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1. Introduction

Stochastic dominance relation among two variables plays important role in reliability, biomet-
rics, actuarial sciences and econometrics. For some evidence and discussion see Robertson et al.
(1988), Shaked and Shanthikumar (1994), Davidson and Duclos (2000), Müller and Stoyan (2002),
Barrett and Donald (2003), Sen and Silvapulle (2005), Levy (2006). In this paper we restrict
attention to the stochastic dominance of the first order, which is also known as stochastic order.
Moreover, we focus on classical scheme and consider two independent samples with possibly different
sample sizes, from two populations that have the corresponding continuous distribution functions
F and G. In this setting, the recognized Kolmogorov-Smirnov test dominates many other solutions;
see the simulation results in Barrett and Donald (2003) as well as in Ledwina and Wy lupek (2012a)
(LW hereafter). The last mentioned paper suggested, however, the two new tests that outperform
the Kolmogorov-Smirnov test under several types of alternatives and under small and moderately
large sample sizes. The new tests introduced in LW are essential refinements of some procedures
already investigated in econometric literature. More precisely, the first statistic, denoted by MD(N),
can be considered as some weighted variant of the Kolmogorov-Smirnov solution. The second one,
denoted by QT , is a flexible and relatively easy to implement replacement of the Wald statistic
for the underlying testing problem with inequality restrictions. Both new solutions are consistent
under weak and natural assumptions. We present these solutions in some detail in Section 2.1.

This paper has two main contributions. First, we investigate the two new tests by simulations
under large sample sizes and with special emphasize on detecting lack of the order among typical
income distributions. To be more specific, the first new statistic MD(N) is a minimum of some
optimal linear rank statistics, each one related to a comparison of the two pertaining empirical
distributions in one of the D(N) dyadic points from (0,1). Here, similarly as in Section 5.2 of LW,
we consider D(N) to be the largest dimension of the partition less than or equal to N . Hence, D(N)
is a nondecreasing function of N and tends to infinity as N does. The second new statistic QT is
some quadratic form of the above mentioned linear rank statistics with the dimension of the form
specified by the selection rule T depending on Schwarz-type penalty. If D(N) is growing then the
first statistic tends slowly to −∞ while the penalty in the second statistic goes to +∞. Therefore,
it is interesting to see how both procedures work under relatively large sample sizes, typical for
example in some econometric applications. In this article we also consider another weighted variant
of the two-sample one-sided Kolmogorov-Smirnov statistic, denoted by M∗N , which was introduced
in LW as some approximation of MD(N). Our simulations exhibit that MD(N) and M∗N work
nicely under large sample sizes. They have, due to the weighting built into them, equally high
power in detecting differences in all parts of the underling distributions. The solution QT , by
its construction, is more focused on differences in central part. In this respect QT is similar in
behaviour to the Kolmogorov-Smirnov solution. However, in comparison with this standard, QT is
much more sensitive in detecting differences in tails.

Our second contribution relies on studying some modifications of the solution QT to get more
comprehensive procedure of that kind, working well under both small and large sample sizes.
In particular, Section 2.2 introduces an interesting modification T1 of T , which penalizes less
the successive dimensions. In our studies and experiments, this selection rule is shown to be a
reasonable solution leading to a good omnibus statistic QT1 with higher average power than the

2



test statistic QT . More precisely, QT1 works nicely under both small and large sample sizes as well
as has equally high sensitivity in detecting differences in the tails and in the central part of the
two distribution functions. Similarly as its forerunner QT , QT1 leads to a consistent quadratic test.
Further comments on this construction are given in Section 5.

The reminder of this article is organized as follows. In Section 2, we define the null hypothesis
of the first-order stochastic dominance, introduce notations and definitions of MD(N), M∗N , and QT .
Moreover, we present there the modification T1 of the selection rule T and the related data driven
test statistic QT1. The four tests are then compared through simulation experiments in Section 3.
For completeness, we also included there the Kolmogorov-Smirnov test, the best existing standard
in the area. Real data sets are studied in Section 4. Concluding remarks are given in Section 5. Ap-
pendices A, B, and C contain some complementary materials. In particular, Appendix B presents
and discusses three additional selection rules and empirical powers of the pertaining data driven
tests. This material illustrates how delicate question is a calibration of data driven tests. Appendix
C provides some theoretical results, including consistency of the new data driven test.

2. Testing methods under consideration

2.1. Preliminaries

Let X and Y be continuous outcome variables that may, for example, represent incomes in two
different years. Let F and G be the distribution functions of X and Y , respectively. Then we say
that Y stochastically dominates X at first order if F (x) ≥ G(x) for each x ∈ R. We assume that
both F and G are unknown and focus on testing

H+ : F (x) ≥ G(x) for each x ∈ R

against
A : F (x) < G(x) for some x ∈ R.

For this purpose, consider two independent samples X1, . . . , Xm and Y1, . . . , Yn obeying distribution
functions F and G, respectively. Then (X1, . . . , Xm, Y1, . . . , Yn) is the pooled sample of size N =
m + n. We assume throughout that η = limN→∞(m/N) exists and η ∈ (0, 1). Denote by Ri, i =
1, . . . ,m and i = m + 1, . . . , N the rank of Xi and Yi in the pooled sample. LW argued that to
construct tests for H+ against A it is reasonable to use the following rank statistics

Lj =
N∑
i=1

cNi lj

(Ri − 0.5
N

)
, where cNi =

√
mn

N

{
−m−1 if 1 ≤ i ≤ m,
n−1 if m < i ≤ N,

lj(z) = −

√
1− aj
aj

1(0 ≤ z < aj) +
√

aj
1− aj

1(aj ≤ z ≤ 1),

1(A) is the indicator of the set A while a1, a2, . . . are the successive points of the form (2i −
1)/2k+1, k = 0, 1, . . . , i = 1, 2, . . . , 2k. More precisely, each Lj is asymptotically (locally) optimal
statistic to test that (F−G)◦H−1(aj) ≥ 0 against (F−G)◦H−1(aj) < 0, where H = ηF+(1−η)G.
In other words, Lj serves to compare carefully the difference between F and G at the point H−1(aj),
i.e. at the aj-quantile of the combined distributions. Comparisons of that kind are coherent with

3



practice in income studies, cf. Anderson (1996), p. 1188. Significantly small negative values of Lj
indicate A. Since each lj is a nondecreasing function then P (Lj < c |F ≥ G) ≤ P (Lj < c |F = G),
for any c ∈ R and j = 1, 2, . . .. Moreover, under F = G, Lj ’s are asymptotically N(0, 1) while,
for any fixed m and n, P (Lj < c |F = G) can be easily simulated. Here, as in Section 5.2 of
LW, we concentrate on k ≤ K = K(N) where K(N) is the largest natural number such that
D(N) = 2K(N)+1 − 1 ≤ N .

2.2. Two solutions related to multiple comparisons

In view of the interpretation of Lj ’s and multiple testing approach, LW proposed to reject H+

in favour of A if
MD(N) = min

1≤ j≤D(N)
Lj (1)

is too small. Given the significance level α and total sample size N , the critical value of this test
shall be denoted by cM (α,D(N)).

The second test rejects the null hypothesis for large values of

M∗N = inf
Z(1)≤x≤Z(N)

√
mn

N

{Fm(x)−Gn(x)}√
HN (x){1−HN (x)}

,

where Fm and Gn are the empirical distribution functions in the first and the second sample, re-
spectively, HN = (m/N)Fm + (n/N)Gn while Z(1) ≤ . . . ≤ Z(N) are ordered observations in the
pooled sample. Additionally, the respective quotient in M∗N is defined to be 0 at Z(N). The statis-
tic M∗N , introduced in Section 3 of LW as some analogue of MD(N), is a two-sample counterpart
of the goodness-of-fit statistic studied by Eicker (1979); also cf. Canner (1975) for very similar
construction.

2.3. Quadratic test statistic QT

To present the third solution introduced in LW we need additional notations. Let D(N) = { d =
2k+1 − 1 : k = 0, 1, . . . ,K(N) } = {1, 3, . . . , D(N)}, L+

j = max{−Lj , 0 } and for d ∈ D(N) define

LLL+
d =

(
L+

1 , . . . , L
+
d

)
and Qd =

[
LLL+
d

][
LLL+
d

]′
, (2)

where the prime denotes transposition. So, given N , for the successive d ∈ D(N) we consider in-
creasingly finer partitions of [0, 1] and the related sums of squares, Qd, of the negative Lj ’s amongst
L1, . . . , Ld. Large values of Qd indicate A. A choice of d, which is decisive to the distribution of
Qd, was done in LW by the selection rule T , which was defined as follows

T = T0 = min
{
d : Qd − dπ(0)(α,N) ≥ Qj − jπ(0)(α,N), d, j ∈ D(N)

}
, (3)

where the penalty π(0)(α,N) for the parameter d was given by

π(0)(α,N) =

{
p(0)(α,N) if MD(N) ≥ −

√
t(α) logN,

0 otherwise,
(4)

while p(0)(α,N) = logN and, by (1), MD(N) = min1≤j≤D(N) Lj . Here, as before, α denotes the
prescribed significance level. The penalty π(0)(α,N) depends on α via the tuning parameter t(α).
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A simple automatic rule for selecting t(α) was described in Section 5.1 of LW. For illustration, for
sample sizes and the level α = 0.01 considered in Table 3 of LW the rule T leads to t(α) ∈ [2.00, 2.45].
Note also that the penalty in (4) depends on data at hand and therefore is a random variable.

Throughout the current paper we shall call an event of the form {MD(N) ≥ c}, appearing in the
penalty, the ‘switch’ while c shall be named the barrier in the ‘switch’. Moreover, the quadratic
form Q• with the size determined by a selection rule shall be called a data driven statistic.

Simulation results in LW show that for N ∈ [100, 1000] the tests based on MD(N) and QT work
nicely. QT is slightly more sensitive in detecting differences between F and G in the middle range
of the aj-quantiles of H while MD(N) slightly better detects differences in extreme quantiles.

The form of the penalty π(0)(α,N) implies that, under the null hypothesis, the concentration
of T on d = 1 grows to 1 as N → ∞ (cf. Lemma 4(i) in LW). This stabilizes the related critical
values and is profitable in this sense. On the other hand, for large N the penalty logN , appearing
in (4) when the ‘switch’ does not work, is so heavy that T concentrates too often on d = 1 under
alternatives. This, however, is not profitable to the power. Therefore, in the next section we pro-
pose a modification T1 of the rule T which is less restrictive under both H+ and A and still takes
enough care on stability of critical values. This results in slightly higher average power of QT1 in
comparison to that of QT . To close, emphasize that the selection rule T depends on the prescribed
significance level α and the data. Similar feature shall obey its modification T1.

2.4. Proposed modification of T

As mentioned above, a key point to the sensitivity of data driven quadratic form is careful
balancing its behaviour under both H+ and A. In course of the present work we constructed and
investigated a few data driven statistics and propose here to consider the one defined via

T1 = min
{
d : Qd − dπ(1)(α,N) ≥ Qj − jπ(1)(α,N), d, j ∈ D(N)

}
, (5)

where the penalty π(1)(α,N) for the parameter d is given by

π(1)(α,N) =

{
p(1)(α,N) if MD(N) ≥ cM (0.8α,D(N)),

0 otherwise,
(6)

while p(1)(α,N) is the smallest positive number p(1) such that, given the pooled sample (X1, . . . , Xm,
Y1, . . . , Yn), under F = G, the concentration of T1 on d = 1 is at least 1− α. In symbols,

P (T1 = 1|F = G) ≥ 1− α. (7)

In Appendix C we discuss the question of existence of p(1)(α,N). Since, under F = G, the quadratic
forms defining T1 are distribution free, therefore in our experiments we searched for p(1)(α,N) by
simulations, starting from some preliminary guess.

The rule T1 has simple interpretation. In the case when MD(N) rejects H+ on the level slightly
smaller than the prescribed significance level α, the penalty is 0 and one applies the largest possible
sum of squares of L+

j ’s, i.e. QD(N). In the opposite case more careful selection of d in Qd is
done via some Akaike-type penalty. At first glance it would be more natural to have simply
MD(N) ≥ cM (α,D(N)) in the ‘switch’ appearing in (6). However, in such case, there are numerical
problems with solving (7) in practice, as we search for p(1)(α,N) by simulations. Therefore, to have
some flexibility, we took a slightly lower barrier. For more discussion see Appendix C.
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In Appendix C we also show that the associated with T1 quadratic form QT1 has the following
useful property:

P
(
QT1 > c |F ≥ G

)
≤ P

(
QT1 > c |F = G

)
, for any c ∈ R and any natural numbers m, n. (8)

In particular, this property implies that, given the significance level α, it is enough to find the
critical value of the data driven test by solving P

(
QT1 > c |F = G

)
≤ α, only. As in the case of

(7), it can be done by simulations.
We investigated empirical behaviour of the tests based on MD(N), M

∗
N , QT , and QT1 under

both moderate (N = 300) and large sample sizes (N = 10000, N = 20000). Results under N = 300
are postponed to Appendix B. In experiments we also included some alternative selection rules. To
do not break the main stream of the presentation, we show and discuss these additional results in
Appendix B. As mentioned earlier, they illustrate how delicate is the problem of selection of the
number of components. They also demonstrate that by a careful choice of the penalty one can
obtain more specialized tests focusing, for example, on more frequent detection of changes in the
central part of F −G.

3. Simulation study under large NNN

As mentioned in the Introduction, the Kolmogorov-Smirnov statistic

KS = sup
x∈R

√
mn

N

{
Gn(x)− Fm(x)

}
,

is a recognized standard to verify H+. Therefore, we shall compare here its empirical power to that
of QT , QT1, MD(N), and M∗N .

In all experiments m = n. Throughout the notation nr stands for the number of Monte Carlo
(MC) runs. Table 1 gives critical values of the related tests on the level α = 0.01, under N = 10000
and N = 20000. It is seen that the concentration of T1 on d = 1 (given in percentages) is close to 1
and smaller by less than 1% from that of T = T0. Finally, recall that, according to the terminology
introduced in Section 2.1, the barrier c in the ‘switch’ {MD(N) ≥ c} equals −

√
t(α) logN in the

case of T0 and cM (0.8α,D(N)) for T1. The values of this parameter are also displayed in Table 1.
Note that cM (0.8α,D(N)) is obtained by simulation in additional preliminary MC experiment with
nr = 10000.

Table 1
Simulated critical values and related parameters versus N = m+ n, m = n, α = 0.01, nr = 10000.

N = 10000, K(N) = 12, D(N) = 8191 N = 20000, K(N) = 13, D(N) = 16383

Statistic KS M∗N MD(N) QT0 QT1 KS M∗N MD(N) QT0 QT1

Critical value 1.500 -3.662 -3.641 5.570 10.001 1.499 -3.686 -3.684 5.379 11.343

Penalty p(r)(α,N) 9.21 6.40 9.90 6.00

Barrier in the ‘switch’ -4.238 -3.680 -4.103 -3.720bP (Tr = 1|F = G), r = 0, 1 99.860 99.010 99.830 99.000

Since stochastic dominance is often discussed in application to income distributions, in this
paper we investigated empirical powers mostly under some pairs of alternative distributions F
and G, standard in the area. In particular, Gamma, log-normal, Pareto, and Singh-Maddala
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distributions are included. The alternatives, considered under N = 10000, are labeled byA1, . . . ,A9

and are formally described in Appendix A. In Figure 1 we present graphically the related pairs of
distributions F and G along with the first 31 average values of γ̂j =

√
(N/mn)Lj (over nr = 10000

MC runs) among D(N) = 8191 under consideration. The quantity γ̂j can be interpreted as the jth
empirical Fourier coefficient of the so-called contrast function in the system {lj}j≥0. For details see
Section 2 of LW. For ease of interpretation of the empirical results also recall here that

Lj ≈
√
mn

N

(Fm −Gn) ◦H−1
N (aj)√

aj(1− aj)

and significantly small negative values of Lj indicate A. This shows that γ̂j ’s are approximately
weighted differences between Fm and Gn evaluated at the aj-quantiles of the reference distribution
function HN . We restricted attention to the first 31 γ̂j ’s to keep readability. The underlying
distribution functions F and G are very smooth and do not cross many times. In consequence,
small number of the coefficients well describes the nature of discrepancies between F and G.

To have some benchmark, the parameters of A1, . . . ,A9 were selected in such a way that empir-
ical powers of MD(N) lay in (0.65,0.70). Figure 1 shows that several different situations are taken
into account. Alternatives A6−A9 represent some negative differences in one of the tails while the
remaining ones refer to more centrally located negative discrepancies.
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Fig. 1. F (—), G (- -), first 31 empirical Fourier coefficients γ̂j ’s - vertical bars. N = 10000,
m = n, K(N) = 12, D(N) = 8191, α = 0.01, nr = 10000.

The pertaining powers are collected in Table 2.

Table 2
Empirical powers, N = 10000, m = n, K(N) = 12, D(N) = 8191, α = 0.01, nr = 10000.

Test Alternative

A1 A2 A3 A4 A5 A6 A7 A8 A9 average power

KS 86.3 86.8 79.5 74.4 67.4 50.2 20.1 13.0 0.1 53.1

M∗N 67.0 69.6 67.8 66.2 65.4 68.5 66.3 68.6 68.3 67.5

MD(N) 67.7 70.3 68.6 66.8 66.5 69.3 67.0 69.0 68.8 68.2

QT0 85.0 84.2 74.0 42.9 61.8 46.7 38.9 40.2 40.4 57.1

QT1 69.1 72.4 72.6 65.6 67.7 67.7 65.4 67.1 67.1 68.3

8



It is seen that under central differences KS and QT0 do very well, QT1 does also very well while
M∗N and MD(N) are slightly weaker. Note also that the most difficult situation for the data driven
statistics considered in this paper is such that (F − G) ◦ H−1(aj) > 0 for central aj ’s. Then the
selection rules T0 and T1 have natural tendency to concentrate on low d’s while the corresponding
values of Qd’s are small. This causes some troubles with rejecting H+. In our simulation study the
alternative A4 illustrates such a relatively difficult situation. In the real data analysis presented
below we are also faced with similar circumstances in the case of comparison labeled by 1978 versus
1986.

Under differences in extreme parts, KS looses its power, QT0 is much better, while the three
other statistics are the best and practically of the same power. The average powers collected in
Table 2 reflect well the above discussed tendencies.

A similar picture follows from Table 3 in which N = 20000 and the parameters of A1, . . . ,A9

were changed to have again empirical powers of MD(N) in (0.65, 0.70). The related alternatives are
denoted by A′1, . . . ,A′9. Their definitions are given in Appendix A. In view of new values of some
parameters, possible displays related to A′1, . . . ,A′9 can be slightly different in shapes from these
for A1, . . . ,A9 shown in Figure 1.

Table 3
Empirical powers, N = 20000, m = n, K(N) = 13, D(N) = 16383, α = 0.01, nr = 10000.

Test Alternative

A′1 A′2 A′3 A′4 A′5 A′6 A′7 A′8 A′9 average power

KS 87.1 86.3 81.0 73.8 69.8 48.3 20.9 10.7 0.1 53.1

M∗N 67.5 67.1 68.0 66.1 67.2 65.2 65.9 67.6 69.0 67.1

MD(N) 67.6 67.1 68.0 66.1 67.2 65.1 65.8 67.1 68.9 67.0

QT0 86.7 84.8 76.3 49.8 67.2 50.6 46.4 47.4 49.8 62.1

QT1 67.0 69.4 74.3 65.9 71.2 64.2 64.4 66.2 67.6 67.8

4. Real data analysis

We shall apply the discussed solutions for the income distribution comparison. The data con-
cerns before and after tax incomes in Canada in 1978 and 1986 and comes from the Canadian
Family Expenditure Survey. The two sets of data are denoted here by Can(bt) and Can(at), re-
spectively. In these examples there are 8526 observations from 1978 and 9470 from 1986. These
data, which were previously analyzed by Barrett and Donald (2003), were made available to us by
Professor Garry F. Barrett.

The question, which was posed and investigated in the above mentioned paper, is : Do the
income distributions improve over time, i.e. is the (unknown) distribution function G in 1986
less than or equal to F , corresponding to 1978, in both considered cases? This comparison is la-
beled in Tables V and VI of the aforementioned paper by 1986 versus 1978. The reversed relation
1978 versus 1986 was also studied there. In this example N = 17996 and hence K(N) = 13 and
D(N) = 16383. We start with the first comparison.

4.1. 1986 versus 1978

We indicate the structure of the data here by showing in Figure 2 the first 31 empirical Fourier
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coefficients γ̂j for both sets Can(bt) and Can(at). Note that γ̂j ’s are calculated now on the basis of
the data at hand. The smallest γ̂j ’s amongD(N) = 16383 are γ̂1071 = −0.1064 and γ̂4304 = −0.1065,
respectively. They result in L1071 = −7.1269 and L4304 = −7.1336. In view of the properties of
Lj ’s, collected in Section 2.1, such outcomes are highly improbable when H+ is true. The whole
data sets are summarized in Figure 2 by the respective curves of the form EN (z) = [{Fm − Gn} ◦
H−1
N (z)]/

√
z(1− z), z ∈ (0, 1).
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Fig. 2. First 31 empirical Fourier coefficients γ̂j ’s for family income distributions compari-
son 1986 versus 1978 - vertical bars, the curves - respective values of EN (z) = [{Fm − Gn} ◦
H−1
N (z)]/

√
z(1− z), z ∈ (0, 1).

Critical values on the level α = 0.01 and the respective parameters of the data driven solutions
QT0 and QT1 are collected in Table 4. Table 5 shows the values of the investigated statistics and
the pertaining selection rules.

Table 4
Canadian family income data, 1986 versus 1978, m = 9470, n = 8526. Simulated critical values
and related parameters of data driven tests. α = 0.01, nr = 10000.

Statistic Critical value Penalty p(r)(α,N) Barrier in the ‘switch’

QT0 5.564 9.80 -4.021

QT1 10.790 5.50 -3.670

Table 5
Analysis of Canadian family income data, 1986 versus 1978, m = 9470, n = 8526, nr = 10000.

Can(bt) Can(at)

Significance level α = 0.01 α = 0.01

Statistic KS M∗N MD(N) QT0 QT1 KS M∗N MD(N) QT0 QT1

Value of statistic 2.469 -7.126 -7.128 178340.000 178340.000 1.888 -7.134 -7.134 94610.000 94610.000

p-value 0.000 0.000 0.000 — — 0.001 0.000 0.000 — —

Value of Tr, r = 0, 1 — — — 16383 16383 — — — 16383 16383
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The null hypothesis is rejected by the data driven tests on the level as small as α = 0.01 for
both sets Can(bt) and Can(at). p-values of other statistics show strong disagreement of the data
with the null hypothesis as well. We are not calculating p-values of QTr, r = 0, 1, as these statis-
tics depend on the prescribed significance level α and interpretation of such results would be unclear.

4.2. 1978 versus 1986

For comparison 1978 versus 1986 graphical representation of the data requires multiplying re-
spective EN ’s and all empirical Fourier coefficients in Figure 2 by -1. This, in particular, results
in the case of Can(bt) in γ̂1 > 0, γ̂3 > 0, and γ̂5 < 0, but small in magnitude. As mentioned in
Section 3, such situation is particulary difficult to be detected by our data driven tests, especially
when the remaining negative Fourier coefficients are relatively large. This is just the case. In
the comparison 1978 versus 1986 the negative Fourier coefficients are larger than in the previous
case and rejection of the related null hypotheses is not so easy, in general. To be specific, now
the smallest empirical Fourier coefficients are γ̂2713 = −0.0484 and γ̂11059 = −0.0506 in the case
of Cat(bt) and Can(at), respectively, while in the easier case, 1986 versus 1978, they were twice
smaller, approximately. This situation is reflected by p-values of KS, M∗N and MD(N) which are
equal to 0.009, 0.038, 0.038 in the case of Can(bt) and 0.005, 0.024, 0.023 for Can(at). In view
of these results, we simulated critical values and related parameters of data driven tests on levels
α = 0.01, . . . , 0.05 and collected them in Table 6.

Table 6
Canadian family income data, 1978 versus 1986, m = 8526, n = 9470. Simulated critical values
and related parameters of data driven tests versus α. nr = 10000.

Statistic QTr, r = 0, 1 QT0 QT1

α 0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.05

Critical value 5.849 4.494 3.652 3.103 2.697 10.034 9.833 8.746 8.216 8.226

Penalty p(r)(α,N) 9.80 9.80 9.80 9.80 9.80 5.30 4.70 4.30 3.90 3.80

Barrier in the ‘switch’ −4.081 -4.020 -4.020 - 4.081 -4.141 -3.736 -3.511 -3.376 - 3.281 - 3.209

Table 7
Analysis of Canadian family income data, 1978 versus 1986, m = 8526, n = 9470, nr = 10000.

Statistic QT0 QT1

α 0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.05

Can(bt)

Value of statistic 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 21910.650

Value of Tr, r = 0, 1 1 1 1 1 1 1 1 1 1 16383

Can(at)

Value of statistic 2.651 2.651 2.651 2.651 2.651 2.651 2.651 38758.124 38758.124 38758.124

Value of Tr, r = 0, 1 1 1 1 1 1 1 1 16383 16383 16383

Table 7 shows values of the data driven statistics and selection rules under these α’s. It is seen
that in the case of Can(bt) the statistic QT0 accepts the null hypothesis on all the listed levels
while QT1 rejects H+ on the level 0.05. The case Can(at) is slightly easier for QT1 as it rejects H+

already on the level 0.03. QT0 still accepts the null hypothesis on all the considered levels. This
shows that, in the above difficult circumstances, QT1 is more sensitive than QT0 and comparable
in strength to M∗N and MD(N). As mentioned earlier, the situations under consideration resemble
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that under the alternative A4. Under such conditions the KS statistic is doing very well and it is
also manifested in this example.

5. Conclusions and remarks

This article proposes a new data driven test for testing stochastic dominance. The new solution
is compared with some recent constructions introduced in Ledwina and Wy lupek (2012a) and
standard in the area the Kolmogorov-Smirnov test. Extensive simulations done under moderate
and large sample sizes show that the new and recent solutions are competitive to the Kolmogorov-
Smirnov test.

It is worth noting that two simple constructions MD(N) and M∗N work very well. The construc-
tions are based on minima of some weighted two-sample processes. The weights are such that the
resulting tests have similar sensitivity in detecting differences between F and G in each point of
the ranges of (F −G)◦H−1 and F −G, respectively. The construction of MD(N) allows for slightly
more parsimonious calculations and is consistent implementation of the idea of Anderson (1996) to
use intersection-union tests for inequality constraints in income comparisons.

The new data driven test based on QT1 is much more complicated than M∗N and MD(N) and
comparable to them in average power. Other data driven constructions, more focused on detecting
centrally located discrepancies are discussed as well. Though QT1 is relatively complex, we find
it to be interesting. First, as mentioned earlier, this construction is relatively simple to calculate
and consistent substitute for the Wald-type statistic introduced in Davidson and Duclos (2000). In
particular, we solved the most delicate problem related to deciding on in which and in how many
points to control the difference F − G. In our construction it is done by some carefully designed
selection rule. Since, as the sample size is growing, the selection rule is checking more and more
dense sets of candidate points, the resulting test is consistent against very large set of alternatives.
So, this construction solves some problem already noticed. In contrast to QT , the test based on
QT1 distributes its power more uniformly over the space of alternatives. On the other hand, one
can consider a dual problem of testing of lack of stochastic dominance against presence of the
dominance. This is also an important question. As shown in Ledwina and Wy lupek (2012b) and
Wy lupek (2013) statistics of the Kolmogorov-Smirnov type are not adequate then while carefully
elaborated data driven tests work nicely. Therefore, the new construction can also be stimulating
in such a context.

Appendix A. Description of alternatives

To define alternatives A1, . . . ,A9 and A′1, . . . ,A′9 we shall use the following distributions.

P (a) is an abbreviation of Pareto(a), a ≥ 1, and stands for the distribution with cdf given by
1− (1/x)a, x > 1.

N(a, b), a ∈ R, b > 0, is defined by the density exp{−(x− a)2/(2b2) }/{
√

2πb}, x ∈ R.

χ2
k stands for the chi-squared distribution with k degrees of freedom and the density

exp{−x/2}x(k−2)/2/{2k/2Γ(k/2)}, x > 0.
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LN(a, b), a ∈ R, b > 0, denotes the log-normal distribution with the density exp{−(log x −
a)2/(2b2)}/{

√
2π bx}, x > 0.

LNC(a, b), a > 0, b > 0, is the distribution of a random variable Z defined by two cdf’s of LN(·, ·)
in the following way P (Z ≤ z ) = {LN(0, a)(z) }1(z ≤ 1) + {LN(0, b)(z) }1(z > 1), z ∈ R.

SM(a, b, c) stands for Singh–Maddala(a, b, c) distribution with parameters a ≥ 1, b ≥ 1, c ≥ 1
which obeys cdf 1− [1 + (x/b)a]−c, x > 0, cf. Klonner (2000).

S(a, b) is shortening of Stable(a, b), a ∈ (0, 2], b ∈ [−1, 1], which stands for Sa(1, b, 0) distribution
according to the notation of Samorodnitsky and Taqqu (1994), cf. pp. 5, 9 and 35-38.

As in LW, each alternative Aj [A′j ] is described by the pair of distributions F and G as follows:
F/G. With such notations we have

j Aj A′j
1 N(2.545, 2)/χ2

3 N(2.493, 2)/χ2
3

2 N(0,
√

2)/S(1.875, 1) N(0,
√

2)/S(1.910, 1)

3 SM(3, 5, 5)/SM(2.927, 4.927, 5) SM(3, 5, 5)/SM(2.948, 4.948, 5)

4 LN(0.85, 0.60)/P (0.745) LN(0.85, 0.60)/P (0.716)

5 P (1)/P (1.073) P (1)/P (1.052)

6 SM(1, 1, 1)/SM(1.044, 1, 1.044) SM(1, 1, 1)/SM(1.030, 1, 1.030)

7 LNC(1, 1.080)/LN(1, 1) LNC(1, 1.056)/LN(1, 1)

8 LN(0.85, 0.6)/0.953LN(0.85, 0.6) + 0.047LN(0.4, 0.9) LN(0.85, 0.6)/0.97LN(0.85, 0.6) + 0.03LN(0.4, 0.9)

9 LN(0.85, 0.60)/LN(0.945, 0.505) LN(0.85, 0.60)/LN(0.919, 0.531)

Appendix B. Three additional selection rules and related results

The three variants T2, T3, and T4 we introduce here have the common form

Tr = min
{
d : Qd − dπ(r)(α,N) ≥ Qj − jπ(r)(α,N), d, j ∈ D(N)

}
, (9)

for r = 2, 3, 4. The penalties π(r)(α,N) for the parameter d are as follows.
First

π(2)(α,N) =

{
p(2)(α,N) if MD(N) ≥ cM (α,D(N)),

0 otherwise,
(10)

where p(2)(α,N) is the smallest positive number such that, under F = G, the concentration of T2
on d = 1 is at least 1− α− 0.01 i.e.

P (T2 = 1|F = G) ≥ 1− α− 0.01.

Second

π(3)(α,N) =

{
p(3)(α,N) if MD(N) ≥ cM (α,D(N)),

2 otherwise,
(11)

where p(3)(α,N) is the smallest positive number such that, under F = G, the concentration of T3
on d = 1 is at least 1− α i.e.

P (T3 = 1|F = G) ≥ 1− α. (12)

Finally,

π(4)(α,N) =

{
p(4)(α,N) if MD(N) ≥ cM (α,D(N)),

2 otherwise,
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where p(4)(α,N) is defined in the spirit of Ledwina and Wy lupek (2013). To be specific, set

Ac = min
{
d : Qd − dc ≥ Qj − jc, d, j ∈ D(N)

}
.

Then p(4)(α,N) is the smallest positive number c such that, under F = G, the concentration of Ac
on d = 1 is at least 1− α i.e.

P (Ac = 1|F = G) ≥ 1− α.

Table 8
Simulated critical values and related parameters, N = 300, m = n, K(N) = 7, D(N) = 255,
α = 0.01, nr = 100000.

Statistic KS M∗N MD(N) QT0 QT1 QT2 QT3 QT4

Critical value 1.501 -3.371 -3.367 6.453 10.453 551.785 9.013 28.756

Penalty p(r)(α,N) 5.70 5.20 3.70 5.50 4.20

Barrier in the ‘switch’ -3.502 -3.433 -3.352 -3.352 -3.352bP (Tr = 1|F = G), r = 0, . . . , 4 99.287 99.004 98.006 99.008 98.580

Table 8 contains critical values of the tests based on KS, M∗N , and MD(N), under the level
α = 0.01 and N = 300, along with that corresponding to QTr, r = 0, . . . , 4. The parameters of
QTr are also given there. Observe that the rule T2 contains natural barrier in the ‘switch’ but
allows instead for slightly smaller concentration of T2 on d = 1 than in the case of T1. Such
strategy results in penalty smaller than p(1)(α,N) but causes an explosion of the pertaining critical
value. The rule T3 also has built-in a natural barrier in the ‘switch’ and, to protect against possible
troubles with simultaneous solving (11) and (12), the Akaike’s penalty 2 imposed in the case when
the ‘switch’ works. This construction results in relatively large penalty p(3)(α,N) and moderately
large critical value. The rule T4 can be considered to be intermediate between T2 and T3.

Obviously, the definitions of Tr, r = 2, 3, 4, also have influence into the empirical powers of
the resulting data driven QTr. Table 9 contains empirical powers under alternatives A1 −A12

defined and studied in LW. We refer to this paper for definitions, empirical Fourier coefficients
and other displays. Here note only that A1 −A3 correspond to differences in central part of
distributions F and G whileA4 −A12 represent several discrepancies closer to the tails of F and
G.

Table 9
Empirical powers, N = 300, m = n, K(N) = 7, D(N) = 255, α = 0.01, nr = 5000.

Test Alternative

A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10 A 11 A 12

KS 24.8 41.7 24.3 77.5 11.6 1.3 18.0 1.7 0.6 11.9 18.6 1.6

M∗N 29.5 32.9 15.1 90.0 50.4 79.7 36.6 50.9 65.0 40.5 78.6 63.7

MD(N) 29.7 32.8 14.9 90.1 50.3 79.7 36.5 50.4 64.9 40.3 78.2 63.7

QT0 33.6 43.8 29.8 86.6 42.5 70.0 31.8 41.6 54.8 33.2 75.9 52.1

QT1 31.8 32.3 16.0 88.6 47.4 75.9 33.9 47.1 62.5 36.6 77.3 63.1

QT2 35.7 35.6 8.7 83.8 35.5 17.7 33.0 8.0 3.4 29.1 47.1 13.8

QT3 32.7 36.2 17.9 88.0 42.4 37.4 34.7 15.7 8.1 34.3 55.2 18.8

QT4 34.6 34.8 9.7 86.4 41.0 33.8 34.5 13.7 7.0 32.8 53.5 18.2

It is seen that QT0 is better than QT1 in detectingA1 −A3 while in the remaining situations
the relation is reversed. The additional variants QTr also work nicely for A1 −A3 but in some
other cases have considerable break down. This discussion shows that proper tuning of the penalty

14



is a very delicate problem. Finally, observe that M∗N and MD(N) have stable overall power while
KS appears to be very weak in some cases.

Some weaknesses of QT2, QT3, and QT4 disappear under large N . However, these statistics
still show deficiency in detecting changes in tails even for N as large as 10000. For illustration we
show in Table 10 their empirical powers under alternatives A1 −A9; cf. Figure 1 and Table 2. In
Table 11 we give simulated critical values and the corresponding parameters of these tests.

Table 10
Empirical powers of QT2, QT3, and QT4, N = 10000, m = n, K(N) = 12, D(N) = 8191, α = 0.01,
nr = 10000.

Test Alternative

A1 A2 A3 A4 A5 A6 A7 A8 A9 average power

QT2 67.8 78.3 83.6 67.0 77.7 70.9 66.4 62.2 32.8 67.4

QT3 71.1 78.6 82.6 72.7 76.5 69.2 55.7 43.2 3.4 61.4

QT4 67.0 79.2 83.9 57.4 77.6 69.0 55.3 43.1 3.4 59.5

Table 11
Simulated critical values and related parameters of QT2, QT3, and QT4, N = 10000, m = n,
K(N) = 12, D(N) = 8191, α = 0.01, nr = 10000.

Statistic Critical value Penalty p(r)(α,N) Barrier in the ‘switch’ bP (Tr = 1|F = G)

QT2 7751.138 3.80 -3.637 98.060

QT3 9.244 4.70 -3.637 99.020

QT4 12.922 4.30 -3.637 98.790

Appendix C. Some justifications

Below, we shall discuss some basic properties of the new solutions, which are partially based on
our earlier results. For this purpose it is convenient to introduce the same notations as in Section 4
of LW.

Let D = { 2k+1 − 1 : k = 0, 1, . . . ,K }, where K is a given number while D = 2K+1 − 1.
Moreover, MD = min1≤j≤D Lj . In this setting, consider auxiliary selection rule T ∗ given by

T ∗ = min
{
d : Qd − dπ∗ ≥ Qj − jπ∗, d, j ∈ D

}
(13)

with

π∗ =

{
p∗ if MD ≥ c∗,
0 otherwise,

(14)

where p∗ > 0 and p∗ and c∗ are arbitrary otherwise.

By the same argument as used in the case of QT in the proof of Lemma A.1 and Corollary A.1
in LW we get

P
(
QT ∗ > c |F ≥ G

)
≤ P

(
QT ∗ > c |F = G

)
, for any c ∈ R and any natural numbers m, n.

Remark C.1. Taking above K = K(N) and D = D(N), as defined in Section 2.1, and setting
c∗ = cM (0.8α,D(N)) the inequality (8) follows.
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Two our next conclusions shall be of asymptotic nature. Therefore, we consider K = k(N) and
D = d(N), where, as in LW, d(N) → ∞ as N → ∞ and d(N) = o(N). Note that d(N) tends
to infinity slower than D(N), we took in our constructions and simulations. Our choice of D(N)
was primary made to have simple definitions and to avoid some discussions like for instance: which
d(N) of the form N δ, δ ∈ (0, 1), to take?

For the above defined K = k(N), D = d(N), D = { 2k+1 − 1 : k = 0, 1, . . . , k(N) }, consider T ∗

with c∗ = c∗M = cM (0.8α, d(N)) and the problem of solving

P (T ∗ = 1|F = G) ≥ 1− α (15)

with respect to p∗, cf. (13) and (14).

C.1. On solving (7) under the above conditions

Under the above notations and restrictions, solving (7) reduces to solving (15).

Proposition C.1. Under the above assumptions, for any α ∈ (0, 1) and for N large enough, there
exists the smallest p∗ for which (15) holds.

Proof. Let us start with indicating a particular p∗ solving (15). For this purpose set S = {Md(N) ≥
c∗M} with c∗M as above and denote by Sc the complement of S. It holds that

P (T ∗ > 1|F = G) = P ({T ∗ > 1} ∩ S|F = G) + P ({T ∗ > 1} ∩ Sc|F = G) (16)

≤ P ({T ∗ > 1} ∩ S|F = G) + 0.8α. (17)

Moreover,

P ({T ∗ > 1} ∩ S|F = G) = P
( ⋃
d∈Dr {1}

{ d∑
j=2

[L+
j ]2 > (d− 1)p∗

}
∩ S|F = G

)
. (18)

If c∗M ≥ 0 then L+
j = 0, j = 2, . . . , d(N), and (18) equals 0 for any positive p∗. In the opposite case,

again the form of S implies that (18) equals 0 for p∗ = [c∗M ]2. This shows that if p∗ = [c∗M ]2 then

P (T ∗ = 1|F = G) ≥ 1− 0.8α. (19)

Now observe that the second component in (16) is independent from p∗. By (18), the first
component of (16) increases when p∗ decreases. Therefore, the left-hand side of (19) decreases
when p∗ decreases. Moreover, the expression in (18) is right-continuous function of p∗. Besides, for
p∗ = 0, we have

P (T ∗ > 1|F = G) = P
( d(N)∑
j=2

[max{−Lj , 0}]2 > 0|F = G
)

= P ( min
1≤j≤d(N)

Lj < 0|F = G). (20)

However, min1≤j≤d(N) Lj → −∞; cf. Appendix B.4 in Ledwina and Wy lupek (2012b). Therefore,
the right-hand side of (20) tends to 1 as N →∞.
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Remark C.2. Obviously, the above proof works in the case when c∗M = cM (0.8α, d(N)) is replaced
by c∗∗M = cM (α, d(N)). In practice, however, the values of c∗M and c∗∗M are simulated. Therefore,
in view of restricted accuracy of simulation experiments it may happen that the estimated by MC
probability of {MD ≥ c∗∗M} shall be slightly smaller than 1 − α, what makes such more natural
solution difficult to apply, as then ensuring the counterpart of (7) is impossible. More precisely, the
possible (additional in view of theoretical results) small fraction of outcomes for which the penalty
is allowed to be 0 makes T1 stochastically too large.

Remark C.3. Throughout we simulate quantiles using the function quantile in the program R
with default settings. In particular, c∗∗M is defined as the largest value cM (α) such that P (MD <

cM (α)|F = G) ≤ α. To solve a problem of possible tied observations, we extend the definition of
Lj as follows Lj = −

√
n/mN

∑m
i=1 lj(HN (Xi)− 1/(2N)) +

√
m/nN

∑n
i=1 lj(HN (Yi)− 1/(2N)).

C.2. Consistency of the test based on QT ∗

We still require d(N) = o(N) and d(N) → ∞ as N → ∞. In such setting LW proved consis-
tency of the tests based on MD and QT , provided that Assumption 1 in LW was satisfied. Below,
we show that then the test based on Q∗T is consistent as well. For formulation and discussion of
this assumption see LW, pp. 735-736. It shows that Assumption 1 is not very restrictive one.

Proposition C.2. If T ∗ is given by (13) and (14) with c∗ = c∗M = cM (0.8α, d(N)) then the test
rejecting H+ in favour of A for large values of QT ∗ is consistent.

Proof. By (3) of Lemma A.1 in LW and Lemma 5.9.1 of Lehmann and Romano (2005), P (QD >

c|F ≥ G) ≤ P (QD > c|F = G), c ∈ R. Besides, under F = G, QD = OP (D). Hence, under H+,

QT ∗ = OP (d(N)). (21)

As before, S = {Md(N) ≥ c∗M}. Let j0 be the smallest index j such that γj < 0. Since on Sc the
penalty π∗ equals 0 then

P (T ∗ ≥ j0|A) ≥ P ({T ∗ ≥ j0} ∩ Sc|A)→ 1 as N →∞. (22)

Let q stands for the critical value of the data driven test based on QT ∗ . Then, by (22), for N
sufficiently large

P (QT ∗ ≥ q|A) ≥ P (Qj0 ≥ q|A) ≥ P ([L+
j0

]2 ≥ q|A).

However, Lj0 is, under A, asymptotically normal with mean ∆N (j0) = O(
√
N); cf. Appendices A

and B in Ledwina and Wy lupek (2012b) for details. Hence, the consistency follows.
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