1, 3||n, 31 ¢(n) and m = 2.

Proof. First we prove that the numbers O, are p-integral for m > s+ 1. It
suffices to show that mord,(n) —ord,(m + 1) > 0. Let us define the function
g(xr) = x —log,(z + 1), which is increasing for x > 1. Since log,(m + 1) >
ord,(m + 1) and ord,(n) > 1 we obtain that

mord,(n) — ord,(m + 1) > m —log,(m +1) = g(m) > g(s +1) >0

because g(3) = 3—log,(5) > 0, g(2) = 2—log,(4) > 0 and g(1) = 1-log,(2) >
0 for any prime p.

Let us consider the functions fs(z) = x — s —log,(z +1) for z > 1, which
are increasing for z > 1.(") Note that the congruence ©, = 0 (mod n**!) for
m > s holds if and only if

(m — s)ord,(n) + ord,(¢(n)) —ord,(m +1) >0

for every p | n.

In view of log,(m + 1) > ord,(m + 1) and ord,(n) > 1 the above follows
from the inequality fs(m) > 0 for m > 3 if s = 1,2, and for m > 1 if s =0
because

(m — s)ord,(n) — ord,(m + 1) > (m — s) —log,(m + 1) = f.(m)

() As well as of Euler’s quotients ga(n) or gz(n) if k = 1.

6)Then ©1 = n?¢(n)/3r® and the exceptional n’s have the form n = 3[[;_, p{’ where
p; = 2(mod3) for i = 1,...,u. Moreover k = n¢(n) — 2 is even. Obviously, if k¥ > 2 and
(k —1,n) = 1, then the congruence ©; = 0 (modn**1!) is true because m + 1 and n are
coprime. We leave it to the reader to verify that the congruence holds if k = 1.

(MThe functions g(x) and f,(x) are increasing since ¢'(z) = fi(z) = 1 —

. >0
for x > 1.

1
(z+1)logp
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and fs(m) > fo(3) = 1—log,(4) > 0if s = 2, fs(m) > f1(3) = 2—log,(4) > 0
if s =1and f,(m) > fo(1) =1 —log,(2) > 0 if s = 0 for every p | n. This
gives the congruence ©, = 0 (modn**!) for s = 0,2 and m > s and s = 1
and m > 3.

In the case when s = 1 and m = 2 we have f1(2) = 1 —log,(3) > 0 if
p > 5, and so the congruence holds for 3 { n. We are left with the task of
checking when the congruence holds for s = 1, m = 2 and 3 | n. Then it is
easily seen that the congruence ©; = % = 0 (modn?) holds if and only

if ords(¢(n)) > 1. This does not hold if and only if s = 1, 3||n, 3 1 ¢(n),
m = 2, as claimed. O

2.2.1 The case when s =2

Assume that m = n?¢(n) —k and 1 < k < n?¢(n) — 2 (m > 2). Then, by
Lemma 6, O = 0 (mod n?).

Case (i):

If k > 2is even, then m+1 = n?¢(n) —k+1is odd. Consequently S; = 0
in (4). Thus, combining (4) and (6) gives S, x2(n) = Oy + Sy = Sy (mod n?),
and

— — 1 odd even
Srko(n) = Sy = —qb(r)rm <Um (r) +mnU (1)

2 (D + () s oo

because for every prime number p | n, by Lemma 5, the summands U%%(r),

(R0, (r), mnU(r) and (3)n3Uc(r)®) are p-integral.

Case (ii):
If £ > 1is odd, then m + 1 is even and S; # 0. Moreover, by Lemma 6,
©y = 0 (modn?). Thus, by (4), (5), (6), we obtain

_ Bm+1 1 even
S’r,k,?(”) = m+1 + ¢(T)Tm (Um (T)

m

+ an,f’ndﬁll (r)+ <2

)MU;vfg(m) (mod 1)

(®With m, m — 2 even and m — 1, m — 3 odd.
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7

since, by Lemmas 4 or 5, (7)n3Ug%,(r)® is p-integral for any p | n and
divisible by n3.

Consequently, if k is odd and r, ¢(r) are relatively prime to n, we find,
by Lemma 4, that

)
Snaalw) = ZE (- 1+ o EI (1-q7))
+ qb(rl)rm (NTUfn”e"(T‘) + mnU% (r) + (7;1) n2U§ZJf§(7")> (mod ).

Note that for p | n, by Lemma 5, the summands NTUS"(r), (7;) n2Ueen (1)
and mnU°% ()19 are p-integral.

Moreover, if p | n and p—1 | m+1, i.e., p is in the denominator of B,, 1,
then by the little Fermat theorem, we have ¢™ = ¢~! (mod p°*d(m+D+1) and
r™ = ! (mod p°r (MDY (recall that r is coprime to n), and

N : —q") = — L —q ) = ord, (m+1)
ch(?“)rmlq;[(l ") = Hqs(r)g(l ¢~') = 0 (mod p V)

Hence and from Lemma 2, it follows that for p | n the first summand of
the right hand side of (15) is p-integral in the case when p — 1 | m + 1. If
p — 11m + 1, then the same conclusion follows from Lemma 3.

2.2.2 The case when s =1

Assume that m = n¢(n) — k and 1 < k < n¢(n) —1 (m > 1). Then, by
Lemma 6, ©; = 0 (modn?) if m > 2. If m = 2 and r | 8, then the congruence
holds if n is not divisible by 3 or divisible by 9. If m = 2 and 3||n, then it is
true for 3 | ¢(n).

Case (i):

If k£ > 2 is even, then analysis similar to that in the proof of (14) shows
that

1
16 Sr = (UOdd [yeven > d 2
(16) w0 = S (U0) + mn525(0)) (o )
if m > 2 or m = 2 and n is not exceptional in the sense of Lemma 6

since (7)n2Ug,(r) + (3)n3Uges(r) is divisible by n?. If m = 2 and n is

©O)With m — 3 even.
(10With m, m — 2 odd and m — 1 even.
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exceptional, i.e. 3||n and 3 1 ¢(n), then we should add to the right hand side
of (16) the correction ©; = n?¢(n)/3r3, but we prefer to exclude the case
when m =2, i.e., k =n¢(n) — 2.

Case (ii):

If k > 1is odd, then by Lemma 6 we have ©; = 0 (modn?) and a similar
argument to that in the proof of (15) shows that

(17)

Bm+1 m
Sria(n) = m—l—1<_1+ gb(rl)rml;r[(l_q ))

1
T S (N TUL(r) + mnU2%, (r) + (”;) nQU,‘jffZ(r)) (mod n?) .

2.2.3 The case when s =0
Assume that m = ¢(n) —k and 1 < k < ¢(n). Then, by Lemma 6, Oy =
0 (modn).
Case (i):
If k > 2 is even, then in the same way as in the proof of (16) we obtain

1

(18) Srro(n) = PYBET

(Uf,’ldd(r) + an,fff’f(r)) (modn).

Case (ii):

If £ > 11is odd, then by a similar argument to that in the proof of (17)
we find
(19)

Srko(n) = B (—1+ ! H(l—qm)>+
qlr

1 even
Y NTU*"(r) (modn)

because mnU2™, (r) + () n*Ug(r) is divisible by n, which is an easy con-
sequence of Lemmas 1 and 5.
3 The main results of the paper

In this section we compute the sums 7, x(n) (mod n™!) for s € {0,1,2} and
all 7 | 24, using congruence (3) and congruences for the sums S, x (n), namely
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congruences (14) and (15) if s = 2, (16) and (17) if s = 1, and (18) and (19)
if s =0.

We divide each of the three cases s = 0, 1 or 2 into seven subcases: r =
2,3, 4,6, 8, 12, 24, obtaining congruences for T, ;(n) for 1 < k < n*¢p(n)—
In the second part of the paper we shall derive from obtained congruences
some congruences in the case when n = p is an odd prime. Some of such
congruences were proved by M. Lerch [12], E. Lehmer [11] and Z.-H. Sun
[14], but most of them were not earlier known.

We substitute formulae (7-13) into congruences (14), (16) and (18) if &
is even and congruences (15), (17) and (19) if k£ is odd. Consequently, after
some calculations, we obtain Theorems 1-35.

In the theorems below, given any £ > 1 and p € Z, we write

I(k,p)={n>1: 2¢nandptnif p—1|k+ p}t

and

2 3 3 1
Qoln) = ~245(n) b ()2 n%a8(n), Qs(n) = —oas(m)+ 3na(n) ~ Sngh(n).
The sums 7;1(n) presented in Theorems 4,9, 14,19, 24, 29 and 34 below are
congruent to linear combinations of Euler’s quotients EQ (n) plus some

generalized Bernoulli numbers where EQQ( ) = Q2(n), EQg( )/i Qs(n),
EQ,(n) = 3Qs(n), EQi( n) = Qa(n) +Qs(n), EQs(n) = 2Qa(n), EQy(n) =
3Q2(n) + Qs(n) and EQ,,(n) = 2Q(n) + Qs(n). For i = 2,3 set QY(n) =
Q;(n) (modn?) and Q'(n) = Q;(n) (modn).

1. Caser =2

Theorem 1. Given an odd n > 1 and 1 < k < n’¢(n) — 2, write m =
n*¢(n) — k. Then:
(i)

E+1

Tor(n) = (2’”rl — 1)an + 24( 5 ) (2k+3 — 1)n3§m,2 (mod n?)

N | —

iof k is even, and in particular,

(2M1 — 1)n§m (mod n?)

N | —

To(n) =

() Note that if k and p are of the same parity and n € I(k, p), then 3¢t n; e.g., I(1,1) =
{n >1: 2,3¢n}, I(3,1) =1(2,2) ={n > 1: 2,3,5¢n} or I(5,1) =1(4,2) = {n >
1: 2,3, 71n}.
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ifn € I(k,2);
(i)

B, k ~
Top(n) = 27(1 - 2m+1)m—+“1 — §<2k+2 — 1)n*Bp,—1 (mod n?)

if k is odd.

Proof. 1f k is even, resp. odd, then it suffices to apply congruence (14),
resp. (15). Substituting (7) into these congruences gives the theorem im-
mediately. O

Theorem 2. Given an odd n > 1 and 1 < k < np(n) — 2,112 write m =
no(n) — k. Then:
(i)

Tor(n) = = (28 — 1)n§m (mod n?)

N —

if k is even;
(ii) (cf. [14] if n = p is an odd prime number)

Bk ~
Tor(n) = 2°(1 - 2m+1)m—++11 - §(2k+2 —1)n*By,—1 (mod n?)

if k is odd, and in particular,

B,
Top(n) = 27(1 - 2m+1)m——|—+11 (mod n?)

ifnel(k,1).

Proof. Theorem 2 follows easily from (16), resp. (17) and (7), if k is even,
resp. odd. O

Theorem 3. Given an oddn > 1 and 1 < k < ¢(n), write m = ¢(n) — k.
Then:

(i)

Tpi(n) = = (25! = 1)nB,, (modn)

N | —

if k is even, and in particular,

Tor(n) = 0(modn)

(12)Theorem 2(i) is also true for k = n¢(n) — 2 if we assume that n is not exceptional in
the sense of Lemma 6; for exceptional n we should add the correction © = in%ﬁ(n) to
the right hand side of the congruence.
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if n € 1(k,0);
(i)

B,
Ty r(n) = 2(1 —2m*1) m——:ll (mod n)

iof ks odd.

Proof. Theorem 3 follows from (18), resp. (19) if k is even, resp. odd and
from (7) in both cases. O

Theorem 4. Let n > 1 be odd. Then:
(i) (cf. [14] if n = p is an odd prime)

7 o~
Tr1(n) = Qa(n) — gn2Bn2¢(n)—2 (mod n°);

(ii) (see [1] and cf. [14] if n = p is an odd prime)
Ty1(n) = Qy(n) (modn?)

if n s not divisible by 3;
(iii) (cf. [11] if n = p is an odd prime)

Ty1(n) = Qy(n) (modn).

Proof. This is a particular case of Theorems 1-3(ii) for £ = 1. Then m+1 =
n*¢(n) and, by 2°™ = ngy(n) + 1, we have

Mt n(n) n(n)
_ 3y Bnsgm) _ s+1
= — = d

(Q2(n) + an?) o) Q2(n) (mod n®*")
because o € Z, s < 2 and

néns¢(n)

20 — 22" = 1 (modn*tt) .
(20) S = L mod )
Indeed, if py | n is a prime, then (py — 1)p(()8+1)0rdp°(n)_1 | n°¢(n) and, by
Lemma 2,

n§n5¢>(n) _ n(po—l) -1y (s+1)ordpq (n)
o(n) — pod(n) LT (=) =1 fmodrs )

pln, p#po

This completes the proof of (20) and of Theorem 4. [
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Theorem 5. Let n > 1 be odd. Then:
(i)
7 = 31 45~ 3
ngg(n) = §an2¢(n)—2 + gn Bn2¢(n)—4 (modn ),

and in particular

7T ~
Tro(n) = §an2¢(n),2 (mod n?)

if 3,51 n;
(i)

To2(n) = =nBpym)—2 (modn?);

N 3

(i)
Ty2(n) = 0 (modn)

if 31 n.
Proof. This is an immediate consequence of Theorems 1-3(i) for k =2. O
2. Caser =3

Theorem 6. Given an odd n > 1 not divisible by 3 and 1 < k < n?¢(n) — 2,
write m = n*¢(n) — k. Then:

(i)

R 1 ~ 31 k+1 ~
Ts1(n) = —D,, + —(3’CJrl - 1)an + - n?D,,_s (mod n?)
' 2 6 2 2
if k is even and n € I(k,2);
(ii)
3k By 31 k ~
Tsp(n) = ?<1_3m+1)m—:11_ 5 kan_l—%(?)k“—l)nQBm_l (mod n®)

if k is odd.

Proof. For k even, resp. odd we combine formula (8) with congruence (14),
resp. (15). Hence the theorem follows at once. O

Theorem 7. Given an odd n > 1 not divisible by 3 and 1 < k < np(n) — 1,
write m = no(n) — k. Then:
(1)

3t 1

5 D,, + 6(3k+1 - 1)n§m (mod n?)

Tgyk(n) =

if k is even;
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(i)
Em Sk—l .
m——:ll — Tkanil (mod n2)

k
%(1 - 3m+1)

if k is odd and n € I(k,1).

Proof. In this case we substitute (8) into congruences (16) if k is even or (17)
if k is odd. O

Tg,k (n) =

Theorem 8. Given an odd n > 1 not divisible by 3 and 1 < k < ¢(n), write
m = ¢(n) — k. Then:
(i) (cf. [14] if n = p is a prime)

3k—1 .
5 D,, (mod n)

Ts(n) =

if k is even and n € 1(k,0);
(ii) (cf. [14] if n = p is a prime.)

— 3k m+1 Bm+1

if k s odd.

Proof. Theorem 8 follows from (8) and congruences (18) if k is even or (19)
if £ is odd. [

Theorem 9. Let n > 1 be odd and not divisible by 3. Then:
(i) (cf. [14] if n = p is a prime)
1~ 13 ,~ ,
T51(n) = Qs(n) — inDnz(z,(n),Q - 13" Bi2(n)—2 (mod n”);
(i)
1 ~
T31(n) = Q5(n) — §nDn¢(n)_2 (mod n?);
(i)
T51(n) = Q4(n) (modn).
Proof. This is a particular case of Theorems 6-8(ii) for k = 1. Then m+1 =
n*¢(n) and, by 3°™ = ngs(n) + 1 and (20), we obtain

§ _aqm Bm+1 _§ . (n)\n® an¢(”) _§ _ ns §n5¢(n)
(=3 = S (1= (37) )—n5¢(n) = S(1 = (1+ ngs(n) )n5¢(n)
= (Qs(n) + 5713)% = Q3(n) (modn*)

¢(n)

because § € Z and s < 2. The rest of the proof is straightforward. O]
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Theorem 10. Let n > 1 be odd and not divisible by 3. Then:
(i)
3~ 13 ~ 9 ,~
T372(7’L) = §Dn2¢(n)—2 + EanZ(b(n)_Q + §n2Dn2¢(n)_4 (mod 77,3)

if n 1s not divisible by 5;

(i)

T52(n) = gﬁw(n)_g + ?néw(n)_g (mod n?);
(i)
T39(n) = %lN)(b(n)_Q (modn).
Proof. This is a particular case of Theorems 6-8(i) for k = 2. O
3. Caser =4

Theorem 11. Given an odd n > 3 and 1 < k < n?¢(n) — 2, write m =
n?¢(n) — k. Then:
(i)

E+1

T4’]€(n) = 22k—2Em + 2k—2 (2k+1 - ]-)ném + 22k—2< 2

>n2Em_2 (mod n?)
if k is even and n € 1(k,2);
(i)

B, ~
T4’k(n) = 22]{:71(1 _om _ 22m+1)m——: - 22k72knEm_1

— 2k (282 — 1)n2§m_1 (mod n?)
if k is odd.
Proof. This is an immediate consequence of (14) or (15). We apply formula
(9). O

Theorem 12. Given an odd n > 3 and 1 < k < np(n) — 2,3 write m =
no(n) — k. Then:
(i)

Tyr(n) = 92h=2F 4 F2 (2M1 — 1)n§m (mod n?)

(13) Theorem 12(i) is also true for k = n¢(n) — 2 if we assume that n is not exceptional in
the sense of Lemma, 6; for exceptional n we should add the correction ©1 = ﬁnz(b(n) to
the right hand side of the congruence.
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if k is even;
(ii) (cf. [14] if n = p is an odd prime)

B, ~
Tyx(n) = 221 (1—2" — 22m+1)m—j:r11 — 2%72knE,, 1 (modn?)

if kis odd and n € I(k,1).
Proof. We substitute (9) into (16) or (17) and the theorem follows. O

Theorem 13. Given an oddn > 3 and1 < k < ¢(n)—1, write m = ¢(n)—k.
Then:
(i) (cf. [14] if n = p is an odd prime)

Tyx(n) = 22%72E,, (modn)

if k is even and n € I(k,0);
(ii) (cf. [14] if n = p is an odd prime)

B,
Typ(n) = 22711 —2m — 22m+1)m—++11 (mod n)

if ks odd.
Proof. Here we use congruences (18) or (19) together with formula (9). O

Theorem 14. Let n > 3 be odd. Then:
(i) (cf. [14] if n = p is an odd prime)

3

- 7
Tyi(n) = EQQ(TL) —nEp2pm)—2 — §n23n2¢(n)_2 (mod n?);

(ii) (cf. [14] if n = p is an odd prime)

3 -
Ty1(n) = 5@'2’(71) — nEp4(n)—2 (mod n?)
if n is not divisible by 3;
(i)
Ty1(n) = =Q5(n) (modn) .
Proof. This is a particular case of Theorems 11-13(ii) for & = 1. Then
m + 1 =n¢(n) and, by 290" = ngy(n) + 1 and (20), we have
B By
2(1 —9m 22m+1 m+1 — (92 — zd)(n) n® 2¢>(n) 2ns nsg(n)
( ) m+1 (2 ) ( ) nsp(n)
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s s én%(n)
= (1 = (1 +ng®m)™) + (1 - (1+ngn)*™)) —22
(1= (4 maam))") + (1= (14 maa())) L2008
1 Bpogm) 3
= <§Q2(n) + Qa(n) + 7713) % = EQQ(n) (mod n**)
because v € Z and s < 2. This gives the theorem at once since the rest of
the proof is straightforward. ]

Theorem 15. Let n > 3 be odd. Then:
(i) B B B
T4’2 (n) = 4En2¢(n)_2 + 7an2¢(n)—2 + 12n2En2¢(n)_4 (mod n3)
if 3,51 n;
(i) (see [9]) N _
T472(7’L) = 4En¢>(n)—2 + 7an¢>(n)—2 (mod 7’L2>,
(iii)
Tyo(n) = 4E4m)—2 (modn)®
if nis not divisible by 3.
Proof. This is a particular case of Theorems 11-13(i) in case k = 2. O]

4. Caser =06

Theorem 16. Given an odd n > 5 not divisible by 3 and 1 < k < n*¢(n)—2,
write m = n*¢(n) — k. Then:

)

~ 1 ~
Tox(n) = — (2" + 1) D, + E(z’f+1 - 1) (3" = 1)nB,

1 -
(k;— ) (282 = 1)n*D,—s (mod n?)

if k is even and n € 1(k,2);
(i)

Bm 3k—1 .
Ts(n) = 2k—13’“m—+“1(1 =27 =37 = 6") = = — (2" + 1)knDyy
k

- m(Qk+2 — 1) (352 — 1)n2§m_1 (mod n?)

if k is odd.

(14)

It was an open problem in [2, p. 204].
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Proof. This is an immediate consequence of congruences (14) if k is even or
(15) if k is odd and formula (10). O

Theorem 17. Given an odd n > 5 not divisible by 3 and 1 < k < ng(n)—1,
write m = np(n) — k. Then:

(i)

Ton(m) = (254 1) D+ (241 = 1) (3 = B, (mod n?)
if k is even;
(i)
Tox(n) = 2’“13’“%(1 —2m—3"m—6") — E(z’“+1 +1)knD,,—1 (modn?)
’ m+ 1 4 "

if k is odd and n € I(k,1).

Proof. Substituting (10) into congruences (16), resp. (17) gives the theorem
if k is even, resp. odd at once. O

Theorem 18. Given an odd n > 5 not divisible by 3 and 1 < k < ¢(n),
write m = ¢(n) — k. Then:
(i) (cf. [14] if n = p is an odd prime)

3k—1

Tor(n) = (28 + 1)l~)m (modn)

if k is even and n € I(k,0);
(ii) (cf. [14] if n = p is an odd prime)

B,
Tor(n) = 2’“-13’fm—+“1(1 — 2™ — 3™ — ™) (mod n)

if k is odd.
Proof. This follows from (18), resp. (19) and (10) for k even, resp. odd. [
Theorem 19. Let n > 5 be odd and not divisible by 3. Then:

(i)

5 ~ 91 ,~
T671(’I’L) = QQ(?’L) + Qg(n) - ZnDn2¢(n)_2 — ﬁn23n2¢(n)_2 (mod TLg);

5 ~
Tsa(n) = Q5(n) + Q5(n) = gnDngi—» (mod n”);

Ts1(n) = Q5(n) + Q3(n) (modn).
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Proof. This is a particular case of Theorems 16-18(ii) for £ = 1. Then
m + 1 = n°¢(n) and, in view of 290" = ngy(n) + 1, 3°™ = ngz(n) + 1 and
(20), we find that

m m m Bm+1
3(1—2m—-3"—-6 )m—+1 ~
= Lo 3@emyr _ ooty _ (gemyn (3600 Brsom)
2 ng(n)
= 180~ (0 naa(m))) + 20— (14 ngy(m)”)
(1= (14 ngo(n)™ (1 + ngs(n))™)) f(;é;; N
Boesin
= 5 (5020 + 5Qu(m) + 5Qa(m) + 5Quln) + 2
= Q2(n) + @3(n) (modn°*)
because A € Z and s < 2. This gives the theorem. O

Theorem 20. Let n > 5 be odd and not divisible by 3. Then:
(i)

15 ~ 91 =~ 153 , <
TG,Q(TL) = —Dn2¢(n),2 + Ean%(n),g + ?n2Dn2¢(n),4 (mod ng);

15 ~
Ts2(n) = ?D (n)—2 (modn).

Proof. The theorem follows easily from Theorems 16-18(i) for k = 2. O
5. Caser =8

Theorem 21. Given an odd n > 7 and 1 < k < n*¢(n) — 2, write m =
n’¢(n) — k. Then:
(i)

Tsn(n) = 2%73E,, + 2%572C,, + 2273 (251 — 1)nB,, — 2% %knA,,

1 ~ 1 ~
4 23/6—3 (k: ;— )n2Em_2 + 23k—2 (k _2|_ )n20m—2 (mOd n3)
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if k is even and n € I(k,2);
(i)
Ty(n) = 2%72(1 — 2m — 23m+2) Dmir oo
, m+1
— 2% 3 kn k1 — 2% %knC,

- k41 -
— 2%k (22 — 1) By + 23k2( ;L )n?Am2 (mod n?)
if k is odd.
Proof. This follows from congruence (14), resp. (15) for k even, resp. odd
and formula (11). O

Theorem 22. Given an odd n > 7 and 1 < k < né(n) — 1,15 write m =
no(n) — k. Then:
(i)

Tyn(n) = 2%73E,, + 2%572C,, + 2273 (281 —1)nB,,

— 2k A (mod n?)

if k is even;
(ii)
T. k(n) — 93k—2 (1 _om _ 23m+2) §m+1 + 23k—2g N 23k_3knE )
8, = m+ 1 m m—
— 2%72knC,, 1 (mod n?)

if kis odd and n € I(k,1).
Proof. This follows from (11), and (16), resp. (17) if k is even, resp. odd. [

Theorem 23. Given an odd n > 7 and 1 < k < ¢(n), write m = ¢(n) — k.
Then:
(i)

Tyx(n) = 273K, +23-2C,, (mod n)

if k is even and n € I(k,0);
(i)

B ~
Tys(n) = 2%72(1 —2m — 23m+2)m—++11 +2%24, (modn)
if k is odd.

(15) Theorem 22(i) is also true for k = n¢(n) — 2 if we assume that n is not exceptional in
the sense of Lemma 6; for exceptional n we should add the correction © = Tlgﬁnzcﬁ(n)
to the right hand side of the congruence.



24 Shigeru Kanemitsu, Takako Kuzumaki and Jerzy Urbanowicz

Proof. This is an immediate consequence of (11) and congruences (18), resp.
(19) if k is even, resp. odd. O

Theorem 24. Let n > 7 be odd. Then:

(i)

T&l(n) = 2@2 (n) + 2gn2¢(n)—l — nEn2¢(n)_2 — 2n5n2¢(n)_2
7

- §n2§nz¢(n)_2 + 2n2gnz¢(n)_3 (mod n?);

(i)
Ts1(n) = 2Q5(n) + 2;{@(”)_1 — nEn¢(n)_2 — 2n5n¢(n)_2 (mod n?)
if n is not divisible by 3;
(iii)
Tsi(n) = 2Q5(n) + 2A40,)-1 (modn).

Proof. This is a particular case of Theorems 21-23(ii) for £ = 1. Then
m + 1 =n¢(n) and, by virtue of 29" = ngy(n) + 1 and (20), we obtain

2(1 —2m — 23"“"2)% — (2 _ (2¢(n))n5 _ (2¢(n)>3n5) an(b(n)

m+ 1 np(n)
— (2= (1 nl)” — (14 ) Dt
’ i n°g(n)
1 3 nBsm s
= (3Qa0) + 5@u0n) + &) =8 = 203(n) (mod )
because ¢ € Z and s < 2. This gives the theorem at once. O]

Theorem 25. Let n > 7 be odd. Then, we have:
(1)
T&g(n) = 8ﬁn2¢>(n)—2 + 166n2¢(n),2 -+ 14n§n2¢(n),2 — 3271;4Vn2¢(n),3
+ 24712En2¢(n),4 + 48n25n2¢(n),4 (IIlOd n3)
if 3,51 n;
(i)
T&Q (n) = 8En¢(n)—2 + 165n¢(n)—2 + 14n§n¢(n)_2 - 32711171(;5(”)_3 (mod n2),
(iii)
T&Q(?’L) = 8E¢(n),2 + 16C¢(n),2 (HlOd n)
if n is not divisible by 3.
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Proof. Apply Theorems 21-23(i) for k = 2. O
6. Case r =12

Theorem 26. Given an oddn > 11 not divisible by 3 and 1 < k < n*¢(n)—2,
write m = n*¢(n) — k. Then:

(i)

T127k(n) = 2k—23k—1 (2]€ + ]-)-5771 + 22k—3 (3k + 1)Em

2k—3 . .
+ T(Qk“ —1)(3*" = 1)nB,, — 2°*7*3"knF,,_,
kE+1 ~
+ 2]{743’671 ( —2i_ ) (2k+2 + 1)n2Dm,2
22k—3 k 1 ~
5 ( ;_ ) (3"2 + 1)n*E,,_» (mod n?)
if k is even and n € I(k,2);
(i)
B ~
— 092k—2qk Pm+1 m m m m 2k—2qk
Tiax(n) = 22723 m——i—1(1_2 — 3" 6™ —4-127) + 22230,
_ ok—3ak—1(ok+1 5 22578 e =
2PN (2P + 1) knDyy g 5 (3" + 1) knEn,
Y77 ke 2 275
— T(2 —1) (3" = 1)kn®B,,—,

k+1 ~
+22k23k< ; >n2Fm2 (mod n?)

if k s odd.
Proof. Apply congruences (14), resp. (15) and formula (12). O

Theorem 27. Given an oddn > 11 not divisible by 3 and 1 < k < ng(n)—1,
write m = np(n) — k. Then:

(i)
Tiop(n) = 267235128 + 1) D, + 2%3(3" + 1) E,,
2k73

+ g (@ - - 1)nB,, — 2%7235knF,,_; (mod n?)

if k is even;
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B _

T = 92k—2gk Tmil (1 om _gm 4 gm 4. qgm) 4 9%k-23kp

12,k(n) a1 ( + ) +
- 22]673 -

— 2P (2 - 1) kn Dy — T<3k+l +1)knE,,_ (modn?)

if k is odd and n € I(k,1).

Proof. The above congruences follow from congruences (16), resp. (17), if k
is even, resp. odd. We also use formula (12). O

Theorem 28. Given an odd n > 11 not divisible by 3 and 1 < k < ¢(n),
write m = ¢(n) — k. Then:
(i)
Tiop(n) = 28235128 +- 1) Dy, + 2% (3% + 1) E,,, (mod n)
if k is even and n € I(k,0);
(i)

By, -
Tion(n) = 22’“23’“—?1 (1—2m—3m+6"—4-12™) + 22 23FF, (mod n)
m

if ks odd.

Proof. We proceed in the same way as in the proof of the previous theorem.
Now we use congruences (18), resp. (19) if k is even, resp. odd, and formula
(12). m

Theorem 29. Let n > 11 be odd not divisible by 3. Then:

(i)

~ 5 ~ 5 ~
Ti21(n) = 2Q2(n) + Q3(n) + 3Fp24(n)—1 — ZnDnZgb(n)—Q - gnEn2¢(n)—2

N W

91 ,~ ~
— ﬁnan%(n),Q + 3n2Fn2¢(n),3 (mod n?);

3 ~ 5 ~ 5 ~
T1271<n) = §Q/2,(TL) + Qg(n) + 3Fn¢(n)71 — ZTLDmb(n),Q — g?’LEmb(n),Q (mod n2);

Ti21(n) = ;Qé(n) +Q5(n) + 3ﬁ¢(n)—l (modn).
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Proof. This is a particular case of Theorems 26-28(ii) for £ = 1. Then
m + 1 =np(n) and, by virtue of 29" = ngy(n) + 1, 3*™ = ngz(n) + 1 and
(20), we have

Em—i—l

m+ 1

3 s s ]. s s s s E s
— (32 (98 yn® _(3é(n)yn® | = (99(n)yn® (36(n)yn® _ (96(n))2n® (3(n)yn > n¢(n)
( 5 (270)" = (BT S (27 (3T = (27) T (3)

3(1—2"—=3" 6™ —4-12™)

Il
VRS
w
(]
—_
—_

because n € Z and s < 2. The rest of the proof is straightforward. m

Theorem 30. Let n > 11 be odd and not divisible by 3. Then:
(i)

- - 91 ~ -
T1272(n) = 15Dn2¢(n)_2 + 20En2¢(n)_2 + ?an2¢(n)_2 — 7271Fn2¢(n)_3

153 4~ 164 ,~
+ TnQDn2¢(n)—4 + ?n2En2¢(n)—4 (mod n?’)

if nis mot divisible by 5;
(i)

- 91 ~ -
T1272 (n) = 15Dn¢(n),2 + 20En¢(n),2 + ganqg(n),Q — 7271Fn¢(n),3 (HlOd 712);

(i)
Th22(n) = 15D g(m)—2 + 20E4 (-2 (mod n).
Proof. This follows at once from Theorems 26-28(i) for k = 2. O

7. Case r =24
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Theorem 31. Given an oddn > 23 not divisible by 3 and 1 < k < n?¢(n)—2,
write m = n?¢(n) — k. Then:

(i)

T24’k(n) = 22]{:733]671 (2k 4 1)-5m 4 23]4:74 (3]6 + 1)Em 4 23k733kf_jm
_ 2%k—4 _ ~
+23573 (3F— 1)Om+2T (2" —1) (3" —1)nB,, —2*" 3 knF,,
- 23k73 .
- 23k_33kknGm_1 - T (3k+1 + 1)knAm_1

k41 ~ 2364 [ 41 ~
+22’“-53k—1( ;r )(2’f+2+ D)1 Dy—z+ ( ; )(3k+2+1)n2Em_2

9
E41\ 5 233 E+1\ 5=
+23k_33k( ;— )nQHm_ng 5 (3"2-1) ( N )nQCm_g(mod n?)

2

if k is even and n € 1(k,2);
(i)

— o3k—3ak Dmt1 m m m m 3k—3qk o
Toun(n) = 2%733 m—+1(1_2 — 3" 46" —8-24™) + 2333k E
+ 283G, + 293 (38 1 1) A, — 22 13R 1 (25 4+ 1) kn Dy
2% e = 3k—3aky. 7 273k ~
—T(B —i—l)knEm,l—Q 3"knH,,_1 — T(S —1)knCm,1
22k—6

— (282 — 1) (342 — 1)kn2§m_1 | 93k—3gk (k ‘2“ 1)n2ﬁm_2

_ 3k—3 -
+3k—3gh (k ; 1) 1G24 2 9 (k ; 1) (3" +1)n* Ay s (mod n?)

if k is odd.

Proof. This follows from congruences (14), resp. (15) if k is even, resp. odd
with the use of (13). O

Theorem 32. Given an odd n > 23 not divisible by 3 and 1 < k < np(n)—1,
write m = no(n) — k. Then:
(1)
Toualn) = 2479512 4 1)B + 299(3 4 1) B, + P4,
2%k—4

+2%3(3F 1), + QT(z’f+1 ~1)(3*! —1)nB,,

_9%=3gkpn 9333k
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23]{?73 .
— T(Skﬂ + 1)knAm,1 (mod n?)
if k is even;
(i)
B ~
T = dh3gk AL (1 _gm _gm  gm _g.oqm) 4 2333k
24,k(n> 1 ( + ) +
+ 233G, + 2% (3P + 1) A, — 225135 (29 1) knDy,
23k—4 - ~
— T(?f“+1 +1)knEy_y — 2°"23%knH,,

93k—=3 -
- T(3k+1 — 1)knCiy_1 (mod n®)

if k is odd and n € I(k,1).

Proof. The same reasoning as in the proof of the previous theorem applies
to congruences modulo n?. Now we use congruences (16), resp. (17) and
formula (13). O

Theorem 33. Given an odd n > 23 not divisible by 3 and 1 < k < ¢(n),
write m = ¢(n) — k. Then:

(i)
Typ(n) = 2273357128 £ 1) D, + 2 (3* + 1) E,,
4 3k=3gk 4 93k—3 (Bk — 1)6’m (modn)

if k is even and n € I(k,0);
(ii)

B
T = 93k=3gk Zmtl (| gm _gm 4 gm _g. gym
24,k(n) 1 ( + )

+ 2933R E 4+ 93338, 4 233 (3F 1) A, (mod n)
if k is odd.

Proof. This follows from congruences (18), resp. (19) if k is even, resp. odd.
We make use of formula (13). O

Theorem 34. Let n > 23 be odd and not divisible by 3. Then:
(i)

T24,1(n) = QQQ(H) + Qg(n) + 3ﬁn2¢(n)—1 + 3én2¢(n)—1 + 4Avn2¢(n)_1
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5 ~ d ~ ~ 8 ~
— L—lnDn%,(n),z — gnEnQ(ﬁ(n),g — 3an2¢(n),2 — gnC’nzd,(n),Q

91 ~ ~ 28 5~
— En Bn2¢(n)—2 —|—3n2Fn2¢(n)_3—|—3n2Gn2¢(n)_3+ 3”2A7ﬁ¢(n)—3(m0d 713);

(ii)
Toua(n) = 2Q4(n) + Q5(n) + 3Fupm—1 + 3Gnsm—1 + 4Ang(m)—1

5 ~ 5 ~ ~ 8 ~
— Zanﬁ(n),g — §TLEn¢(n),2 — 371Hn¢(n),2 — gnC’nd,(n),z (HlOd n2);

(i1
T24,1(n) = 2@’2(71) + Qé(n) + Sﬁqg(n)_l + 3§¢(n)_1 + 4Z¢(n)_1 (mod n)

Proof. This is a particular case of Theorems 31-33(ii) for £ = 1. Then
m + 1 = n°p(n) and, in view of 290" = ngy(n) + 1, 3°™ = ngz(n) + 1 and
(20), we have

3(1—2m—3m+6m—8-24m)m”:11

(2000 (300 (2000 (30000 Breoin)

_ (3_g<2¢>( ) (345(” )ns 1

3
2

— (1= (1 +nga(n)™ (1 + ngs(n))™)

2
1— (1 4+ nga(n))" )+(1 (14 ngz(n))" )

*—‘/‘\

2
(L (0 mga()) (1 gy (m))*) ) et
nsp(n)

3 2 1 1 3 2 NnBson
= (ZQQ(anQS(n)—ZQQW—§Q3<n)+§Q2(n)+gQg(nHwnS)W‘ﬁ;)
= 2Q2(n) + Q3(n) (mod n°*1)
because w € Z and s < 2. This proves the theorem. O
Theorem 35. Let n > 23 be odd and not divisible by 3. Then:

(i)
Th45(n) = 30Dp2(m)—2 + 40E 2 g(m)—2 + T2H 2 g(m)—2 + 64C,25m)—2
182 ~ 448 ~
+ ?anz(b( y—2 — 144nFn2¢(n) 3 — 144nGn2¢ (n)—3 — T”An%

153 328 5~ 7
+ Tn2Dn2¢( y—4 + Tn En2¢( )—4 + 216n2Hn2¢(n)—4
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640 ,~
+ THQC"%(")% (mod n?)
if n s not divisible by 5;

(i)

To42(n) = 30Dpgny—2 + 40Eng(m)—2 + T2Hng(m—2 + 64Chgn)—2
182

+ ?néw(n)_g — 36nﬁn¢(n)—3 - 144”én¢(n)—3

448 ~
— ?nAw(n)_g (mod n?);

(i)
T2472(7’L) = 30]5(1)(“),2 + 4OE¢(H),2 + 72H¢(n),2 + 645(1)(%),2 (HlOd n)

Proof. This follows easily from Theorems 31-33(i) for k = 2. [

4 Concluding remarks

Let p > 3 be a prime number and let r be a natural number such that
1 < r < p. In the next part of the paper we are going to prove some new
congruences for the sums T}, (p) = S%/I'(1/i%) modulo p*** for s = 0,1 or
2, all divisors r of 24 and k > 1, in particular for K = 1 or 2 in all the cases.
We shall use the congruences proved in the present paper in the case when
n = p is an odd prime as well as Kummer’s congruences for the generalized
Bernoulli numbers.
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